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Abstract: Sound knowledge of the local distribution and diversity of freshwater snail intermediate
hosts and the factors driving the occurrence and abundance of them is crucial to understanding
snail-borne parasitic disease transmission and to setting up effective interventions in endemic areas.
In this study, we investigated the freshwater snails, water quality parameters, physical characteristics
of habitats, predators and competitors, and human activity variables at 102 sites during December
2018 and August 2019 in Shenzhen and adjacent areas in China. We used decision tree models and
canonical correspondence analysis to identify the main environmental and biotic factors affecting
the occurrence and abundance of snail species. A total of nine species of snail were collected
throughout the study area, with Biomphalaria straminea, Sinotaia quadrata, and Physella acuta being
the most predominant species. Our study showed that the most important variables affecting
the abundance and occurrence of snail species were the presence of predators and competitors,
macrophyte cover, chlorophyll-a, substrate type, river depth, and water velocity. In terms of human
activities, snail species occurred more frequently and in larger numbers in water bodies affected
by human disturbances, especially for sewage discharge, which may reduce the occurrence and
abundance of snail predators and competitors. These findings suggest that proper management of
water bodies to reduce water pollution may increase the abundance of snail predators and competitors,
and should be considered in integrated snail control strategies in the study area.

Keywords: freshwater snails; environmental factors; decision trees; predators; parasitic diseases;
human activities

1. Introduction

Snails are invertebrate animals of the class Gastropoda and are widely distributed in
aquatic ecosystems around the world. Approximately 5000 species have been identified
in freshwater habitats such as lakes, rivers, streams, ponds, and dams [1,2]. Among these,
some freshwater snails have medical and veterinary health importance, serving as vectors
of parasitic diseases. Snail-borne diseases are major parasitic diseases that remain important
public health issues worldwide, particularly in impoverished countries [3]. Schistosomi-
asis is an endemic parasitic disease affecting almost 240 million people worldwide, and
an additional 700 million people are at risk of infection [4]. Six species of the blood fluke are
reported to infect humans, causing schistosomiasis; among these, Schistosoma haematobium,
Schistosoma mansoni, and Schistosoma japonicum are the main pathogenic species. Schisto-
soma eggs are the main pathogenic factors of schistosomiasis; parasitizing on host tissues,
they cause the host to develop immunopathological reactions, which lead to the occurrence
of urinary and reproductive system inflammation (Schistosoma haematobium) and obstructive
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diseases or intestinal diseases, liver and spleen inflammation, and liver fibrosis (Schistosoma
mansoni and Schistosoma japonicum) [5]. In China, schistosomiasis japonicum is still prevalent
in Hubei, Hunan, Jiangxi, Anhui, Jiangsu, Sichuan, and Yunnan provinces, posing a great
threat to social and economic development [6]. Angiostrongyliasis cantonensis is another
parasitic disease endemic in many areas, including Southeast Asia, the Pacific Islands,
parts of South and Central America, and the Caribbean [7,8]. It is a serious disease with
eosinophilic encephalitis and meningoencephalitis as the main clinical manifestations [7,9].
By 2012, more than 3000 cases of Angiostrongyliasis cantonensis had been recorded in
nearly 300 countries and regions, of which the main outbreaks occurred in endemic areas,
especially in China [10]. For example, 160 cases occurred in 2006 in Beijing, six cases
occurred in 2007 in Guangdong, and 35 cases occurred from 2007 to 2008 in Yunnan; these
intensive infections have aroused great attention among the public [11–13].

The distribution of snail-borne diseases largely depends on the spatial distribution of
intermediate hosts [14]. It has been proven that snail-borne parasitic disease is endemic
in areas where intermediate host snails are identified, while it does not occur in areas
without host snails, although imported parasitic disease cases have been detected [15].
Snail distribution and abundance generally depend on various environmental factors,
including physical factors such as temperature, precipitation, aquatic macrophyte cover,
hydrography, and substrate composition; chemical factors such as pH, electrical conductiv-
ity, five-day biochemical oxygen demand (BOD5), chemical oxygen demand, total nitrogen,
and total phosphorus; and biological factors such as food, competition, and predator–prey
interactions [16–18]. However, the relative importance of environmental factors varies
considerably in different regions due to the environmental heterogeneity [19], indicating
that local surveys are needed to determine the preferred habitats of snail hosts.

