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Abstract: (1) Background: The rational allocation of limited medical resources is the premise of safe-
guarding the public health. Especially since the outbreak of COVID-19, the evolution dynamics and
spatial mismatch of medical resources have been a focal and frontier issue in academic discussions.
(2) Methods: Based on the competitive state model and spatial mismatch index, this paper uses GIS
and Geodetector spatial analysis methods and three typical indicators of hospitals, doctors, and beds
to conduct an empirical study on the evolutionary characteristics and degree of mismatch in the geo-
graphic pattern of health resources in China from 2010 to 2020 (the data are from official publications
issued by the National Bureau of statistics in China), in two dimensions of resource supply (economic
carrying capacity) and demand (potential demand or need of residents). (3) Results: The spatial
pattern of health resources at the provincial level in China has been firmly established for a long time,
and the children and elderly population, health care government investment, and service industry
added value are the key factors influencing the geographical distribution of health resources. The
interaction between the different influence factors is dominated by bifactor enhancement, and about
30–40% of the factor pairs are in a nonlinear enhancement relationship. Hospital, doctor, and bed
evolution trends and the magnitude and speed of their changes vary widely in spatial differentiation,
but all are characterized by a high level of geographic agglomeration, heterogeneity, and gradient.
Dynamic matching is the mainstream of development, while the geographical distribution of nega-
tive and positive mismatch shows strong spatial agglomeration and weak spatial autocorrelation.
The cold and hot spots with evolution trend and space mismatch are highly clustered, shaping a
center-periphery or gradient-varying spatial structure. (4) Conclusions: Despite the variability in the
results of the analyses by different dimensions and indicators, the mismatch of health resources in
China should not be ignored. According to the mismatch types and change trend, and following the
geographic differentiation and spatial agglomeration patterns, this paper constructs a policy design
framework of “regionalized governance-classified management”, in line with the concept of spatial
adaptation and spatial justice, in order to provide a decision making basis for the government to
optimize the allocation of health resources and carry out health spatial planning.

Keywords: medical resource; geospatial health; spatial analysis; driving mechanism; China

1. Introduction

Public health and well-being have been a frontier issue of academic research and
the focus of social service work of government departments. Especially in the context
of the COVID-19 outbreak [1,2], which has brought a great impact on people’s lives and
social economy all over the world, how to rationally allocate the limited health resources
(Medical Resources) has drawn wide attention from the public and scholars [3,4]. The
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United Nations ranks “good health and well-being” third among its 17 SDGs (Sustainable
Development Goals) and proposes the goal of “ensuring universal access to well-being
and health care and achieving universal health coverage” (SDG3) [5]. Health resources
are scarce, basic, and public social services, and improving the spatial balance and equity
of health resources is a vital target of governments and international organizations [6,7].
As the quality of life improves the population’s demand for health services, which is on
the rise, leading to the fact that the capacity to supply health resources in many countries,
especially in developing countries, it is facing great challenges against the background
of increasingly high medical costs [8,9]. At present, the shortage of health resources goes
hand-in-hand with their waste across the world, which, in essence, reflects the imbalance
between the demand and supply of health resources [10]. Therefore, this paper analyzes the
dynamic changes, geographic distribution characteristics, and degree of spatial mismatch
of health resources in both supply and demand dimensions and proposes coping strategies
to solve the mismatch, thus making it highly valuable for academic study, while providing
a decision making basis for the government to encourage accurate investment and the
rational allocation of health resources [11].

Health resources are an important part of public services, and their balanced spatial
distribution matters for the residents’ access and fairness to medical services, as well as the
sustainable economic development of the region and even the country. Since the reform
and opening up, the capacity of medical services in China has been greatly improved [12],
but the problems of uneven supply and demand of health resources and their spatial
inequality are still very prominent, especially the unreasonable allocation between regions
and urban and rural areas [13]. To this end, the State Council of China has proposed in
the “Health China 2030” Planning Outline to integrate health into all policies and safeguard
and protect people’s health in an all-round and full-cycle way. The central government’s
implementation of the “Healthy China” strategy requires local governments to optimize
the allocation of health resources (to better balance the supply of resources and demand for
services by adjusting the quantity, structure, and geographical distribution pattern of health
resources to improve the efficiency of resource utilization and health protection capacity).
The rationality of geographic distribution and spatial allocation of health resources has a
great influence on the ability to protect and improve the health of the population. Therefore,
it is of great significance to analyze the geographical pattern, spatio-temporal evolution
dynamics, mismatch characteristics of health resources, and coping strategies for the
formulating scientific health care policies, in order to plan and build a “Healthy China” [14].

As one of the world’s largest developing countries, China should comply with the
basic demand-oriented principle emphasized by the World Health Organization (WHO) in
the allocation of health resources and construction of its service system, while taking the
actual carrying capacity of economic development on resource supply into account [15,16].
This paper focuses on the following questions: (1) What are the regular characteristics of the
spatio-temporal evolution dynamics of inter-provincial health resources in China? (2) How
to quantitatively evaluate the degree and type of spatial mismatch of health resources in
China in both the supply (economic carrying capacity) and demand (population potential
consumption) dimensions? (3) What are the main factors influencing the geographical
distribution of health resources and their interactive relationships? (4) How to design the
spatial zoning policy for health resources?

To address the above issues, the follow-up of this paper consists of five parts. The
first part is Literature Review, which systematically analyzes the key contributions and
limitations of available papers and proposes the starting point of this study. The second
part is Materials and Methods, which defines the study area in this paper, explains the
selection of the research methods and variables and their data sources, and designs the
research steps and ideas. The third part is Results, which quantitatively analyzes (using
Boston consulting group matrix [17] and spatial economic model [18]) the dynamics and
patterns of spatio-temporal evolution of health resources at the provincial level in China,
analyzes the characteristics of spatial mismatch in both dimensions of supply and demand,
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and reveals the forces of influence factors and their interactive relationships, based on
Geodetector, to provide a basis for policy design. The fourth part is the Discussion, which
presents a comparative analysis of the main viewpoints of this paper against available
papers (external evidence) and proposes a spatial strategy for the sustainable development
of health resources. The fifth part is the Conclusions, which summarize the key views,
innovations, and limitations of this paper and looks ahead to the international value of this
study and the future work.

2. Literature Review
2.1. Medical Resource Change and Allocation Spatial Inequality Analysis Are the Mainstream, and
the Research on Geospatial Health Is Insufficient

There are a growing number of studies on geographic inequality, spatial accessibility,
allocation efficiency, spatio-temporal evolution characteristics of medical resources, and
their influence factors, mostly using methods such as the Gini index, Lorenz curve, Theil
index, and DEA. For example, Shaltynov [19] evaluated the spatial inequality and accessi-
bility of primary health resources in Kazakhstan using the Gini index and Lorenz curve.
Behr [20] analyzed the quantitative evolution characteristics of health resources in France
and made a comparison and correlation analysis with demographic and epidemiological
parameters. Omrani-Khoo [21] analyzed the degree of inequality and inequity in the dis-
tribution of health resources using the Gini coefficient, coupled with concentration and
Robin Hood indices. Dong [22] analyzed the characteristics of regional distribution and
inequality in health-resource allocation at hospitals and primary health centers in Shanghai
using the Theil index. Chai [23] argued that regional disparities and imbalances in health
resources in China are highly characteristic and have a significant impact on mortality.
Fang [24] analyzed the impact of health care system reform on county-level health resource
allocation and service utilization in China, based on the data from 1110 hospitals. Yang [25],
Retzlaff-Roberts [26], and Liu [27] evaluated the efficiency of health resource allocation
by data envelopment analysis. Giraldes [28] analyzed the allocation efficiency of medical
resources in Portugal by marginal met need approach.

GeoHealth is currently emerging as a research paradigm [29], providing information,
data, and rationale for health planning and policy design [30]. Brazil has established the Pri-
mary Care Information System to collect basic healthcare information from different regions,
in an attempt to provide a georeferenced system for decision making by authorities [31].
Maire [32] stated that the health resources allocation model integrates the mechanisms by
which geographic and demographic characteristics influence health resources. Anselmi [33]
evaluated the horizontal and vertical equity of the geographical distribution of health
expenditure (HE) between regions by benefit incidence analysis. McIntyre [34] proposed a
broad-based area deprivation index and analyzed its geographical pattern and its impact
on the allocation of health resources in South Africa. Hall [35] evaluated the performance of
medical resource allocation in Canada and its match with demand using a cross-sectional
approach and the Resource Allocation Performance Assessment Tool. However, overall,
the influence of geographers and planners in the health resource policy arena is still limited,
and there are still many barriers and blind spots in how to integrate the results of geospatial
health analysis into the health planning and policy design process. Medical resources
are special consumer and public articles, and their input and allocation should meet the
needs of residents and bearing capacity of regional economic development. However, the
available papers generally focus on the study of the “simplicity” of the geographical alloca-
tion of medical resources and its influence factors, without correlating their geographical
distribution with population demand and economic carrying capacity, resulting in weak
guidance for health planning, and policy design practice.

2.2. Qualitative, Statistical and Regression Analysis Are the Mainstream, and Lack of Support for
Evidence-Based Decision Making

Most of the studies are conducted using qualitative and empirical analysis methods
represented by questionnaires, conference interviews, case studies, and direct observation,
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and there is a growing number of papers on regression model analysis and cost-benefit
comparative analysis based on statistics [36,37]. For example, Giacomini [38] proposed a
qualitative investigation approach to the fairness of health resource allocation (fairness),
based on the grounded theory. Kolasa [39] discussed the impact of different population
preferences on the allocation of health resources through case studies. Frew [40] analyzed
what and how economics evidence and methods are applied in the field of health resource
allocation in the UK, based on in-depth interviews and observational methods. Freed-
man [41] analyzed the impact of state grant funding on the sustainability of health resource
provision using semi-structured key informant interviews methods. Ahlert [42] and Furn-
ham [43] analyzed the impact of moral intuitions and ethical ideology on health resource
allocation using an experimental questionnaire method. Ma [44] analyzed the inequality
of medical resource allocation in township health centers in China using questionnaires
and direct observation methods. Bhattacharyya [45] analyzed the district-based health
resource allocation decision making process in India, based on direct observations of key
decision-making meetings and qualitative interviews with key informants). Krones [46]
analyzed the attitudes of German inpatients, regarding the fairness of health resource allo-
cation, by means of a structured questionnaire with patients. Smith [47] analyzed decision
makers’ perceptions on the process of allocating health resources in Canada by online
survey. Pourat [48] evaluated the differences in the quality of health resources between
urban and rural areas in the United States, based on generalized linear regression models.
Avelino [49] analyzed the level of health resource management in different Brazilian cities
using a multiple regression model. Jain [50] analyzed the impact of climate change on
health resource planning in India using multiple linear regression model and constructed
a framework for evidence-based decision making of resource allocation on the basis of
climate parameters. Lopes [51] analyzed the association between the uneven distribution of
health resources and economic-social factors (the resident population, social vulnerability
index, and municipal human development index) in Brazil using descriptive and statistical
methods. Owili [52] and Sun [53] analyzed the impact of professionals and health care
system reform on the allocation of health resources in Kenya and China using a structural
equation model. Pinho [54] and John [55] critically analyzed the cost-effectiveness analysis
(CEA) approach and further proposed novel solutions that do not discriminate against
people with disabilities.

