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Figure S1. Flow chart for cases identification. 

Visceral Leishmaniasis incident cases observed between  

01.06.2009 and 31.12.2017  

N= 1126 

Subjects hospitalized at least once  

 before 31.05.2009 with diagnosis of Visceral Leishmania-

sis and Italian citizenship 

N= 607 

Visceral Leishmaniasis incident cases observed between  

01.06.2009 and 31.12.2017  

N= 1185 

Subjects hospitalized between 2007-2017 with diagnosis 

of Visceral Leishmaniasis and foreign citizenship. 

N= 239 

Subjects hospitalized between 2007-2017 

 with diagnosis of Non-Visceral Leishmaniasis  

(ICD 9 CM code = «0.851», «0.852», «0.853», «0.854», 

«0.855», in any diagnostic position) 

N=664 

Subjects hospitalized with diagnosis of Visceral Leish-

maniasis and Italian citizenship between 01.01.2007 and 

31.05.2017 

N= 1792 

Subjects hospitalized with diagnosis of Leishmaniasis 

between 2007-2017  

(First three digits of ICD 9 CM code = «0.85» in any diag-

nostic position) 

N= 2695 

Leishmaniasis related Hospital Admissions between 

2007-2017 

(first three digits of ICD-9-CM code = «0.85» in any diag-

nostic position) 

N= 5421 

Subjects hospitalized with diagnosis of Visceral Leish-

maniasis between 2007-2017  

(ICD 9 CM code = «0.850» in any diagnostic position) 

N= 2031 

Subjects hospitalized at least once  

after 01.06.2017  

with diagnosis of Visceral Leishmaniasis 

N= 57 



 

 

Figure S2. Case identification and temporal relationship with meteorological 

anomalies (example on years 2009-2011) for the spatio-temporal analysis. 

 

 

Figure S3. Standardized Incidence Ratios for VL for each year and province under 

study. 

  



Description of the spatial model  

The spatial association between incident VL cases and each single 

climatic parameter (𝑇𝑖
𝑛, 𝑃𝑖

𝑛) was studied by fitting multiple Bayesian 

Poisson models, with spatially dependent random effects. Specifically, 

each model included the observed cases as outcome, one climatic param-

eter as the exposure of interest, NDVI, roughness, and HIV hospital ad-

missions as covariates, the expected number of VL cases as an offset term, 

and a spatial random effect specified via the conditional autoregressive 

(CAR) method proposed by Leroux at province level [1,2].  The latter de-

pends on two parameters:  𝜏𝑆
2, the variance of the spatial random effect, 

and 𝑆, that models the strength of spatial autocorrelation among neigh-

bouring provinces. When 𝑆 = 1, the model reduces to an intrinsic condi-

tional autoregressive model (ICAR), while when 𝑆 = 0, the model re-

duces to an independent mixed model. When 𝑆  is not fixed, the model 

finds a balance between these two models by estimating the value of 𝑆.  

For each climatic variable, two sets of spatial models were fitted to data, 

Model1, with 𝑆 = 0 (Independent Mixed Model), and Model2, where 𝑆 

was left free (Leroux Model).  

Taking the 2009-2017 average of winter temperature as exposure of 

interest, the spatial distribution of VL cases for each province i was mod-

elled as follows: 

 

𝑌𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖) 

𝑙𝑛(𝜇𝑖)~ (𝑇𝑖
𝑊𝑖𝑛 )𝑇 

1
+ 𝑍𝑖

𝑇 + 
𝑖
 + 𝑙𝑛(𝐸𝑖) 

Where 𝜇𝑖   is the expectation of the observed VL cases,  𝑇𝑖
𝑊𝑖𝑛  is the 

2009-2016 average of winter temperatures, 𝑍𝑖  are baseline explanatory 

spatial covariates (HIV hospital admission rates, roughness, NDVI), 𝐸𝑖 

are the expected number of VL cases and 
𝑖
 is the set of spatial autocor-

related random effects. The spatial random effect,  =  (
1

, . . . ,
110

) de-

pends on 𝑆 parameter, ranging from 0 to 1, that models the strength of 

spatial autocorrelation among neighbouring provinces, defined by a bi-

nary neighbourhood matrix W taking value of 1 for each pair of provinces 

sharing borders.  