A better understanding of the environmental factors affecting the distribution and
habitat preferences of snail intermediate hosts is crucial for the effective control and elimi-
nation of snail-borne diseases. In Shenzhen and adjacent areas, a few studies have been
conducted on the biology of several freshwater snails [20–25]. However, the sample sites
are very scattered, and the surveyed snails are mainly Biomphalaria straminea and Pomacea
canaliculata. Little is known about the distribution of the snails and the main factors affect-
ing the snail abundance in the region, which is unfavorable for promoting comprehensive
prevention and control measures for snail-borne diseases. Therefore, in this study, we
aimed to (i) identify the local distribution and diversity of freshwater snail intermediate
hosts of parasites, and (ii) to identify the biotic and abiotic factors that affect the occurrence
and abundance of these snails in Southern China. The findings of this study could be help-
ful for priority habitat identification and to obtain targets for the prevention and control of
snail-borne diseases in this area.

2. Materials and Methods
2.1. Study Area

The study was conducted in the rivers of Shenzhen and the adjacent waters of Dong-
guan and Huizhou, which are located between latitudes 22◦30′54.34′′ N and 23◦13′53.64′′ N
and longitudes 113◦48′6.77′′ E and 114◦30′40.26′′ E (Figure 1). This area is a subtropical
monsoon climate domain, featuring hot and humid summers and mild winters. The av-
erages of annual temperature and annual precipitation are approximately 23.0 ◦C and
1800 mm/m2, respectively. The precipitation in this area has great seasonal fluctuations,
with 96% of rainfall concentrated during the wet season (April to September) and 4% of
rainfall in the dry season (October to March) [26]. During recent decades, this area has been
subjected to considerable human pressures, which mainly originate from rapid human
population growth and enormous urbanization and development. Due to the rapidly devel-
oping economy, intensive human activities such as levee construction, pollution discharge,
and dredging represent great anthropogenic stressors to the river ecosystems [27].
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2.2. Malacological Surveys

Malacological surveys were conducted during December 2018 (dry season) and Au-
gust 2019 (wet season) and were undertaken at 102 sites in the river systems of Shenzhen,
Dongguan, and Huizhou cities (Figure 1). Sampling was undertaken by two experienced
field collectors using snail scoops. The scoops were composed of a wire mesh measuring
1.5 × 1.5 mm, supported on an iron frame (40 × 30 cm), and mounted on a 1.5-m-long
iron handle [28]. At each site, the investigators collected all snails found in a radius of
approximately 2 m over a permitted search time of half an hour. Collected snails were
transferred to plastic vials containing 10% formaldehyde and transported in plastic con-
tainers to the laboratory of the Hubei Provincial Center for Disease Control and Prevention
for processing. Snails were identified to species level based on shell morphological char-
acteristics following the published identification guidelines [29] and descriptions from
previous reports on snail sightings in the region [30,31]. Information on the 102 sites are
listed in Table S1.

2.3. Local Environmental Variables

Physico-chemical water quality measurements were performed both onsite during
sampling and in the laboratory. Water temperature (WT), pH, electrical conductivity
(Cond), dissolved oxygen (DO), and total dissolved solids (TDS) were measured in the field
using a multi-parameter probe (YSI V6620; YSI Company, Yellow Springs, OH, USA). In
addition, water samples were collected from each sampling site in polyethylene bottles
and transported (in the dark) to the laboratory in an ice-cooled box for other physico-
chemical parameter analyses. Total nitrogen (TN), ammonia (NH4-N), nitrate (NO3-N),
total phosphorus (TP), orthophosphate (PO4-P), chlorophyll-a (Chl-a), and chemical oxygen
demand (COD) were determined according to the Chinese standard method [32] at the
laboratory of the Changjiang River Scientific Research Institute. Water depth was measured
using a graduated stick calibrated in centimeters. River width, emergent macrophyte width,
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and floating macrophyte width were determined with a rangefinder. Water velocity was
measured using a flowmeter (FP111, Global Water, Sunnyvale, CA, USA). At each sampling
site, the substrate was carefully assessed by observation and classified as silt, sand, gravel,
pebbles, cobbles, or boulders [33]. Taking the sampling point as the center, we visually
estimated the coverage ratio of aquatic plants (emergent, submerged, and floating) by
a simple estimation of the coverage ratio of aquatic plants within 500 m. The percentage of
aquatic macrophyte cover was classified into four groups: very low (<10%), low (10–35%),
moderate (35–65%), and high (>65%) [34].