Reliable data and effective methods are essential for health planning and government
decision making, especially in developing countries where health resources are scarce [56].
The introduction and innovation of research methods have been of interest to scholars.
For example, Rivero-Garcia [57] proposed a secure approach to monitoring emergency
health resources, and Pichon-Riviere [58] analyzed the link between health technology
assessment (HTA) and resource allocation decisions in Latin America using design-thinking
methodology. However, as Bekemeier [59] and Gong [60] argued, providing valid data
and evidence for government health resource allocation decisions remains difficult, and
decision makers in the health planning practice tend to rely on empirical or qualitative
decision models, instead of evidence-based decision making, thus reducing the rationality
and credibility of decisions [61]. The applicability and usefulness of qualitative research
and regression statistical analysis are facing increasing challenges in the process of evidence-
based decision making for regional allocation of health resources. For example, in the
current era of big data, qualitative and qualitative research is increasingly weakened in
guiding policy design, while quantitative analysis is showing its greater value. However,
differences in the modeling paradigms or parameter designs adopted by the models used
in different papers have led to a great variation in the analytical results of empirical
studies with different methodologies and cases, as well as increasing difficulties in the
application of the findings. For government officials, for example, the dynamics and spatio-
temporal evolution characteristics of health resource allocation are the basis for developing
management policies, and the three are interrelated; however, scholars tend to place their
focus on one of the three, in general, and the separation of the three results in a “disconnect”
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between theoretical research and practical needs. Therefore, it calls for the introduction or
creation of a new technical framework that integrates the three parts of “spatio-temporal
dynamics-mismatch state-policy design” in the health resource allocation, accompanied by
use of analysis results and conclusions as the basis for the allocation and planning of health
resources by the government [62].

3. Materials and Methods
3.1. Study Area

The study area is mainland China, with a geographical coverage of 31 provincial-level
administrative regions, including 22 provinces, 5 autonomous regions, and 4 municipalities
directly under the central government. It does not include Hong Kong and Macao special
administrative regions and Taiwan province, as their statistical caliber of data differs
somewhat from that of mainland China (Figure 1).

Figure 1. Study area.

Hong Kong, Macao, and Taiwan regions of China have a great deal of autonomy,
especially Hong Kong and Macao, which have implemented the principle of “one country,
two systems” (a basic state policy proposed by the Chinese government to achieve peaceful
national reunification, meaning that, under the premise of one China, the main body of
the country insists on the socialist system, while Hong Kong, Macao, and Taiwan maintain
the original capitalist system for a long time). The difference in social systems has led
to the fact that the scope, subjects, and caliber of statistics in Hong Kong, Macao, and
Taiwan are quite different from those in mainland China. In 2010, China had 936,900
hospitals, 8,207,500 doctors, and 4,768,000 beds, which increased to 1,022,900, 13,475,000,
and 9,107,000, respectively, by 2020, with an average annual growth of 0.88, 5.08, and 6.64%.

3.2. Research Steps and Data Sources

The first step is to analyze the spatio-temporal evolution characteristics of health
resources. Using GIS tools and Boston Consulting Group matrix, we try to reveal the
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process of change and spatial pattern of medical resources at the provincial level in China.
Health care institutions, doctors and health personnel, and beds in health care institutions
reflect the level of health resource development in dimensions of organization, size, and
capacity, respectively, and play a fundamental role in the health care service system [63,64].
Health care institutions include hospitals, health care institutions at grassroot level, and
specialized public health institutions, which are referred to as “Hospitals” in this paper.
Human resources include health technical personnel, village doctors and assistants (other),
administrative staffs, and logistics technical workers, which are referred to as “Doctors”.
Beds in health care institutions are referred to as “Beds” (Figure 2).

Figure 2. Research steps.

The second step is to analyze the match of health resources with population growth
and economic development using a spatial mismatch model. Health resources are a guar-
antee of individual health and well-being, and also directly affect sustainable economic
development, so changes in health resources should match the needs of the population and
carrying capacity of the economy [65,66]. As health resources are scarce and limited, how
to maintain high-quality health services is a huge challenge for the government, even for
developed countries in Europe and the United States. Health is the most basic prerequisite
for human survival and growth; for many countries, especially developing countries, there
is a large contradiction between the supply of health resources and demand for services.
Therefore, a normative technical framework is needed, regarding the spatial allocation of
health resources [67], to guarantee a reasonable and balanced access to health care services
for the population of all (or at least most) regions. Besides, China is currently in the tran-
sition phase from high economic growth to high-quality development (In other words,
the goal orientation of economic development has changed from scale and speed to green,
ecological, innovative, shared and competitive). Economic development is a prerequisite
and guarantee for promoting health and achieving national health goals; in turn, reasonable
growth in medical investment will also stimulate economic growth. Excessive investment
in health resources may be a burden on economic development, but insufficient investment
may lead to social discontent and threaten sustainable regional development. Therefore,
measuring the matching relationship or mismatch degree of the medical resource changes
with population growth and economic development allows for rational allocation and
utilization of limited health resources, thus facilitating a dynamic balance between supply
and demand, as well as between equity and efficiency, to encourage synergistic develop-
ment of medical resources with population and economy [68,69]. Population and GDP are
commonly used indices to measure regional population size and economic development
level, and they are used in this paper to characterize the demand potential and supply
capacity of health resources.

The third step is to analyze the factors affecting the geographical distribution and
spatial pattern of medical resources using the Geodetector method. The geographical
distribution of medical resources is influenced by a combination of economic strength,
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social environment, and health investment, including size of the economy, development
stage, industrial structure, urbanization, population structure and level of education,
government and resident medical investment, and social medical funds [70–72]. This
paper uses service industry added value, per capita GDP, government revenue, social
consumption to characterize economic factors urbanization rate, children and elderly
population, high quality (university or above) population to characterize social factors, and
it uses health care government investment, residents’ medical services consumption, and
medical insurance fund expenditure to characterize investment factors (Table 1).

Table 1. Variables and data sources.

Type Code Indicator Data Source

Dependent
variable

Y1 Hospital China statistical yearbook
China health statistical
yearbook

Y2 Doctor
Y3 Bed

Independent
variable

X1 Service industry added value

China statistical yearbook
Provincial statistical yearbook

X2 Per capita GDP
X3 Government revenue
X4 Social consumption
X5 Urbanization rate
X6 Children and elderly population

X7
High quality (university or above)

population

X8
Health care government

investment

X9
Residents’ medical services

consumption

X10
Medical insurance fund

expenditure
Demand and

supply variable
Z1 Population
Z1 GDP

The fourth step is to propose an optimal strategy for health resource allocation, based
on the analysis results, to provide guidance for policy design. The data used in this
paper mainly comes from the China Statistical Yearbook published by the China’s National
Bureau of Statistics (http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 12 May 2022)) and
China Health and Wellness Statistical Yearbook by the National Health Commission (https:
//data.cnki.net/Yearbook/Single/N2022010155 (accessed on 27 May 2022), with some
missing data from the statistical yearbooks and bulletins of provincial administrative
regions (Appendix A Tables A1 and A2 is the sum standardized data). China statistical
yearbook and China health and wellness statistical yearbook are the most authoritative and
reliable statistical publications issued by the Chinese government. The former contains
comprehensive statistics on the economic, social, ecological, and health services (including
medical and health institutions, health officers and facilities, disease control, and health
costs) of all provinces, autonomous regions, and municipalities directly under the central
government in China, and the latter provides professional statistics that reflect the level of
development of China’s medical and health services and health status of the population.

3.3. Research Methods
3.3.1. Boston Consulting Group Matrix

Boston Consulting Group matrix, created by Bruce Henderson, is the classic analytical
approach in business management. For companies that provide more than one type of
products or services, their sustainability should be evaluated in an integrated way through
portfolio analysis among their businesses, since each business has different market positions
and value advantages. In the Boston consulting group matrix-based analysis, the horizontal
coordinate represents the relative market share of the company’s revenue, and the vertical
coordinate represents the average annual growth rate of the revenue, with the average or

http://www.stats.gov.cn/tjsj/ndsj/
https://data.cnki.net/Yearbook/Single/N2022010155
https://data.cnki.net/Yearbook/Single/N2022010155
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a set value (e.g., 0.5 or 10%) as the threshold to classify the company’s business into four
types, i.e., star, cow, question, and dog. Boston Consulting Group matrix is used in this
paper to analyze China’s provincial health resources, with the aim of precisely analyzing
their spatio-temporal evolution characteristics. By calculating the relative share (RS) and
average annual growth (GR) of medical resources of the provinces in China by Equations
(1) and (2), we classify the 31 provinces into four types of star, cow, question, and dog, with
their average value (RS and RS) as the threshold (Figure 3) [73].

RS =
Xi

Xi−max
× 100% (1)

GR =

(
t

√
Xi−end
Xi−base

− 1

)
× 100% (2)

where RS and GR represent the relative share and growth rate, respectively, used to reflect
the relative position and degree of change of medical resources of a province in China;
Xi represents the medical resources of province i, Xi−max represents the maximum value
of medical resources among the 31 provinces, Xi−base and Xi−end represent the medical
resources of province i at the base and end of the period, respectively, and n represents the
number of provinces.

Figure 3. Boston Consulting Group matrix and decoupling index.

3.3.2. Spatial Mismatch Index

The spatial mismatch theory, created by Kain, was originally used to analyze the spa-
tial mismatch between housing and employment of disadvantaged groups [74] and is now
widely used in human resources, social geography, and tourism economy to measure the
degree of mismatch in the geographical distribution of two interrelated resource elements.
The spatial mismatch index is used in this paper to analyze whether the geographical distri-
bution of medical resources matches the population and GDP. The calculation equations are
shown in (3) to (5). SMIi of zero indicates that the current state of health resources perfectly
matches the population demand and economic carrying capacity. SMIi less than zero
indicates that the supply of medical resources is insufficient, that is, below the economic
carrying capacity and cannot meet the actual demand. SMIi greater than zero indicates an
excess supply of health resources, that is, greater than the actual demand and exceeds the
economic carrying capacity. A larger absolute value of spatial mismatch index represents a
higher degree of mismatch of medical resources with population demand and economic
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carrying capacity. Due to the complex dynamic and self-adjustment of development, the
mismatch of health resources with population and economy will only have a large negative
impact on sustainable development when it reaches a certain level. In this paper, the
average of positive and negative SMIi values are used as the threshold to classify the
spatial mismatch into three types of positive mismatch, dynamic matching, and negative
mismatch.

SMIi =
Xi − Ei

E X
2E

× 100%, SMI =
∑n

i=1

∣∣∣Xi − Ei
E X
∣∣∣

2E
(3)

Ci =
|SMIi|
SMI

× 100% (4)

where SMIi represents the spatial mismatch index of province i, SMI represents the sum
of the absolute values of the study area SMIi, Ci represents the contribution of the spatial
mismatch index, Ei represents the demand intensity or supply carrying capacity of province
i, measured by two indicators of resident population and GDP, E represents the sum of
resident population and GDP of the study area, and X represents the sum of health resources
of the study area.