The prior distribution for the spatial effect were specified as follow: 

 

𝜑𝑖|𝜑𝑗  , 𝑊  𝑁 (
𝜌𝑆 ∑ 𝑤𝑖𝑗𝜑𝑗

𝐼
𝑗=1

𝜌𝑆 ∑ 𝑤𝑖𝑗 +  1 −  𝜌𝑆𝐼
𝑗=1

      ,
𝜏𝑆

2

𝜌𝑆 ∑ 𝑤𝑖𝑗 +  1 −  𝜌𝑆𝐼
𝑗=1

 ) 

With: 

𝜏𝑆
2𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1,0.01) 

𝜌𝑆𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1) 

Description of the spatio-temporal model  

Each spatio-temporal regression model included one province-year 

climatic anomaly as the exposure of interest, the corresponding average 

climatic parameter, NDVI, roughness and HIV Hospital admissions, as 



well as one spatial random effect, one temporal random effect and a spa-

tio-temporal interaction term. Spatial autocorrelated random effects were 

modelled via the conditional autoregressive (CAR) method proposed by 

Leroux (𝑆 left free). This component captures the overall spatial random 

effect common to all time periods after adjusting for covariate effects. 

Temporal autocorrelated random effects were also specified via the con-

ditional autoregressive (CAR) method proposed by Leroux.  This tem-

poral autocorrelated random effect captures the overall temporal trend 

common to all communities and depends on two parameters:  𝜏𝑡
2, the var-

iance of the temporal random effect, and 𝑇, that models the strength of 

temporal autocorrelation among consecutive years. Lastly, the spatio-

temporal interaction component is a set of independent space–time ef-

fects interactions [3]. 

Taking winter temperature anomaly as exposure of interest, the spa-

tio-temporal distribution of VL cases for each province i and period t was 

modelled as follows: 

 

𝑌𝑖𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖𝑡) 

𝑙𝑛(𝜇𝑖𝑡) ~  (𝑇𝑖𝑡
𝑊𝑖𝑛 )𝑇 

1
+   (𝑇𝑖

𝑊𝑖𝑛)𝑇 
2

 + 𝑍 𝑖
𝑇 + 

𝑖
 +𝑡 +  

𝑖𝑡
 + 𝑙𝑛(𝐸𝑖𝑡) 

Where 𝜇𝑖𝑡   is the expectation of the observed VL cases at province i 

at period t, 𝑇𝑖𝑡
𝑊𝑖𝑛  is the winter temperature anomaly recorded in prov-

ince i in year t,  𝑋𝑖
𝑇 is the 2009-2016 average of winter temperatures rec-

orded in province i, 𝑍𝑖 are baseline explanatory spatial covariates (HIV 

hospital admission rates, roughness, NDVI), 𝐸𝑖𝑡  are the expected number 

of VL cases, 
𝑖
 and 𝑡 are the overall spatial and temporal main effects 

respectively, and 
𝑖𝑡

  the space-time interaction effect. The spatial random 

effect, 
𝑖
, depends on 𝑆  parameter defined as in the spatial model. The 

temporal random effect,  = (
1

, . . . , 8) depends on a constant 𝑇 ,that 

ranges from 0 to 1, and models the temporal correlation between consec-

utive years. Last, the interaction component,  = (
1

, . . . , 
110 ∗ 8

), is a set of 

space-time identical and independently distributed effects.  

Prior specification for the spatial effect: 

 

𝜑𝑖|𝜑𝑗  , 𝑊  𝑁 (
𝜌𝑆 ∑ 𝑤𝑖𝑗𝜑𝑗

𝐼
𝑗=1

𝜌𝑆 ∑ 𝑤𝑖𝑗 +  1 −  𝜌𝑆𝐼
𝑗=1

      ,
𝜏𝑆

2

𝜌𝑆 ∑ 𝑤𝑖𝑗 +  1 −  𝜌𝑆𝐼
𝑗=1

 ) 

Prior specification for the temporal effect: 

𝑡|𝑗 , 𝐷~𝑁 (
𝜌𝑇 ∑ 𝑑𝑡𝑗𝜑𝑗

𝐼
𝑗=1

𝜌𝑇 ∑ 𝑑𝑡𝑗 +  1 −  𝜌𝑇𝑇
𝑗=1

      ,
𝜏𝑇

2

𝜌𝑇 ∑ 𝑑𝑡𝑗 +  1 −  𝜌𝑇𝑇
𝑗=1

 ) 

Prior specification for the spatio-temporal effect: 


𝑖𝑡

  𝑁(0, 𝜏𝐼
2) 

With: 

𝜏𝑆
2, 𝜏𝑇

2 , 𝜏𝐼
2𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1,0.01) 

𝜌𝑆, 𝜌𝑇𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1) 
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