2.4. Predator and Competitor Survey

Macroinvertebrates were taken from the substrate with a weighted Petersen grab
(0.0625 m2) and then passed through a 420 mm sieve. Specimens were manually sorted
from sediment on a white porcelain plate and preserved in 10% formalin and then sent to
the laboratory for family-level identification according to relevant references [29,35–39].
The collected macroinvertebrates were assigned to functional feeding groups: preda-
tors, scrapers, gatherer–collectors, filterer–collectors, and shredders [37,40]. Scrapers and
macroinvertebrates belonging to the family Physidae were considered competitors of
snails [41]. The invertebrates, such as Dytiscidae beetles (Insecta: Coleoptera) [42], Be-
lostomatidae bugs (Insecta: Hemiptera) [43], Odonates (Insecta: Odonate) [44], Psychodi-
dae (Insecta: Diptera) [45], Hydrophilidae (Insecta: Coleoptera) [46], and Glossiphoniidae
leeches (Hirudinea: Rhynchobdellida) [47], were considered snail predators.

2.5. Human Disturbance

Human activities at each surveyed site, such as fishing, shipping, clothes washing,
dredging, pollution discharge, farming, and irrigation, were classified by their average dis-
turbance intensity around the area [48]. A score of 1 was awarded for minimal disturbance,
2 for medium disturbance, and 3 for high disturbance.

2.6. Data Analysis
2.6.1. Classification and Regression Tree (CART)

Thirty-two environmental variables (both biotic and abiotic factors) were used to pre-
dict the occurrence and abundance of snail species (Table 1). Classification and regression
trees (CART) were applied to develop the models. The models tend to predict that the
most common species will always be present and the rarest will always be absent [49].
Thus, the frequency of occurrence of snail species of more than 20% was included in the
prediction model, as suggested by Yigezu et al. [49] Based on a training set of 102 samples,
classification and regression trees were used to develop the models. The classification
tree models were built using Weka (version 3.8.5, University of Waikato, New Zealand),
applying the J48 algorithm. The J48 algorithm is a Java re-implementation of C4.5, which is
well known and has been frequently used over the years [50,51]. The algorithms for the
induction of decision trees are based on the top-down induction of decision trees (TDIDT)
principle [52]. Likewise, regression tree models were built using Weka and applying the
M5 algorithm to relate the abundance of snail species and environmental variables. M5 is
a very popular regression tree algorithm; it splits the entire dataset into smaller subsets via
the divide and conquer method. This procedure reduces the parameter space into sections
(subspaces) and develops a linear regression model in every one of them [53]. Default
parameter settings were used to induce the trees, and all of the models were subjected to
10-fold cross-validation [54].

The percentage of correctly classified instances (CCI, %) [54] and Cohen’s kappa
statistics (K) [55] were used to evaluate the performance of the classification trees. CCI
is calculated as the percentage of the true predictions; Cohen’s kappa statistic simply
measures the proportion of all possible cases of presence or absence that are predicted
correctly by a model after accounting for chance predictions. Models with a CCI higher
than or equal to 70% and K higher than or equal to 0.4 were considered reliable [56–58],
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while according to Landis and Koch [59], we determined the degree of agreement when
Cohen’s kappa was found to be in various ranges, such as ≤0 (poor); 0–0.2 (slight); 0.2–0.4
(fair); 0.4–0.6 (moderate); 0.6–0.8 (substantial), and 0.8–1 (almost perfect).

Table 1. Input variables used for model development: minimum values, maximum values, mean
values, and standard deviations.