3.3.3. Spatial Econometric Model

This paper analyzes the spatial pattern of health resources and their mismatch by
means of spatial clustering analysis, cold and hot spots analysis, and exploratory spatial
data analysis (ESDA), which are all data-driven unsupervised learning methods and do not
require a priori knowledge. The spatial clustering analysis is conducted by quantile method,
and the study area is divided into high, medium, and low levels to analyze the spatial
heterogeneity of medical resources. In other words, sort the data in descending order,
the top 10 belong to high, 11–20 belong to medium, and 21–31 belong to low. Provinces
of the same level share a high degree of similarity, while those at different levels have
significant differences. In this paper, regions in statistically significant clusters are identified
using the cold and hot spots analysis tool, and the spatial autocorrelation between the
evolution trends of health resources and types of mismatches is analyzed using ESDA and
characterized using Moran’s I. The global Moran’s I value are in the range of [−1, 1], and a
larger absolute value indicates stronger spatial autocorrelation. A value greater than zero
indicates spatial positive correlation, less than zero indicates spatial autocorrelation, and
equal to zero indicates random distribution [75]. We divide the study area into four types
of HH, LL, HL, and LH based on local moran’s I’s LISA map. The first two types represent
positive spatial correlation, i.e., a province is similar to its neighbors, while the last two
represent negative spatial correlation, i.e., a province is different from or opposite to its
neighbors [76,77]. Global and local Moran’s I value are calculated as follows:

Global Moran′s I =
n
S0
×

∑n
i=1 ∑n

j=1 Wij
(
Xi − X

)(
Xj − X

)
∑n

i=1
(
Xi − X

)2 , S0 = ∑n
i=1 ∑n

j=1 = Wij (5)

Local Moran′s Ii = Zi ∑n
i=1 WijZj (6)

where Xi and Xj represent the attribute values in provinces i and j, respectively, X is the
average of the Xi attribute values, Wij is the spatial weight matrix in global spatial autocor-
relation and row normalized value of the spatial weights in local spatial autocorrelation, S0
is the sum of the spatial weight matrices, and Zi and Zj are the normalized values of the
i and j observations of the study object. The spatial weight matrix is in adjacency mode,
and all parameters are default settings. The maximum number of neighbors is 8, and the
minimum is 1, mean is 4.45, and median is 4.

3.3.4. Geodetector

Geodetector, created by Wang Jinfeng, a professor at the Institute of Geographic Sci-
ences and Natural Resources Research, Chinese Academy of Sciences, and chief scientist of
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spatial analysis at the State Key Laboratory of Resource and Environmental Information
System, is an emerging statistical analysis method for analyzing spatially driven mecha-
nisms [78,79]. We use Geodetector in this paper to quantitatively measure the influence
of different factors on the geographical distribution of health resources and interaction
between the factors. Geodetector will assume that the independent variable has a signif-
icant influence on the geographical distribution of the dependent variable if the spatial
patterns of the independent and dependent variables are similar or even identical. For
example, with urbanization and per capita GDP as independent variables and medical
resources as a dependent variable, Geodetector measures the similarity of spatial patterns
between independent variables and dependent variables by calculating the value of q index
based on relying on its factor detection function, characterizing the direct influence of
urbanization, and per capita GDP on the geographical distribution of medical resources.
The values of q are in the range of [0,1], and a larger value indicates that it has a greater
influence. With h representing the number of strata or classifications of the independent
variables, Nh and N representing the number of cities in stratum h and the study area, with
σ2

h and σ2 representing the variance of the dependent variable in stratum h and the study
area, respectively, SSW representing the within sum of squares, and SST representing the
total sum of squares in the study area, q is calculated as follows:

q = 1− ∑l
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
, SSW = ∑l

h=1 Nhσ2
h , SST = Nσ2 (7)

Notably, the interaction detection function of Geodetector enables further measure-
ment of the interactive influence of urbanization and per capita GDP when they act together
on the geographical distribution of health resources. With q(Xi) and q(Xj) representing the
direct influence with the two factors i and j in the independent case, q(Xi∩Xj) representing
the interaction influence of the two factors i and j in the joint action, Max(q(Xi)), q(Xj))
and Min(q(Xi), q(Xj)), q(Xi) + q(Xj) representing the maximum, minimum, and sum of the
direct influence of the two factors i and j in the independent case, the factor interactions
are classified into five types, based on the relationship of the aforementioned parameters.
Where, when q(Xi∩Xj) < Min(q(Xi), q(Xj)), it means that the factors i and j inhibit each
other in an antagonistic state, which is defined as nonlinear weaken. When Min(q(Xi),
q(Xj)) < q(Xi∩Xj) < Max(q(Xi)), q(Xj)), it means that the interaction influence lies between
the maximum and minimum values of direct influence, which is defined as single nonlinear
weaken. When q(Xi) + q(Xj) > q(Xi∩Xj) > Max(q(Xi), q(Xj)), it means that the interaction
influence is greater than the maximum value of the direct influence in the independent
case, but less than the sum of the two, which is defined as bifactor enhancement. When
q(Xi∩Xj) = q(Xi) + q(Xj), it means that the influence of two factors are independent of each
other, which is defined as independent. When q(Xi∩Xj) > q(Xi) + q(Xj), it indicates that the
factors i and j are synergistically enhanced with each other, which is defined as nonlinear
enhancement [80].

4. Results
4.1. Spatio-Temporal Dynamics
4.1.1. Spatial Pattern

The spatial pattern of geographical distribution of medical resources has been stable
for a long time, with hospitals, doctors, and beds in spatial clustering patterns that are
nearly the same, and the spatial heterogeneity level within a reasonable range. In 2010, the
thresholds for spatial cluster analysis of hospitals, doctors, and beds were 34,269 (Hubei)
and 22,565 (Inner Mongolia), 316,828 (Liaoning) and 187,106 (Jilin), and 188,100 (Zhejiang)
and 113,000 (Fujian), respectively. In 2020, their thresholds are 35,447 (Hubei) and 25,616
(Jilin), 503,172 (Anhui) and 310,391 (Heilongjiang), and 361,300 (Zhejiang) and 216,800
(Fujian), respectively. In 2010 and 2020, the provinces of high level formed an “X” shaped
agglomeration zone along Guangdong-Hebei and Sichuan-Jiangsu, including Guangdong,
Hunan, Jiangxi, Hubei, Henan, Shandong, Shanxi, and Hebei. Provinces of medium
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level were distributed at the edge of the high-level zones, clustered in the Loess Plateau,
Yunnan-Guizhou Plateau, Beibu Gulf, West Coast of the Strait, Yangtze River Delta, and
northeast China. Most of the provinces of low level were clustered in northwest China,
including Tibet, Qinghai, Xinjiang, Inner Mongolia, and Gansu (Figure 4). The Gini indices
for hospitals, doctors, and beds in 2010 and 2020 were 0.40, 0.39, 0.36, 0.36, 0.35, and 0.37,
respectively, all of which were not greater than 0.40, with a narrow change range.

Figure 4. Distribution pattern of medical resources.

4.1.2. Change Process

The change range of medical resources was characterized by clustering, and the spatial
pattern of hospitals, doctors, and beds varied widely. Using the GIS spatial clustering
quantile analysis tool, the change range of hospitals, doctors, and beds in 31 provinces
from 2010 to 2020 were divided into three categories—high, medium, and low. The
thresholds were 3460 (Guizhou) and 1178 (Hubei), respectively. 212,640 (Guizhou) and
89,469 (Shanghai), 177,200 (Zhejiang) and 81,500 (Gansu). From the perspective of hospitals,
the high-level provinces were clustered in the eastern coastal regions and the Yunnan-
Guizhou Plateau in the southwest; the medium-level provinces were distributed in a zonal
pattern along the western and northern borders, while the low-level provinces were mostly
clustered in the central, central south, and Loess Plateau regions. Shandong had the largest
number of new hospitals (17,905), compared to the largest number of hospital reductions
(−3317) in Hunan, and Liaoning, Heilongjiang, Henan, Shaanxi, and Gansu provinces
saw varying degrees of reductions in the number of hospitals. It is worth noting that the
northeast and northwest regions, such as Liaoning, Heilongjiang, and Gansu not only have
serious population loss problems, but also experienced negative economic growth. From
2010 to 2020, their hospital reduction, doctors, and beds increase, whether this complex
change phenomenon is reasonable needs to be further analyzed by other methods (spatial
dislocation part). From the perspective of hospitals, the high-level provinces were clustered
in the eastern coastal regions and Pan-Pearl River Delta urban agglomeration; the medium-
level provinces were distributed in the middle of the two high-level clusters, and the
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low-level provinces were in north (including northeast and northwest) and west China.
The largest number of new doctors was in Guangdong (413,426), while the smallest was in
Tibet (24,333). From the perspective of beds, the high-level provinces covered most of the
eastern and central regions, the medium-level provinces were distributed in the periphery
of those of high level, mostly clustered in the Yunnan-Guizhou Plateau in the southwest
and Loess Plateau in the northwest, and the low-level provinces were clustered in the west
and north. The largest increase in beds was in Sichuan (348,500), while the smallest was in
Tibet (90,700) (Figure 5).

Figure 5. Distribution pattern of medical resources change.

The change speed of medical resources showed gradient agglomeration, and the
high-middle-low level areas shaped a center-periphery spatial structure in geographical
distribution. Using the GIS spatial clustering quantile analysis tool, the change speed of
hospitals, doctors, and beds in 31 provinces from 2010 to 2020 were divided into three
categories, i.e., high, medium, and low, with thresholds of 1.52% (Yunnan) and 0.75%
(Jiangxi), 5.90 (Guangxi) and 4.75 (Henan), and 7.48% (Guangxi) and 5.87% (Hebei), respec-
tively. In terms of hospitals, the high-level regions were scattered in distribution, including
Guangdong, Hainan, Chongqing, Yunnan, Tibet, Shandong, Tianjin, Shanghai, Anhui, and
Jilin. The medium-level provinces were on the periphery of those of high level, mostly
clustered in west and north China. Most of the low-level provinces were clustered in
central and south-central China, the Loess Plateau, and the Bohai Bay. Tibet recorded the
largest average annual growth (3.41%), while Heilongjiang recorded the largest decline
(−0.76%). The average of change speed for hospital was 1.14%, with 48.39% of provinces
exceeding it. In terms of doctors, the high-level provinces were mostly clustered in the
Yunnan-Guizhou Plateau in the southwest and the Qinghai-Tibet Plateau; the medium-
level provinces were distributed in the periphery of those of high level, and the low-level
provinces were distributed in north China (especially in northern and northeast China).
The largest average annual growth of doctors was in Tibet (9.41%), and the smallest was in
Heilongjiang (1.69%). The average of change speed for doctor was 5.26%, with 45.16% of
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provinces exceeding it. In terms of beds, the provinces of high, medium and low level were
clustered in a gradient distribution along the north–south direction, with the largest annual
growth in Guizhou (10.13%) and smallest in Beijing (3.19%). The average of change speed
for bed was 6.16%, with 61.29% of provinces exceeding it.

4.1.3. Evolution Trend

In the hospital dimension, star provinces were clustered in the eastern coastal regions,
cow provinces were in the central region, question provinces were mostly clustered along
the western border, and dog provinces were clustered in north China. The hot and cold
spots were clustered along the east–west direction in a gradient manner. Hot spot provinces
were clustered in the middle and lower reaches of the Yangtze River, with secondary hot
spots clustered in its periphery. Cold spot provinces were clustered in the northwest and
northeast, with secondary cold spots clustered in north China, including Inner Mongolia,
Shanxi, and Liaoning. Global Moran’s I was 0.14, indicating a positive spatial autocorrela-
tion. According to local autocorrelation analysis, HH- and HL-type provinces were only
Sichuan and Henan, LL-type provinces included Hainan, Anhui, Fujian, and Shanghai, and
LH-type regions included Gansu and Xinjiang (Table 2 and Figure 6).

Table 2. Parameters for global autocorrelation analysis.

Indicator Name Global Moran’s I p Z

Evolution
trend

Hospitals 0.14 0.10 1.39
doctors 0.15 0.08 1.45

beds 0.23 0.02 2.23

Spatial
mismatch

type of
population

Hospitals 2010 0.21 0.03 2.06
2020 0.28 0.00 2.69

Doctors
2010 0.15 0.06 1.67
2020 −0.10 0.30 −0.55

Beds
2010 0.18 0.05 1.72
2020 0.07 0.21 0.80

Spatial
mismatch

type of GDP

Hospitals 2010 0.23 0.03 2.24
2020 0.24 0.02 2.42

Doctors
2010 0.30 0.01 2.81
2020 0.46 0.00 4.25

Beds
2010 0.15 0.07 1.49
2020 0.19 0.04 1.94

Figure 6. Spatial analysis of evolution trend.
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In the doctor dimension, most of the star provinces were clustered in southwest China,
including Yunnan, Guangxi, Guangdong, Sichuan, Shaanxi, Jiangsu, and Zhejiang. The cow
provinces were clustered in the central China and extended to Hebei and Shandong. The
question provinces were scattered in distribution, including Hunan, Chongqing, Ningxia,
Qinghai, and Tibet. Most of the dog provinces were clustered in north China, especially
in the northeastern region. The hot and cold spots were clustered along the north–south
direction in a gradient manner. Hot spot provinces were clustered in the Yangtze River
Economic Belt and its south, with secondary hot spots distributed in its periphery in the
Yellow River Economic Belt. Cold spots were clustered in the northeast, with secondary cold
spots clustered in the west, Beijing, Tianjin, and Hebei and their surrounding areas. Global
Moran’s I was 0.15, indicating a positive spatial autocorrelation. According to the local
autocorrelation analysis, only Hebei was an HH-type region; HL-type provinces included
Guangxi, Anhui, and Shandong, LL-type regions included Hainan, Jiangxi, Chongqing and
Guizhou, and LH–type regions included Inner Mongolia, Heilongjiang and Jilin.

In the bed dimension, the star provinces were clustered in the Yangtze River Delta and
Pan-Pearl River Delta urban agglomeration, the cow provinces were clustered in the Bohai
Bay, the question provinces were clustered in Qinghai-Tibet and Loess Plateau regions
and the west coast of the strait, and the dog provinces were clustered in north China. The
hot and cold spots were clustered along the north–south direction in a gradient manner.
Hot spot was clustered in clustered in south China, with secondary hot spots clustered in
its periphery. The cold spot provinces were clustered along the border in west and north
China, with secondary cold spots clustered in the middle and lower reaches of the Yellow
River Basin and the Beijing-Tianjin-Hebei region. Global Moran’s I was 0.23, indicating
a positive spatial autocorrelation. According to the local autocorrelation analysis, only
Liaoning was an HH-type province, HL-type provinces included Guangxi, Anhui and
Shandong, LL-type provinces included Hainan, Jiangxi, Chongqing and Guizhou, and
LH-type provinces included Gansu, Inner Mongolia, and Heilongjiang.

The analysis of spatio-temporal evolution trend based on Boston Consulting Group
Matrix contributes to revealing the change trend of health resource allocation, for the
purpose of developing differentiated and adaptive management strategies for different
provinces. The strategies for future health resource supply include three types of devel-
opment, stability, and retrenchment. The development strategy is to invest in additional
health resources, expand the medical resource supply, and improve health services. The
stabilization strategy is to stabilize the current supply mode and allocation status without
additional investment, try to maximize the value, and efficiently use of health resources.
The retrenchment strategy is to scale back the supply of health resources and address the
problems of waste or extensive use. In general, star provinces should adopt development
strategy, cow provinces should adopt stabilization strategy, question provinces can se-
lectively implement development, stabilization or retrenchment strategy based on their
actuality, and dog provinces can selectively adopt retrenchment or stabilization strategy. It
should be noted that all provinces should choose the most appropriate strategy to maintain
or reverse the development pattern or trend, according to the health resource supply and
demand balance (mismatch or adaptation) (analysis is made in the discussion section based
on the spatial mismatch calculation results).

4.2. Spatial Mismatch Analysis
4.2.1. Demand: Population Potential Consumption

(1) Spatial Mismatch Type of Population

In the hospital dimension, 61.29% of the provinces fell into the dynamic matching type
in 2010, further expanding to 70.97% in 2020. In 2010, 22.58% of the provinces were of the
positive mismatch type, distributed in the middle and upper reaches of the Yellow River
Basin in clusters; by 2020 the cluster area shrank significantly, with most of them in the lower
reaches of the Yellow River Basin. There were the same number of provinces belonging
to the negative mismatched type in 2010 and 2020, but their geographical distribution
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was changed from random to agglomerative (Yangtze River Delta urban agglomeration)
(Figure 7). In 2010, the hot spots were clustered in the Loess Plateau, with secondary hot
spots distributed in its periphery in a ring pattern. The cold spots were clustered along
the southeast coast, with secondary cold spots clustered along the western, southwestern
and northeastern borders and extending to the south-central region and the Bohai Bay. In
2020, the hot spots were clustered in the Loess Plateau and extended to the northeast, with
most of the secondary hot spots clustered in the west. The cold spots were clustered in
the Pearl River Delta and its surrounding areas, with secondary cold spots clustered in the
Yangtze River Delta and its surrounding areas (Figure 8). The global Moran’s I value for
2010 and 2020 were 0.21 and 0.28, respectively, indicating a positive spatial autocorrelation.
In the dimension of local spatial autocorrelation, there was no HH-type region in 2010,
but only Hunan in 2020. The LL-type regions have long been clustered in north China,
including Inner Mongolia, Liaoning, Tianjin, Beijing, and Qinghai. The HL-type regions
were clustered in the middle reaches of the Yellow River in 2010 and shank to only Hebei in
2020. The LH-type regions were clustered in the Yangtze River Delta in 2010 and extended
southward to the west coast of the Strait in 2020 (Figure 9).

Figure 7. Spatial clustering analysis of mismatch type for demand.
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Figure 8. Spatial cold and hot spots analysis of mismatch type for demand.

Figure 9. Spatial autocorrelation analysis of mismatch type for demand.

In the doctor dimension, 67.74% of provinces fell into the dynamic matching type in
both 2010 and 2020, covering the western, northern, and central regions of China. In 2010,
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12.9% of the provinces were of the positive mismatch type and relatively concentrated in the
Bohai Bay, compared to a random distribution in 2020, including Jilin, Beijing, Shandong,
Shanxi, and Zhejiang. Provinces of the negative mismatch type in 2010 shaped a belt-like
agglomeration in the Pan-Pearl River Delta in the east–west direction and changed to a
belt-like agglomeration in the north–south direction in 2020. In 2010, the hot spots were
clustered in north China and the Bohai Bay, with secondary hot spots clustered in their
western and southern periphery. The cold spots were clustered in the Pan-Pearl River
Delta urban agglomeration, with secondary cold spots only including Yunnan, Sichuan,
Jiangxi, and Zhejiang. In 2020, the hot spots covered north China and northeast China and
extended to the Loess Plateau in northwest China, with secondary hotspots clustered in
the west. The cold spots were clustered on the southeast coast and extended to Hunan
and Chongqing, with secondary cold spots clustered in central China, including Anhui,
Jiangxi, and Hubei. The global Moran’s I value for 2010 and 2020 were 0.15 and −0.10 *,
respectively (* represents p > 0.05, the same below), indicating a shift from positive spatial
autocorrelation to no correlation. In the dimension of local spatial autocorrelation, Zhejiang,
Fujian, Chongqing, Hubei, Guangxi, and Hainan were HH-type regions in 2010, which
were changed to Shandong, Beijing, and Zhejiang in 2020. Inner Mongolia and Hebei were
HL-type provinces in 2010, which were expanded to most parts of the country in 2020.
Provinces of LH- and LL-types were scarce and distributed in a random manner, including
Hunan, Jiangxi, Guangdong, and Hebei.

In the bed dimension, 58.06% of the provinces fell into the dynamic matching type in
2010, further expanding to 70.97% in 2020. In 2010, 22.58% of the provinces fell into the
positive mismatch type, a figure that contracted to 16.13% in 2020 in a random distribution,
with the former including Xinjiang, Shanghai, Beijing, Shandong, Shanxi, Liaoning, and
Heilongjiang, and the latter including Sichuan, Hunan, Hubei, Liaoning, and Heilongjiang.
In 2010, 19.35% of the provinces were in negative mismatch, clustered in “crescent-shaped”
distribution, including Guizhou, Guangxi, Guangdong, Fujian, Jiangxi, and Anhui. The
geographic coverage in 2020 shrank rapidly, mostly clustered in the southeast coastal area.
The hot spots in 2010 covered north and northeast China, with most of the secondary hot
spots distributed in the western border regions. The cold spots were clustered in south
China, with the secondary cold spots distributed in its periphery. In 2020, the hot spots
shrank rapidly to only Heilongjiang and Sichuan, with the secondary hot spots clustered in
“Y” shaped distribution in the middle. The cold spots were clustered in the middle reaches
of the Yangtze River, as well as the west coast of the Strait and Great Bay area, and most
of the secondary cold spots were distributed in a band along the western and northern
borders. The global Moran’s I values for 2010 and 2020 were 0.18 and 0.07 *, respectively,
indicating a shift from positive spatial autocorrelation to no correlation. In the dimension of
the local spatial autocorrelation, the HH- and HL-type regions were poorly developed. The
LL-type regions were clustered in north China in 2010 and shifted to southwest China in
2020. The LH-type regions were clustered in the Pan-Pearl River Delta in 2010 and shrank
to only Fujian in 2020.