Variable Unit Min. Max. Mean SD

Water temperature ◦C 20.5 33 26.33 2.78
River depth Meter 0.03 1.78 0.39 0.34

Water velocity m/s 0 0.7 0.22 0.16
River width Meter 3 620.0 63.03 121.90

Dissolved oxygen mg/L 2.67 17.11 7.86 3.32
pH - 6.4 8.56 7.48 0.39

Total dissolved solids mg/L 60.45 4394.5 418.0 558.7
Electrical conductivity µS/cm 6.8 6754 618.7 902.3

Total nitrogen mg/L 0.64 27.5 9.75 6.65
Nitrate and nitrites mg/L 0.1 23.6 4.49 4.45

Ammoniacal nitrogen mg/L 0.02 14.89 3.72 4.05
Total phosphorus mg/L 0.02 2.97 0.61 0.66
Orthophosphate mg/L 0 1.9 0.36 0.47

Chlorophyll-a µg/L 0.52 31.43 6.16 5.26
Chemical oxygen demand mg/L 0.55 8.7 3.90 1.87

Emergent macrophyte width Meter 0 30 3.26 5.40
Floating macrophyte width Meter 0 100 2.36 11.79
Emergent macrophyte cover Very low(0), Low(1), Moderate(2), High(3) NA NA NA NA
Floating macrophyte cover Very low(0), Low(1), Moderate(2), High(3) NA NA NA NA

Submerged macrophyte cover Very low(0), Low(1), Moderate(2), High(3) NA NA NA NA

Substrate type Silt(0), Sand(1), Gravel(2), Pebble(3),
Cobble(4), Boulder(5) NA NA NA NA

Predator occurrence Absent(0), Present(1) NA NA NA NA
Competitor occurrence Absent(0), Present(1) NA NA NA NA

Predator abundance Count 0 504 15 57
Competitor abundance Count 0 672 43 115

Fishing Absent(0), Minimal(1), Medium(2), High(3) NA NA NA NA
Shipping Absent(0), Minimal(1), Medium(2), High(3) NA NA NA NA

Clothes washing Absent(0), Minimal(1), Medium(2), High(3) NA NA NA NA
Dredging Absent(0), Minimal(1), Medium(2), High(3) NA NA NA NA

Pollution discharge Absent(0), Minimal(1), Medium(2), High(3) NA NA NA NA
Farming Absent(0), Minimal(1), Medium(2), High(3) NA NA NA NA
Irrigation Absent(0), Minimal(1), Medium(2), High(3) NA NA NA NA

2.6.2. Canonical Correspondence Analysis (CCA)

To elucidate the relationships between different snail species and environmental
variables, a canonical correspondence analysis (CCA) was performed. The CCA was
restricted to those sites with complete data records and where at least one snail species
existed (n = 70). The forward selection method was used to screen environmental factors,
and the Monte Carlo method was used to test the significance of environmental variables
(999 unrestricted permutations). The CCA was conducted in the R software package,
version 3.6.2 (R Foundation for Statistical Computing; Vienna, Austria), using the package
“vegan” [60].

3. Results
3.1. Environmental Conditions

In general, there were some differences in water quality between different sampling
periods. The physical habitat conditions, such as water temperature, river depth, and water
velocity, were significantly different between the wet and dry seasons; however, the river
width and substrate type did not differ between the wet and dry seasons. According to
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the Chinese standard “Environmental quality standards for surface water (GB3838-2002)”,
the water quality of the sampling sites in the dry season was in the inferior V class, and
69.2% of the sampling sites’ water quality in the wet season was in the inferior V class.
The main over-standard items were total nitrogen (TN) and total phosphorus (TP). The
maximum total nitrogen (TN) and total phosphorus (TP) contents were up to 27.50 mg/L
and 2.97 mg/L, respectively, which are 13.3 times and 7.4 times the value corresponding to
each Class V water quality standard.

3.2. Occurrence and Abundance of Freshwater Snails

A total of 5238 freshwater snails were collected from 102 different sampling sites. The
snails were encountered in 70 sampling sites (68.6%). Collected snails were found belong-
ing to six families (Viviparidae, Physidae, Lymnaeidae, Planorbidae, Semisulcospiridae,
and Ampullariidae) and nine species (Table 2); all of them are intermediate hosts of para-
sites. The nine species included Sinotaia quadrata, Cipangopaludina chinensis, and Physella
acuta (all of which are intermediate hosts of Angiostrongylus cantonensis); Sinotaia limnophila
(the intermediate host of Echinostoma revolutum); Radix auricularia (intermediate host of
Angiostrongylus cantonensis and Fasciola hepatica); Biomphalaria straminea (the intermediate
host of Schistosoma mansoni and Angiostrongylus cantonensis); Semisulcospira cancellata (the
intermediate host of Angiostrongylus cantonensis, Clonorchis sinensis, and Paragonimus wester-
mani); Semisulcospira libertina (the intermediate host of Paragonimus westermani), and Pomacea
canaliculata (the intermediate host of Angiostrongylus cantonensis, Echinostoma revolutum,
and Gonathostoma spinigerum).

Table 2. Freshwater gastropod species found in the study area that can transmit parasitic diseases
and the parasites they can carry.

Family Genus Species Parasites Reference

Viviparidae Sinotaia
Sinotaia quadrata A. cantonensis [61]

Sinotaia limnophila E. revolutum [62]
Cipangopaludina Cipangopaludina chinensis A. cantonensis [61]

Physidae Physella Physella acuta A. cantonensis [61]
Lymnaeidae Radix Radix auricularia A. cantonensis; F. hepatica [63]
Planorbidae Biomphalaria Biomphalaria straminea S. mansoni; A. cantonensis [64,65]

Semisulcospiridae Semisulcospira Semisulcospira cancellata A. cantonensis; C. sinensis;
P. westermani [66]

Semisulcospira libertina Paragonimus westermani [67]

Ampullariidae Pomacea Pomacea canaliculata A. cantonensis; E. revolutum;
G. spinigerum [68–70]

Among all genera of snail species collected, B. straminea was the predominant snail
species, accounting for 54.7% of the total number of snails, and it was encountered in
31.4% of the sampling sites. Sinotaia quadrata was the second most common snail species,
accounting for 13.0% of collected snails, and occurred in 25.5% of the surveyed sites.
Although P. acuta accounted for only 8.6% of the snail population, it was found with
a frequency of occurrence of 22.5% in all surveyed sites. The least common snail species
were P. canaliculata, S. limnophila, and C. chinensis, which were found in <10% of the sampling
sites (Table 3).

3.3. CART Analysis
3.3.1. Variables of Importance

Thirty-two environmental variables were applied to predict the presence/absence
of snail species whose frequency of occurrence was higher than 20% (Table 3); these are
B. straminea, S. quadrata and P. acuta. From the induced process of decision tree construc-
tion, we were able to obtain the importance of different variables of the three species
(Figures S1–S3). Thus, the comprehensive variable importance could be obtained from
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the arithmetic means of these three species (Figure 2). According to Figure 2, the most
important environmental variables were predators’ occurrence (12.0), emergent macro-
phyte cover (7.0), and chlorophyll-a (6.5). In addition, the importance values for pollution
discharge, substrate type, competitors’ occurrence, river depth, and water velocity in the
classification tree models were 4.9, 4.6, 3.6, 2.8, and 2.7, respectively. However, some of the
chemical water quality variables’ importance values, such as those for DO, pH, TP, Cond,
and COD, were less than 2.0 and thus they were less critical for explaining the occurrence
of snail species.

Table 3. Occurrence and abundance of freshwater snail species at 102 sampling stations in the study
area. All collected snails are intermediate hosts of parasites. The frequency of occurrence is the
proportion of the number of sampling sites where the snails appear to the total number of sampling
sites (n = 102).