(2) Mismatch Index Contribution Rate of Population

In 2010, the provinces with higher contribution to hospital mismatch were clustered in
the center of China in a “T” shape, while the provinces of medium level were distributed
in the periphery of the high level, and those of low level were distributed in the more
peripheral northwest and northeast regions. High-medium-low level provinces shaped a
closer center-periphery spatial structure in geographical distribution. In 2020, most of the
provinces of high level were clustered in the eastern coast, the lower reaches of the Yangtze
and Yellow rivers, with Jilin, Sichuan, and Shandong being isolated spots in the periphery.
Provinces of medium level were clustered in the middle reaches of the Yangtze River and
middle and upper reaches of the Yellow River, and those of low level were scattered in
distribution, including Xinjiang, Qinghai, Ningxia, Heilongjiang, Liaoning, Fujian, Henan,
Chongqing, Sichuan, Guangxi, and Hainan (Figure 10).
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Figure 10. Spatial analysis of mismatch index contribution rate for demand.

In 2010, the provinces with higher contribution to doctor mismatch were clustered
along Guangdong-Hubei-Liaoning in a north–south belt, and those of medium level were
distributed in its periphery, including Fujian, Jiangxi, Zhejiang, Heilongjiang, Jilin, Shanxi,
Shaanxi, Guangxi, Hainan, and Yunnan. Provinces of low level were clustered along
the Loess Plateau–Qinghai-Tibet Plateau direction, including Gansu, Ningxia, Qinghai,
Tibet, and Inner Mongolia. In 2020, three types of regions showed an east–west gradient
distribution. Provinces of high level were still in the north–south belt-like agglomeration,
but their regional coverage began to shrink, with those of medium level clustered in the
middle area, and those of low level in the northwest and southwest China.

In 2010, the provinces with higher contribution to bed mismatch were clustered in the
central and coastal regions in an “X” shape, with those of medium of distributed in their
periphery, as well as those of low level clustered in northwest China. Provinces of high
level in 2020 were distributed in a band in the middle and upper reaches of the Yangtze
River and the southeast coast, including Sichuan, Chongqing, Hubei, Hunan, Shandong,
Fujian, Zhejiang, Hebei, and Liaoning. Most of the provinces of medium were clustered
in the north and south of the high level, including Yunnan, Guizhou, and Guangxi in the
southwest and Shaanxi, Henan, and Anhui in the central part of the country. Provinces
of low level were mostly clustered in the Qinghai-Tibet Plateau and Loess Plateau, with a
small number randomly distributed in the coastal areas, including Shandong and Jiangsu.

4.2.2. Supply: Economic Carrying Capacity

(1) Spatial Mismatch Type of GDP

In the hospital dimension, 54.84% of the provinces fell into the dynamic matching type
in 2010, further expanding to 64.52% in 2020. In 2010, 29.03% of the provinces fell into the
positive mismatch type, mostly clustered in the middle and upper reaches of the Yellow
River and middle reaches of the Yangtze River, but the cluster area shrank significantly to
only the east and west ends by 2020. Provinces that fell into the negative mismatch type in
2010 and 2020 were essentially equivalent (about 15%), including Jiangsu, Zhejiang, and
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Guangdong (Figure 11). In 2010, the hot spots were clustered in the Loess Plateau, with
secondary hot spots scattered in its periphery. The cold spots were clustered in the coastal
regions of east and north China, with secondary cold spots mostly clustered along the
northwest and northeast borders. In 2020, the hot spots were clustered in the Loess Plateau
and extended to the northeast, with secondary hot spots scattered in its periphery. The
cold spots were clustered in the southeast coast, with secondary cold spots clustered in
the Yangtze River Delta, the Beibu Gulf, and west China (Figure 12). The global Moran’s
I value for 2010 and 2020 were 0.23 and 0.24, respectively, indicating a positive spatial
autocorrelation in a stable state. In the dimension of local spatial autocorrelation, there
were a small number of HH- and HL-type regions, changing from Jiangxi, Shanxi, and
Shaanxi in 2010 to Hunan and Hebei in 2020. In 2010, the LL-type regions were Inner
Mongolia, Qinghai, Chongqing, Hubei, Yunnan, and Guangdong, but changed to Inner
Mongolia, Shaanxi, Qinghai, Liaoning, and Heilongjiang in 2020, which were increasingly
concentrated in the north, especially in the northeast. The LH-type regions have long been
clustered in the Yangtze River Delta and are gradually expanded to the west coast of the
Strait (Figure 13).

Figure 11. Spatial clustering analysis of mismatch type for supply.
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Figure 12. Spatial cold and hot spots analysis of mismatch type for supply.

Figure 13. Spatial autocorrelation analysis of mismatch type for supply.

In the doctor dimension, about 50% of provinces fell into the dynamic matching type
in both 2010 and 2020, with contraction in the north and expansion in the center. The same
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percentage of provinces were seen falling into the positive mismatch type in 2010 and
2020 (35.48%), mostly clustered in the Yunnan-Guizhou Plateau and Yellow River Basin.
Provinces of the negative mismatch type in 2010 and 2020 were equivalent, clustered along
the coast in a band. In 2010, the hot spots were clustered in the Yunnan-Guizhou Plateau
in southwest China, with secondary hot spots clustered in the Loess Plateau and Beibu
Gulf. The cold spots were clustered in the Shandong-Anhui-Zhejiang-Fujian region, with
cold spots widely distributed. In 2020, the hot spots were clustered in the Yunnan-Guizhou
Plateau–Loess Plateau-northeast direction, with secondary cold spots mostly in Bohai Bay.
The cold spots were clustered in the Pearl River Delta–Yangtze River Delta region, with
secondary cold spots clustered in the lower reaches of the Yellow River and west China
(Tibet and Xinjiang). The global Moran’s I value for 2010 and 2020 were 0.30 and 0.46,
respectively, indicating a positive spatial autocorrelation with increasing strength. In the
dimension of local spatial autocorrelation, Anhui fell into the HH-type in 2010, and no
HH-type region was found in 2020. Provinces of HL-type were Yunnan and Guizhou in
2010, but expanded to Sichuan, Shaanxi, and Shanxi in 2020. In 2010, Tibet, Chongqing,
and Hubei were LL-type regions, which were changed to Inner Mongolia, Liaoning, and
Chongqing in 2020. The LH-type regions were clustered in the eastern coast, including
Jiangsu, Shanghai, Zhejiang, and Fujian.

In the bed dimension, 54.84% of the provinces fell into the dynamic matching type
in 2010, expanding slightly to 58.06% in 2020, mostly clustered in west, north, and central
China. About 35% of the provinces falling into the positive mismatch type in both 2010
and 2020, mostly clustered in the Yunnan-Guizhou Plateau and its surrounding areas. The
regions that fell into the negative mismatch type were exactly the same in 2010 and 2020,
including Jiangsu, Zhejiang, and Guangdong. In 2010, the hot spots were clustered in the
Yunnan-Guizhou Plateau, with secondary hot spots clustered in the west of its periphery,
the Loess Plateau, and Beibu Gulf. The cold spots included Zhejiang, Anhui, and Shandong,
with secondary cold spots distributed in north, central, and south China as transitional
zones. In 2020, the hot spots were still clustered in the Yunnan-Guizhou Plateau, with
secondary hot spots clustered in the Loess Plateau and Beibu Gulf. The cold spots were
clustered in the Yellow River and lower reaches of the Yangtze River, with secondary cold
spots clustered in northwest, north, and central China. The global Moran’s I for 2010
and 2020 were 0.15 * and 0.19, respectively, indicating a shift from spatial uncorrelation
to positive autocorrelation. In the dimension of local spatial autocorrelation, only Anhui
fell into the HH-type in 2010, and no HH-type region was found in 2020. In 2010, Tibet,
Qinghai, and Chongqing fell into the LL-type, which was further expanded to Shanxi,
Tianjin, and Jilin in 2020. Yunnan and Guizhou maintained their status as HL-type regions
in 2010 and 2020. The LH-type regions were Shanghai and Fujian in 2010, which were
expanded to the Yangtze River Delta and west coast of the strait in 2020.

(2) Mismatch Index Contribution Rate of GDP

In 2010 and 2020, the provinces with high contribution to hospital mismatch were
clustered in the Yangtze River Delta, Pearl River Delta, and upper and lower reaches of
the Yellow River, with those of medium level distributed in their periphery, low level
clustered in west and north China, and middle reaches of the Yangtze River Economic Belt.
In 2010, the provinces with high contribution to doctor mismatch were clustered in the
lower reaches of the Yangtze River, Yellow River, and south China, with those of medium
level distributed in the periphery and extending northwest; those of low level clustered in
the Qinghai-Tibet Plateau, the middle reaches of the Yangtze River, and northeast China.
Provinces of high level in 2020 shaped a coastal agglomeration in the east and extended
north to Henan and Hebei and west to Yunnan and Sichuan. Provinces of medium level
were clustered in northeast and northwest China, with those of low level clustered in the
Qinghai-Tibet Plateau and middle reaches of the Yellow River. The provinces with high
contribution to bed mismatch in 2010 were scattered in distribution, including Jiangsu,
Zhejiang, Henan, Beijing, Guangdong, Hunan, Yunnan, Sichuan, and Xinjiang. Provinces
of medium level were relatively clustered in north China and Beibu Gulf, with those of low
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level clustered in the Qinghai-Tibet Plateau, central China and Bohai Bay. In 2020, most
of the provinces of high level were clustered in a belt-like pattern along the coast, with
those of medium level clustered in southwest China and Bohai Bay, and those of low level
clustered in the west, north, and central China (Figure 14).

Figure 14. Spatial analysis of mismatch index contribution rate for supply.

4.3. Driving Mechanism
4.3.1. Influence Factor

The driving forces of influence factors on hospitals, doctors, and beds differed signifi-
cantly, with the mean values of 0.52, 0.79, and 0.72, respectively (p < 0.05). With the mean
value as the threshold, the influence factor with a force greater than the mean is defined as
the key factor; the one smaller than the mean is defined as an important factor, and the one
not statistically significant is defined as an auxiliary factor.

The influence of the children and elderly population, health care government invest-
ment, and service industry added value on the geographic distribution of hospitals is
greater than the mean, especially children and elderly population, which is more influential
than other factors as a key factor. The influence of government revenue, high quality popu-
lation, and medical insurance fund expenditure is less than the mean, but cannot be ignored
as an important factor. Social consumption, residents’ medical services consumption, per
capita GDP and urbanization rate are less influential and not statistically significant as
auxiliary factors (Table 3).
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Table 3. Analysis on influence factors of medical resources changes.

Indicator X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
¯
X

Hospital q 0.54 0.03 0.48 0.33 0.06 0.80 0.34 0.58 0.10 0.36 0.52
P 0.01 0.34 0.05 0.08 0.17 0.00 0.04 0.02 0.09 0.04 0.05

Doctor
q 0.74 0.03 0.66 0.83 0.00 0.92 0.73 0.87 0.04 0.76 0.79
P 0.00 0.57 0.01 0.00 0.92 0.00 0.00 0.00 0.29 0.00 0.05

Bed
q 0.71 0.08 0.59 0.75 0.01 0.95 0.60 0.83 0.07 0.64 0.72
P 0.00 0.66 0.02 0.00 0.65 0.00 0.01 0.00 0.16 0.00 0.05

Note: X represents the average value of X1~X10, p < 0.10.