Species Number of
Collected Snails

Percentage of Total
Snail Number Number of Sites Frequency of

Occurrence

Biomphalaria straminea 2865 54.7% 32 31.4%
Sinotaia quadrata 679 13.0% 26 25.5%

Physella acuta 448 8.6% 23 22.5%
Semisulcospira cancellata 496 9.5% 15 14.7%

Radix auricularia 232 4.4% 14 13.7%
Semisulcospira libertina 409 7.8% 12 11.8%

Pomacea canaliculata 32 0.6% 9 8.8%
Sinotaia limnophila 29 0.6% 7 6.9%

Cipangopaludina chinensis 48 0.9% 4 3.9%
Trop. Med. Infect. Dis. 2022, 7, 426 8 of 18 
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The classification tree model for B. straminea is shown in Figure 3. This tree has
nine leaves and fifteen branches. The classification tree selected predators’ appearance
as the root of the tree, which is considered the most important variable by which to
predict the occurrence of B. straminea. That is suggested B. straminea was absent in the
presence of predators. In addition, B. straminea was often present in sites where there
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was lower emergent canopy cover, shallow water habitats, and high chlorophyll-a levels
(>14.62 µg/L).
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The classification tree model for P. acuta has eleven leaves and seventeen branches
(Figure 5). Here, predators’ appearance was selected as the root of the tree and was
considered the most important variable to predict the occurrence of this snail. Physella
acuta prefer to inhabit a coarse-grained benthic environment. However, high conductivity
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and concentration of total nitrogen, in addition to pollution discharge environment, were
preferable regarding the occurrence of P. acuta.
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3.3.2. Model Performance Evaluation

The model performance based on the CCI and Cohen’s kappa statistic (K) for the three
species of snails is presented in Figure 6. According to the CCI, B. straminea, S. quadrata,
and P. acuta had very good predictions (CCI > 70%). Among these, B. straminea had the
highest model predictive performance, with a CCI value of 78%. However, B. straminea
and S. quadrata were predicted accurately based on Cohen’s kappa statistic (K ≥ 0.4), and P.
acuta had fair predictive performance with K = 0.32.
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3.4. CCA Analysis

Selected variables found to be relevant for the CCA were the predator and competitor
abundance, emergent macrophyte cover, chlorophyll-a, pollution discharge, and substrate
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type (Figure 7). The first axis was positively correlated mainly with predator and competi-
tor abundance, but negatively correlated with emergent macrophyte cover. The second axis
was negatively correlated mainly with chlorophyll-a and pollution discharge. According to
Figure 7, most of the snail species were negatively correlated with predators and competi-
tors. However, P. canaliculata was positively correlated with emergent macrophyte cover
and S. libertina was positively correlated with chlorophyll-a.

Trop. Med. Infect. Dis. 2022, 7, 426 12 of 18 
 

 

3.4. CCA Analysis 
Selected variables found to be relevant for the CCA were the predator and competitor 

abundance, emergent macrophyte cover, chlorophyll-a, pollution discharge, and substrate 
type (Figure 7). The first axis was positively correlated mainly with predator and compet-
itor abundance, but negatively correlated with emergent macrophyte cover. The second 
axis was negatively correlated mainly with chlorophyll-a and pollution discharge. Ac-
cording to Figure 7, most of the snail species were negatively correlated with predators 
and competitors. However, P. canaliculata was positively correlated with emergent mac-
rophyte cover and S. libertina was positively correlated with chlorophyll-a. 

 
Figure 7. Canonical correspondence analysis ordination plot of snail species and predictor varia-
bles. 

4. Discussion 
A fundamental understanding of the ecology of snail intermediate hosts is essential 

to plan and implement effective snail-borne disease control strategies [71]. In our study, 
we used a decision tree model to identify the most important environmental variables 
affecting snail distribution in the rivers of Shenzhen and adjacent areas in China. The 
kappa (K) values show that the models had fair to moderate predictive performance, in-
dicating that certain snail species have clear environmental requirements within the stud-
ied habitat gradient. The results show that the occurrence of predators and competitors, 
canopy cover, chlorophyll-a, pollution, substrates, water depth, and velocity are the main 
variables by which to determine the abundance and distribution of snail intermediate 
hosts of parasites. Moreover, the canonical correspondence analysis (CCA) obtained sim-
ilar results. 

Our results indicate that biological factors such as predators and competitors should 
be given priority in terms of snail occurrence and abundance; these may inhibit snail pop-
ulations through predation and competition [49]. Younes et al. [44] pointed out that the 
density of snails is related to the predation activities of their predators. Several studies 
have suggested that benthic invertebrates belonging to the orders Coleoptera, Diptera, 
Odonata, Hirudata, and Hemiptera play a role in significantly reducing populations and 
could be considered in snail control strategies [44,46]. During the snail sampling, we noted 
large numbers of fish around some sample sites; however, their species, quantity, and 
size have not been surveyed in detail. Many studies [72–76] have suggested that fish pred-
ators can dramatically alter the population dynamics and diversity of snail species; this 
should be given more attention in future research. 