The influence of the children and elderly population, health care government invest-
ment, and social consumption on the geographic distribution of doctors is greater than the
mean, especially, the influence of children and elderly population is more than 0.9 as a key
factor. The influence of service industry added value, high quality population, medical
insurance fund expenditure, and government revenue is less than the mean as an important
factor. The influence of per capita GDP, urbanization rate and residents’ medical services
consumption are not statistically significant and belong to cofactors.

The children and elderly population, health care government investment, social con-
sumption are key factors influencing the geographic distribution of beds. Service industry
added value, high quality population, medical insurance fund expenditure, and govern-
ment revenue are important factors. Per capita GDP, urbanization rate and residents’
medical services consumption are auxiliary factors.

4.3.2. Interaction Effect

The interaction between the influence factors is dominated by bifactor enhancement,
with more than 30% of the factor pairs in the hospital, doctor, and bed dimensions being of
nonlinear enhancement. Although the factors per capita GDP and urbanization rate have
a direct influence that is not statistically significant, they have strong nonlinear enhance-
ment effects when acting together with other factors. The interaction influence of impact
factors on hospitals is generally low, with only X1∩X6, X2∩X6, X3∩X6, X4∩X6, X5∩X6,
X8∩X6, and X10∩X6 having an interaction influence greater than 0.85. Per capita GDP, the
urbanization rate and children and elderly population generally have higher influence
when they interact with other factors, and they can be regarded as super interaction factors.
The interaction influence of influence factors on doctors and beds is generally high, with
about 50% of factor pairs having an interaction influence greater than 0.9. In particular,
the interaction influence of factor pairs, such as X1∩X6, X2∩X6, X3∩X6, X4∩X6, X5∩X6,
X7∩X6,X8∩X6, and X10∩X6, is greater than 0.95 (Tables 4–6).

Table 4. Factor interaction analysis of the hospital.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0.54
X2 0.69 0.03
X3 0.72 0.73 0.48
X4 0.63 0.61 0.74 0.33
X5 0.72 0.09 0.73 0.64 0.06
X6 0.85 0.88 0.88 0.91 0.87 0.80
X7 0.59 0.64 0.60 0.48 0.64 0.84 0.34
X8 0.73 0.69 0.76 0.64 0.69 0.87 0.67 0.58
X9 0.64 0.16 0.67 0.51 0.14 0.83 0.57 0.63 0.10
X10 0.66 0.69 0.61 0.45 0.71 0.85 0.47 0.72 0.63 0.36
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Table 5. Factor interaction analysis of the doctor.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0.74
X2 0.81 0.03
X3 0.81 0.81 0.66
X4 0.91 0.89 0.92 0.83
X5 0.85 0.07 0.83 0.91 0.00
X6 0.97 0.96 0.97 0.98 0.96 0.92
X7 0.83 0.84 0.88 0.92 0.85 0.97 0.73
X8 0.95 0.89 0.93 0.93 0.89 0.97 0.96 0.87
X9 0.83 0.21 0.81 0.85 0.10 0.93 0.87 0.88 0.04
X10 0.93 0.92 0.90 0.93 0.93 0.98 0.80 0.94 0.91 0.76

Table 6. Factor interaction analysis of the bed.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0.71
X2 0.88 0.08
X3 0.78 0.83 0.59
X4 0.87 0.95 0.89 0.75
X5 0.85 0.17 0.79 0.91 0.01
X6 0.97 0.99 0.97 0.98 0.97 0.95
X7 0.81 0.90 0.86 0.86 0.83 0.97 0.60
X8 0.93 0.92 0.90 0.94 0.89 0.98 0.91 0.83
X9 0.79 0.27 0.74 0.80 0.10 0.96 0.81 0.87 0.07
X10 0.90 0.90 0.87 0.91 0.90 0.97 0.68 0.93 0.89 0.64

5. Discussion
5.1. Extended Thinking and External Evidence

Inequity in the distribution and allocation of medical resources among different regions
remains a worldwide problem [81,82], and China is no exception [83,84]. Some of the
analytical results of this study reconfirm the conclusions of some scholars, such as the
spatial heterogeneity [85], agglomeration [86], autocorrelation and correlation [87,88], non-
equilibrium [89], and inequality [90] in the geographic distribution of medical resources
and their spatio-temporal evolution in China; additionally, the geographic inequality of
hospitals is greater than that of doctors and beds [91]. Some of the analytical results in this
paper are not exactly the same or even contrary to the current knowledge and conclusions,
and they are of enlightening value. Zhu [92] proposed to address the uneven geographical
distribution of doctors in China from the perspective of demand and supply and argued
that demand is the main driving force. Chien [93] analyzed the correlation and fit between
the geographical distribution of healthcare services and health needs and suggested a
demand-oriented approach to the spatial allocation of public hospitals based on demand
in Malaysia. Different from them, this study finds that there is some demand and supply
mismatch for hospitals, doctors, and beds in China, and that the latter is more severe than
the former. Besides, previous studies on geographic disparities in health care services
have been limited by not considering the supply capacity of health care providers [94].
Using the supply-demand relationship as an analytical framework, this paper considers
the provincial population demand, as well as the carrying capacity of the level of economic
development, on the supply of medical resources, and it analyzes the types of supply and
demand mismatches and their spatial effects, more in line with the actuality [95].

There is still much controversy regarding whether the spatial heterogeneity of medical
resources is reasonable. This paper, in line with Shinjo [96] and Paramita [97], finds that
interregional differences in medical resources in China, Japan, and Indonesia are small,
and the Gini indices of hospitals, doctors, and beds are generally less than 0.4, indicating
the achievement of spatially balanced development. In contrast, other scholars found
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that the intercontinental distribution of health resources is extremely unequal in Ethiopia,
Mongolia, Iran, and Sudan [98]. For example, Woldemichael [99], Chavehpour [100], and
Rezaei [101] found that the Gini index of medical resources in Ethiopia and Iran is generally
greater than 0.4, and even up to 0.75; further, Erdenee [102] found that the Gini indices
of doctors and beds in Mongolia were 0.74 and 0.69, respectively. In terms of trends, this
paper finds that the Gini index of the geographical distribution of medical resources in
China remains stable over time, and the spatial pattern becomes stabilized. In contrast,
Costa [103] and Russo [104] argued that the inequality in the geographical distribution of
hospitals and doctors is decreasing in Portugal and Brazil, and Horev [105] found a further
increase in the Gini index in the United States, suggesting that the spatial distribution of
health resources is becoming more uneven and such differences may be clearly related to
the stage of development, national conditions, and health resource allocation criteria and
methods in different countries [106]. The geographical distribution of health resources and
their spatio-temporal evolution are uneven in many countries around the world, and it is
necessary to consider critical values when promoting the optimization of the spatial layout
of health resources, while taking into account spatial justice and allocation efficiency [107].

The temporal change process and spatial distribution pattern analysis of health re-
sources are integrated based on Boston Consulting Group matrix, and the evolution trend
is divided into four types, which helps develop differentiated and adaptive management
policies for different provinces and identify the best combination of health resources in
allocation. Provinces in dynamic matching should adopt a stable development strategy
and maintain the same trend regardless of the type of evolution. Provinces in a positive
mismatch should adopt an incremental expansion strategy, and the evolution trend of the
question or star type should remain unchanged; otherwise, it should be changed from
dog/cow to question/star. Provinces in the state of negative mismatch should adopt a
smart shrink strategy, and the evolution trend of dog- or cow-type should remain un-
changed; otherwise, it should be changed from question/star to dog/cow. For example, in
the hospital dimension, Inner Mongolia, Fujian, Qinghai, and Ningxia have long been in
dynamic matching, and they should adhere to the stable development strategy to maintain
the evolution trend of the dog type in the future. Similarly, stable development strategies
are adopted in Anhui, Hainan, Chongqing, Yunnan, Guizhou, Xinjiang (maintaining the
question trend), Hubei, Guangxi (maintaining the cow trend), and Shandong (maintaining
the star trend). Hebei, Hubei, Sichuan, and Shanxi have long been in positive mismatch,
and they should adopt an expansion strategy to push the evolution trend from cow to
star. Shanghai, Zhejiang, Jiangsu, and Guangdong have been in negative mismatch for a
long time, and they should adopt a smart shrink strategy to reduce the growth rate and
push the evolution trend from question to dog and from star to cow. In terms of doctors
and beds, Beijing and Tianjin are in dynamic matching, and they should introduce a stable
development strategy to maintain the dog evolution trend. Heilongjiang, Sichuan, Guizhou,
and Yunnan have long been in positive mismatch, and they should adopt a smart shrink
strategy in the future to maintain the evolution trend of dog or cow type, or to change from
question to dog.

The comparison of spatio-temporal evolution trends and spatial mismatch relation-
ships reveals the rationality of health resource supply and allocation schemes in the
provinces and their improvement directions. For example, Zhejiang attaches great im-
portance to investment in medical resources and, in recent years, has implemented the
“13th Five-Year Plan” for the development of health care and plan for the medical service
system in the province, which has contributed to the allocation of health resources in
Zhejiang as a growth pole in China (in the evolution trend of star type). However, the
spatial mismatch shifted from dynamic matching to negative mismatch from 2010 to 2020,
indicating a shift from balance to imbalance between the large supply of health resources
and population demand, with supply outstripping demand and extensive use of health
facilities and resources. For example, the slowdown in investment in doctors and beds in
Hebei in recent years has led to their evolution trend of cow-type. Notably, the type of
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spatial mismatch changed from dynamic matching in 2010 to positive mismatch in 2020,
indicating the problem of undersupply of health facilities and resources, with the shift of
supply-demand equilibrium of health services to disequilibrium, as a result of the long-
term low investment in health care resources. In addition, despite the different evolution
trends of health resources, such as question in Beijing and Tianjin, cow in Liaoning and
Jiangxi, and dog in Inner Mongolia and Fujian, they all remained long in supply-demand
balance of hospital allocation (in dynamic matching in 2010 and 2020).

In addition, it is an innovation to include spatial effects in the analysis of influence
factors and measure their interaction effects in this paper. Unlike the published articles,
this paper incorporates spatial heterogeneity and autocorrelation into the influence factor
analysis, based on the geographic detector method, to measure the force of influence factors
on the geographical distribution of medical resources and reveal the interaction effects of
different influence factors, thus further improving the accuracy of the driving mechanism
analysis. This paper finds that factors such as children and elderly population, health care
government investment, service industry added value, high quality population, medical
insurance fund expenditure, and government revenue have a great direct influence on the
geographical distribution of health resources, which further validates the findings of some
scholars. For example, Li [108], Zheng [109], and Guo [110] found that economic devel-
opment, urbanization wage, population ageing, financial health expenditure levels, and
population size are key factors affecting the geographical distribution of medical resources
in China. Song [111], Ding [112], and Guo [113] found that social, economic, and environ-
mental factors have great influence on the geographical clustering and spatio-temporal
evolution trends of medical resources by leveraging the Bayesian local spatiotemporal re-
gression model and spatial econometric model. In this paper, per capita GDP, urbanization
rate and residents’ medical services consumption are found to be statistically insignificant
in their direct influence, but their interaction influence, when combined with other factors,
cannot be ignored. This is different from the analysis results of Yang [114] and Qian [115],
who argued that these factors promote the geographic concentration of medical resources
and are positively correlated with their spatio-temporal evolution. This difference may
be caused by the different research methods. They adopted a statistical approach that
did not take spatial effects into account, with the results emphasizing the consistency of
“quantitative relationships”, rather than the similarity of “geographical relationships”.

5.2. Sustainable Development Spatial Strategies

To improve the uneven geographical distribution and spatial mismatch of health re-
sources is one of the major challenges facing the government health sector. The government
should redesign the spatial allocation scheme of medical resources and improve the supply
and demand of health services, based on regional heterogeneity and spatial mismatch,
under the guidance of spatial justice and regional health planning theories [116,117]. The
first step is to advance the superposition analysis of the supply and demand mismatch
quantitation results and divide the 16 combinations into 4 types, where (5) is of dynamic
matching, indicating that medical resources have achieved a dynamic balance between
supply and demand and are in an optimal state, and a path-dependent strategy should
be adopted in the future policy design to maintain the current development trend and
provide a reference for policy design in other types of regions [118]. Areas (1), (2), and
(4) are of positive mismatch, indicating that the current medical resources are in excess
of supply, beyond the actual demand and economic carrying capacity. There may have
been a serious outflow of population in such areas, and a smart contraction strategy should
be adopted in the future policy design to moderately control the supply of new medical
resources. Areas (6), (8), and (9) are of negative mismatch, indicating that the supply of
medical resources is less than the actual demand and lower than the carrying capacity of the
economy. These areas are likely to be economically developed and attract a large foreign
population. They should adopt smart growth strategies to increase the supply of and
investment in new health resources in the future. Areas (3) and (7) are of double mismatch,
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indicating that the current medical resources fail to meet the actual demand, but are beyond
the economic carrying capacity, so external support should be introduced in future policy
design, or the current medical resources are already excessive and far below the economic
carrying capacity, so new investment should be controlled with consideration of increasing
external medical aid or cross-regional supportive transfer payments in the future policy
design. The second step is that, in order to reduce the uncertainty of the spatial allocation
of medical resources, the government should design differentiated management policies by
spatial zoning, based on the four types generated by the superposition analysis [119,120]
(Figure 15).

Figure 15. Spatial policy zoning for differentiated management.

In the hospital dimension, Beijing, Tianjin, Fujian, Jiangxi, Hubei, Chongqing, Guizhou,
Guangxi, Hainan, Yunnan, Tibet, Qinghai, Xinjiang, Ningxia, Shaanxi, Inner Mongolia,
Liaoning, and Heilongjiang are of dynamic matching. Hebei, Shandong, Shanxi, Henan,
Hunan, Sichuan, Gansu, and Jilin are of positive mismatch, and Guangdong, Shanghai,
Jiangsu, Zhejiang, and Anhui are of negative mismatch. According to the development
trend, the future policy design should follow the guidance as below: Beijing, Tianjin,
Chongqing, Guizhou, Yunnan, Tibet, Xinjiang, Hainan, Guangdong, Jiangsu, and Zhejiang
should continue to maintain high growth and focus on cultivating provinces with high
potential by carefully analyzing the development drivers to promote them as regional
medical service centers. Fujian, Qinghai, Ningxia, Inner Mongolia, Heilongjiang, Hebei,
Shanxi, Henan, Hunan, and Sichuan should maintain their slow growth or reduction in
quantity. Shandong, Gansu, and Jilin should implement contractionary policies for strict
control of the amount of growth and reverse the development trend of high growth, in order
to avoid the waste or risk brought about by blind investment. Shanghai, Anhui, Jiangxi,
Hubei, Guangxi, Shaanxi, and Liaoning should introduce innovation policies and invest
their limited resources primarily in new demand creation or new supply development.

In the doctor dimension, Tianjin, Hubei, Hunan, Chongqing, Tibet, Qinghai, Xinjiang,
Ningxia, Inner Mongolia, and Liaoning are of dynamic matching. Beijing, Shandong,
Shanxi, Henan, Shaanxi, Gansu, Sichuan, Yunnan, Guizhou, Guangxi, Liaoning, and Jilin
are of positive mismatch. Shanghai, Jiangsu, Anhui, Fujian, Jiangxi, and Guangdong are
of negative mismatch. Hebei and Zhejiang are of double mismatch. According to the
development trend, the future policy design should follow the guidance as below: Jiangsu,
Fujian, and Guangdong should continue to maintain high growth and cultivate them
into regional integrated medical service centers. Shanghai, Anhui, Jiangxi, and Shandong
should increase investment to further boost growth. Tianjin, Hubei, Hunan, Xinjiang,
Inner Mongolia, Liaoning, Beijing, Shandong, Shanxi, Henan, Gansu, Liaoning, and Jilin
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should maintain a slow growth or reduction in quantity, while Tibet, Qinghai, Ningxia,
Shaanxi, Sichuan, Yunnan, Guizhou, and Guangxi should introduce contractionary policies
to strictly control the amount of growth and avoid waste or risk from blind investment.
The current medical resources in Hebei fail to meet the actual demand and are beyond the
economic carrying capacity, so external support is required in the future policy design. The
current medical resources in Zhejiang are already excessive and far below the economic
carrying capacity, so it should control the new investment and consider increasing external
medical aid or cross-regional supportive transfer payments in the future policy design.

In the bed dimension, Beijing, Tianjin, Shandong, Anhui, Shanghai, Jiangxi, Hainan,
Chongqing, Shanxi, Shaanxi, Ningxia, Qinghai, Tibet, Xinjiang, Inner Mongolia, and Jilin are
of dynamic matching. Liaoning, Heilongjiang, Henan, Hubei, Hunan, Guangxi, Guizhou,
Yunnan, Sichuan, and Gansu are of positive mismatch. Shandong, Fujian, Zhejiang, and
Jiangsu are of negative mismatch. Hebei is of double mismatch. In light of the development
trend, the future policy design should follow the guidance as below: Anhui, Jiangxi,
Hainan, Chongqing, Shaanxi, Qinghai, Tibet, Fujian, Zhejiang, and Jiangsu should continue
to maintain high growth. Shandong should increase investment to further boost its growth
rate. Beijing, Tianjin, Shandong, Shanghai, Shanxi, Ningxia, Xinjiang, Inner Mongolia,
Jilin, Liaoning, and Heilongjiang should maintain a slow growth or reduction in quantity.
Henan, Hubei, Hunan, Guangxi, Guizhou, Yunnan, Sichuan, and Gansu should implement
contractionary policies and strict control of the amount of growth, in order to avoid waste
or risk brought about by blind investment. The current medical resources in Hebei fail
to meet the actual demand and are beyond the economic carrying capacity, so external
support is required in the future policy design.

In general, differentiated and adaptive management strategies should be adopted,
depending on the relationship between health resource supply and demand, in order to
maintain sustainable evolution trends or reverse unsound ones. For example, Hainan,
Chongqing, Tibet, Qinghai, Ningxia, and Xinjiang, in dynamic matching, should imple-
ment a stable development strategy, with no need to change their current health resource
allocation policy (which has already achieved a balance between supply and demand) and
evolution trend. Sichuan and Henan, in positive mismatch, should implement an incre-
mental expansion strategy. That is, they need to expand future investments in hospitals,
doctors, and beds and drive the evolution trend to maintain or shift to question or star to
address the problem of insufficient supply and to improve their health services and support
capacity. Guangdong and Jiangsu, in negative mismatch, should implement a smart shrink
strategy. In other words, it is necessary for them to reduce the future investment in health
resources and promote the evolution trend to maintain or transform into dog or cow, in
order to address the problem of oversupply and improve the efficiency of resource utiliza-
tion. Hebei, Shanxi, Jilin, Heilongjiang, and Gansu, in double mismatch, should adopt an
integrated control strategy. That is, due to the imbalance between the supply of health
resources and population demand and the mismatch with economic carrying capacity, they
should apply to the central government for inter-provincial transfer payments or medical
assistance in the future to further improve their regional service capacity of health facilities
and resources.

6. Conclusions

Reducing the inequality of geographical distribution and spatial mismatch of medical
resources is still a key policy goal of health authorities in most countries [121]. Based on a
combination of methods, such as Boston Consulting Group matrix, spatial mismatch index,
spatial econometric model, and Geodetector, this paper analyzes the characteristics of
geographic distribution of medical resources at provincial level in China and their driving
mechanisms and spatio-temporal evolution trends, as well as the degree and types of
spatial mismatch. It also proposes a differentiated management policy design, based on
spatial zoning, which is of great value to promote the evidence-based decision making of
medical resources spatial allocation scheme and health planning.
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This paper finds that the geographical pattern of medical resources in China is solid
over time, and that the quantity of resources and its change amplitude and speed have
high spatial agglomeration and differentiation. The spatio-temporal evolution of inter-
provincial medical resources in China has become diversified, with similar regions having
high geographic agglomeration and weak spatial autocorrelation, as well as a gradient
distribution of cold hot spots in a core-periphery structure. Children and elderly population,
health care government investment, and service industry added value are the key factors
influencing the geographical distribution of health resources, while social consumption,
government revenue, high quality population, and medical insurance fund expenditure are
important factors. The interaction between the different influence factors is dominated by
bifactor enhancement, and about 30–40% of the factor pairs are in nonlinear enhancement.
Although per capita GDP, urbanization rate, and residents’ medical services consumption
do not have statistically significant direct influence, they have high interaction influence
with other factors as auxiliary factors that cannot be ignored. Most of the provinces’ medical
resources are in dynamic matching, mainly concentrated in west and north China and the
middle reaches of the Yangtze River. A path-dependent strategy should be adopted in the
future policy design to maintain the current development. The mismatch in the supply
of medical resources in China is more serious than that in demand, and the proportion of
mismatch in hospitals and beds is decreasing; however, the opposite is true for doctors.
For the regions of positive mismatch, hospital demand mismatches and hospital, doctor,
and bed supply mismatches are clustered, while doctor and bed demand mismatches are
randomly distributed, so smart contraction-type strategies should be adopted in the future
policy design to moderately control the supply of new medical resources and avoid the
waste of resources or investment risks. For the regions of negative mismatch, doctor and
bed demand mismatches, as well as doctor, hospital, and bed supply mismatches, are
clustered in bands, while hospital demand mismatches are randomly distributed, so smart
growth-oriented strategies should be adopted in the future to increase the supply and
investment in new medical resources to achieve sustainable development. The hot and cold
spots of supply and demand mismatch are highly clustered, shaping a spatial structure of
center-periphery or gradient change. Hospital demand mismatches and hospital, doctor,
and bed demand mismatches all have positive spatial autocorrelation and are increasingly
spatially correlated and dependent; however, doctor and bed demand mismatches have
changed from positive spatial autocorrelation to uncorrelation.