Figure 7. Canonical correspondence analysis ordination plot of snail species and predictor variables.

4. Discussion

A fundamental understanding of the ecology of snail intermediate hosts is essential to
plan and implement effective snail-borne disease control strategies [71]. In our study, we
used a decision tree model to identify the most important environmental variables affecting
snail distribution in the rivers of Shenzhen and adjacent areas in China. The kappa (K)
values show that the models had fair to moderate predictive performance, indicating that
certain snail species have clear environmental requirements within the studied habitat
gradient. The results show that the occurrence of predators and competitors, canopy cover,
chlorophyll-a, pollution, substrates, water depth, and velocity are the main variables by
which to determine the abundance and distribution of snail intermediate hosts of parasites.
Moreover, the canonical correspondence analysis (CCA) obtained similar results.

Our results indicate that biological factors such as predators and competitors should
be given priority in terms of snail occurrence and abundance; these may inhibit snail
populations through predation and competition [49]. Younes et al. [44] pointed out that the
density of snails is related to the predation activities of their predators. Several studies have
suggested that benthic invertebrates belonging to the orders Coleoptera, Diptera, Odonata,
Hirudata, and Hemiptera play a role in significantly reducing populations and could be
considered in snail control strategies [44,46]. During the snail sampling, we noted large
numbers of fish around some sample sites; however, their species, quantity, and size have
not been surveyed in detail. Many studies [72–76] have suggested that fish predators can
dramatically alter the population dynamics and diversity of snail species; this should be
given more attention in future research.

Aquatic macrophyte cover was another important factor affecting the distribution
of freshwater snails [77,78]. It was found that macrophyte coverage had an important
influence on snail occurrence and abundance in our study. Abundant macrophytes could
provide sufficient food and spawning sites for snails. Many snails were omnivorous species
that could feed on large numbers of aquatic plants, and their growth rate is related to
the abundance of plants on which they feed [79]. Moreover, macrophytes could provide
a refuge for snails to avoid predation by fish and other large animals, as well as the
adverse effects of the current and wind [80]. In addition, macrophytes produce dissolved
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oxygen through photosynthesis and could create better habitat conditions for aquatic
macroinvertebrates [81,82].

Chlorophyll-a is an important index of phytoplankton biomass, and its content could
reflect the nutritional status of the water body, which is a key parameter for water envi-
ronment research [83]. We observed that the concentration of chlorophyll-a was between
0.52 and 31.43 µg/L, with an average value of 6.16 µg/L. Phytoplankton play an important
role in snails’ diets. Our study shows that chlorophyll-a in water has an important impact
on snail occurrence and abundance. A high concentration of chlorophyll-a indicated high
phytoplankton content in the water column, which could provide sufficient food for the
growth and development of snails. For some snail species, such as B. straminea and P. acuta,
these snails were present in large numbers at suitable concentrations of chlorophyll-a, even
in the absence of macrophyte.

As shown in Figure 7, the occurrence of most snail species is strongly correlated
with human disturbance factors such as sewage discharge. Shenzhen and its neighboring
areas are economically developed and densely populated [84], with a huge amount of
daily sewage discharge, and some sewage may be directly discharged into rivers without
treatment [85]. In addition, the reclaimed water treated by wastewater treatment plants
is still high in nutrient content. Human disturbance, especially the high concentration of
organic matter and dissolved ions in sewage discharge, provides abundant nutrients for
phytoplankton and algae, which increases the content of chlorophyll-a in the water and
provides sufficient food for snails. Moreover, the ions in wastewater discharge, such as
calcium ions, are also a key component in snail shell growth and development [86]. These
factors contribute to the presence of snail species in wastewater discharge, which has been
confirmed by previous reports [18,87,88]. Biomphalaria spp., belonging to Pulmonata, are
better adapted to harsher environmental conditions because they can absorb atmospheric
air through a vascularized mantle cavity [30]. Since most other freshwater vertebrate and
invertebrate fauna cannot cope with low oxygen levels, air-breathing snails are released
from competition and predation pressures in hypoxic habitats, which increases their prob-
ability of occurrence and abundance [49]. A study by Pinto et al. [89] showed that the
discharge of untreated sewage has brought about algal blooms and aquatic macrophyte
proliferation in the Pampulha reservoir in Brazil, which contributes to the establishment of
high densities of snails in the water body.