This paper is innovative in two areas. First, it introduces the spatial mismatch index to
quantitatively measure the degree and type of medical resource mismatch at the provincial
level in China from both the supply and demand perspectives and proposes a method
for designing differential management policies, based on spatial zoning, which provides
a basis for evidence-based decision making in health planning. Scholars are currently
focusing on the study of mismatch of mobile factor resources, such as labor, capital, and
commodities, and the immobility of health resources makes it more difficult and costly to
correct their mismatch problems. In developing countries with limited health resources,
incorporating economic carrying capacity and population demand power into health
resource allocation models and health economics [122] and designing future health resource
allocation policies, based on the types of mismatches, in line with the evolution trend,
may help improve the equity and sustainability of the regional healthcare service system.
Second, this paper incorporates spatial effects into the analysis of the driving mechanism of
geographical distribution of medical resources, which deepens the research from the level
of “quantitative relationship” consistency to the “geographical relationship” similarity
and measures the interaction effects and relationships of different influence factors, thus
significantly improving the precision of the analysis results.

In addition, this study is applicable to China; it also has great reference value for
developing countries, such as Iran, Egypt, Ethiopia, South Africa, Tanzania, India, Malaysia,
and Mongolia. As described above, they have very limited medical resources, with a
striking problem of uneven geographical distribution and spatial mismatch. An empirical
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study of these countries, using the research framework and methodology provided in
this paper, can help them design differentiated and adaptive health resource management
policies. It should be noted that interest games and institution settings play an important
role in the allocation of medical resources [123], but they are limited by data availability
and are not included in this discussion, which is the shortcoming of this paper. In China,
the supply of health resources is dominated by the government and institutionalized and
hierarchical control of health resource allocation among different levels of government
has led to intense competition between provinces, cities, and towns. Data on gaming and
institutionalization of different participants is part of tacit knowledge. It is not included in
official statistics; to acquire such information is also difficult through unofficial channels.
The data shortage leads to less comprehensive analysis results, and it may compromise the
accuracy of the conclusions, to some extent, which is the direction of future research efforts.
In addition, the spatial mismatch index is essentially a static model, but the real world is
dynamic, so it is necessary to identify or create new methods that can dynamically analyze
health resource mismatch in the future to further improve the credibility and applicability
of the analysis results.
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Appendix A

Table A1. Dependent, demand, and supply variable data, based on sum standardization method.

City
Hospitals Doctors Beds GDP Population

2010 2020 2010 2020 2010 2020 2010 2020 2010 2020

Beijing 0.0100 0.0104 0.0273 0.0258 0.0194 0.0140 0.0323 0.0357 0.0147 0.0155
Tianjin 0.0048 0.0057 0.0118 0.0106 0.0102 0.0075 0.0211 0.0139 0.0097 0.0098
Hebei 0.0869 0.0850 0.0534 0.0501 0.0522 0.0486 0.0467 0.0358 0.0539 0.0529
Shanxi 0.0439 0.0402 0.0337 0.0261 0.0326 0.0246 0.0211 0.0174 0.0268 0.0248
Inner
Mongolia 0.0241 0.0240 0.0206 0.0189 0.0195 0.0178 0.0267 0.0171 0.0185 0.0170

Liaoning 0.0371 0.0334 0.0386 0.0298 0.0427 0.0346 0.0422 0.0248 0.0328 0.0302
Jilin 0.0207 0.0250 0.0228 0.0203 0.0240 0.0190 0.0198 0.0122 0.0206 0.0170
Heilongjiang 0.0236 0.0200 0.0320 0.0231 0.0334 0.0278 0.0237 0.0135 0.0287 0.0225
Shanghai 0.0050 0.0058 0.0210 0.0194 0.0220 0.0167 0.0393 0.0382 0.0173 0.0176
Jiangsu 0.0330 0.0349 0.0560 0.0611 0.0563 0.0588 0.0948 0.1015 0.0590 0.0601
Zhejiang 0.0320 0.0336 0.0430 0.0490 0.0385 0.0397 0.0634 0.0638 0.0408 0.0459
Anhui 0.0245 0.0287 0.0377 0.0374 0.0393 0.0448 0.0283 0.0382 0.0447 0.0433

https://data.cnki.net/Yearbook/Single/N2022010155
http://www.stats.gov.cn/tjsj/ndsj/
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Table A1. Cont.

City
Hospitals Doctors Beds GDP Population

2010 2020 2010 2020 2010 2020 2010 2020 2010 2020

Fujian 0.0288 0.0275 0.0243 0.0261 0.0236 0.0238 0.0337 0.0434 0.0277 0.0295
Jiangxi 0.0364 0.0359 0.0282 0.0273 0.0260 0.0314 0.0216 0.0254 0.0335 0.0320
Shandong 0.0715 0.0830 0.0788 0.0763 0.0799 0.0711 0.0896 0.0722 0.0719 0.0721
Henan 0.0808 0.0730 0.0721 0.0698 0.0684 0.0733 0.0528 0.0543 0.0705 0.0705
Hubei 0.0366 0.0347 0.0426 0.0400 0.0419 0.0452 0.0365 0.0429 0.0429 0.0407
Hunan 0.0634 0.0548 0.0452 0.0456 0.0488 0.0571 0.0367 0.0413 0.0493 0.0471
Guangdong 0.0479 0.0546 0.0723 0.0747 0.0627 0.0621 0.1053 0.1094 0.0783 0.0895
Guangxi 0.0349 0.0331 0.0325 0.0351 0.0300 0.0325 0.0219 0.0219 0.0346 0.0356
Hainan 0.0050 0.0060 0.0063 0.0070 0.0054 0.0064 0.0047 0.0055 0.0065 0.0072
Chongqing 0.0187 0.0205 0.0195 0.0224 0.0216 0.0259 0.0181 0.0247 0.0216 0.0228
Sichuan 0.0793 0.0809 0.0570 0.0612 0.0629 0.0714 0.0393 0.0480 0.0603 0.0594
Guizhou 0.0271 0.0282 0.0188 0.0272 0.0220 0.0304 0.0105 0.0176 0.0261 0.0274
Yunnan 0.0244 0.0260 0.0253 0.0341 0.0328 0.0357 0.0165 0.0242 0.0345 0.0335
Tibet 0.0053 0.0068 0.0020 0.0030 0.0018 0.0020 0.0012 0.0019 0.0023 0.0026
Shaanxi 0.0381 0.0342 0.0317 0.0331 0.0297 0.0299 0.0232 0.0259 0.0280 0.0280
Gansu 0.0285 0.0256 0.0168 0.0170 0.0189 0.0189 0.0094 0.0089 0.0192 0.0177
Qinghai 0.0062 0.0063 0.0043 0.0048 0.0043 0.0045 0.0031 0.0030 0.0042 0.0042
Ningxia 0.0044 0.0045 0.0048 0.0053 0.0049 0.0045 0.0039 0.0039 0.0047 0.0051
Xinjiang 0.0171 0.0178 0.0194 0.0182 0.0243 0.0199 0.0124 0.0136 0.0164 0.0184

Table A2. Independent variable data based on sum standardization method in 2020.

City X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Beijing 0.0550 0.0751 0.0548 0.0350 0.0443 0.0124 0.0597 0.0321 0.0591 0.0593
Tianjin 0.0165 0.0463 0.0192 0.0091 0.0429 0.0088 0.0211 0.0093 0.0446 0.0162
Hebei 0.0340 0.0221 0.0382 0.0324 0.0304 0.0574 0.0381 0.0433 0.0292 0.0413
Shanxi 0.0164 0.0230 0.0229 0.0172 0.0317 0.0230 0.0267 0.0230 0.0328 0.0208
Inner
Mongolia 0.0154 0.0328 0.0205 0.0121 0.0342 0.0147 0.0200 0.0199 0.0321 0.0147

Liaoning 0.0244 0.0268 0.0265 0.0229 0.0365 0.0274 0.0380 0.0219 0.0394 0.0298
Jilin 0.0117 0.0231 0.0108 0.0098 0.0317 0.0148 0.0211 0.0159 0.0349 0.0130
Heilongjiang 0.0123 0.0194 0.0115 0.0130 0.0332 0.0186 0.0227 0.0213 0.0348 0.0197
Shanghai 0.0515 0.0710 0.0704 0.0407 0.0452 0.0146 0.0510 0.0289 0.0506 0.0495
Jiangsu 0.0981 0.0552 0.0905 0.0946 0.0372 0.0599 0.0727 0.0534 0.0343 0.0754
Zhejiang 0.0655 0.0459 0.0724 0.0680 0.0365 0.0388 0.0524 0.0444 0.0333 0.0639
Anhui 0.0360 0.0289 0.0321 0.0468 0.0295 0.0471 0.0352 0.0404 0.0262 0.0350
Fujian 0.0379 0.0482 0.0307 0.0475 0.0348 0.0285 0.0284 0.0277 0.0271 0.0264
Jiangxi 0.0225 0.0259 0.0250 0.0265 0.0306 0.0344 0.0223 0.0340 0.0250 0.0264
Shandong 0.0712 0.0329 0.0655 0.0746 0.0319 0.0775 0.0644 0.0554 0.0330 0.0693
Henan 0.0487 0.0253 0.0416 0.0574 0.0281 0.0820 0.0464 0.0575 0.0279 0.0526
Hubei 0.0405 0.0339 0.0251 0.0459 0.0318 0.0402 0.0406 0.0540 0.0299 0.0371
Hunan 0.0393 0.0287 0.0300 0.0415 0.0297 0.0514 0.0325 0.0391 0.0349 0.0380
Guangdong 0.1137 0.0402 0.1291 0.1026 0.0375 0.0778 0.0854 0.0939 0.0283 0.0889
Guangxi 0.0209 0.0202 0.0171 0.0200 0.0274 0.0404 0.0227 0.0331 0.0267 0.0289
Hainan 0.0061 0.0251 0.0081 0.0050 0.0305 0.0069 0.0064 0.0117 0.0240 0.0062
Chongqing 0.0240 0.0356 0.0209 0.0301 0.0352 0.0238 0.0222 0.0230 0.0364 0.0223
Sichuan 0.0463 0.0265 0.0425 0.0531 0.0287 0.0622 0.0482 0.0546 0.0328 0.0527
Guizhou 0.0165 0.0211 0.0178 0.0200 0.0269 0.0309 0.0198 0.0300 0.0227 0.0205
Yunnan 0.0230 0.0237 0.0211 0.0250 0.0253 0.0322 0.0248 0.0377 0.0276 0.0272
Tibet 0.0017 0.0239 0.0022 0.0019 0.0181 0.0025 0.0020 0.0076 0.0109 0.0016
Shaanxi 0.0228 0.0302 0.0225 0.0245 0.0317 0.0273 0.0330 0.0270 0.0367 0.0223
Gansu 0.0090 0.0164 0.0087 0.0093 0.0264 0.0180 0.0162 0.0196 0.0274 0.0135
Qinghai 0.0028 0.0232 0.0030 0.0022 0.0304 0.0039 0.0040 0.0091 0.0349 0.0046
Ningxia 0.0036 0.0248 0.0042 0.0033 0.0329 0.0049 0.0058 0.0063 0.0333 0.0047
Xinjiang 0.0129 0.0244 0.0148 0.0078 0.0286 0.0176 0.0166 0.0250 0.0292 0.0182
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