In our study, it was found that the river substrate type was one of the key factors
affecting the species and abundance of snails. In the investigated rivers, the species and
number of snails were the largest in mixed pebbles and gravels. This may have been
due to the heterogeneity of the riverbed substrate, which generated the diversity of the
spatial distribution of water flow and nutrients and contributed to a plentiful habitat
environment [90], thus increasing the occurrence of freshwater snails. In addition, our
survey also found that there were fewer snails in sandy environments. This was mainly
because, under the same water flow conditions, sand was more easily disturbed than
gravel, pebbles, and silt, and had poor stability, which causes severe disturbance to the
living environments of benthic invertebrates [91]. Our findings are consistent with the
observations of Jowett [92], who found that benthic macroinvertebrate assemblages are
greatly dependent on the streambed stability at the reach scale.

Water depth and velocity are also key variables as determinants of snail occurrence.
Beisel et al. [93] pointed out that, in addition to the substrate, the water depth and velocity
are relatively more important physical factors affecting the community structure of benthic
invertebrates. Our observations indicate that almost all the snails in this area prefer to
live in shallow water, and it was difficult to find traces of them if the depth was over
40 cm. The shallow water was generally rich in aquatic plants, phytoplankton, and organic
matter, which provide abundant food for freshwater snails. However, Mandahl-Barth [94]
demonstrated that Biomphalaria smithi could be found at a depth of 4.3 m in Lake Edward,
Uganda, and Biomphalaria choanomphala at 12.2 m in Lake Victoria, Uganda. Freitas [95]
observed Biomphalaria glabrata survival at a depth of 4~5 m at the bottom of the Lagoa Santa
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in Brazil. In our study, it was difficult to determine whether the water depth affected the
snail distribution and to what extent, although they appear to prefer shallow waters [18].
Thus, in future studies, further efforts should be devoted to determining the quantitative
relationship between the distribution of snails and water depth in Shenzhen and adjacent
areas to better understand the snail ecology. Snails often inhabit marshes, puddles, canals,
ponds, and rivers with slowly running or stagnant water. Fast-running water appears to
hinder their predation and the establishment of breeding colonies of snails [96]. Moreover,
an excessive current flow would directly flush away the snails and reduce the abundance
of the snail species; these phenomena were commonly observed during the investigation in
the wet season.

In this study, snails tended to occur at high frequency and were abundant in wa-
ter bodies with high human activity, such as sewage discharge. The high concentration
of organic matter and ions in these polluted waters provided favorable conditions for
snail growth and propagation. Our observations also indicated snails with fewer species
and smaller numbers in clean water, which were less affected by anthropogenic distur-
bances. These water bodies host various predators and competitors of invertebrates, such
as Coleoptera, Odonata, Hirudinae, and Hemiptera, whose presence significantly inhibits
snail density [44]. Several studies have shown that these invertebrate assemblages are
responsible for a significant reduction in snail populations that could be considered in
integrated snail control measures [46]. Therefore, comprehensive snail control strategies
should give priority to reducing the occurrence and abundance of hosts among freshwater
snails in order to control the spread of snail-borne diseases at the local scale. This suggests
that the proper management of water bodies to reduce water pollution may be one of the
most suitable strategies for the comprehensive control of snail-borne diseases in Shenzhen
and adjacent areas.

5. Conclusions

In this study, a total of nine species of snail were collected throughout Shenzhen and
the adjacent region. It was found that Biomphalaria straminea (31.4%) was the most abundant
snail species, followed by Sinotaia quadrata (25.5%) and Physella acuta (22.5%). Decision tree
models and canonical correspondence analysis showed that the water quality, physical
habitat characteristics, and biotic factors were found to be the main variables determining
the occurrence and abundance of snail species in the study area. This study also revealed
that water bodies disturbed by human activities such as sewage discharge are more likely
to host snails and in larger numbers than undisturbed waters, as more snail predators
and competitors are present in clean water. Thus, it is recommended to reduce the water
pollution in river ecosystems, given that the water pollution is conducive to the presence
of snails. The findings of this study could be helpful to inform effective interventions to
prevent and control snail-borne diseases in this area.
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