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Abstract: Arthropod-borne viruses (arboviruses) such as dengue virus (DENV), chikungunya virus
(CHIKV), Zika virus (ZIKV), and yellow fever virus (YFV) are the most important ‘emerging
pathogens’ because of their geographic spread and their increasing impact on vulnerable human
populations. To fight against these arboviruses, vector control strategies (VCS) remain one of the most
valuable means. However, their implementation and monitoring are labour intensive and difficult to
sustain on large scales, especially when transmission and Aedes mosquito densities are low. To increase
the efficacy of VCS, current entomological methods should be improved by new complementary
tools which measure the risk of arthropod-borne diseases’ transmission. The study of human–Aedes
immunological relationships can provide new promising serological tools, namely antibody-based
biomarkers, allowing to accurately estimate the human–Aedes contact and consequently, the risk of
transmission of arboviruses and the effectiveness of VCS. This review focuses on studies highlighting
the concept, techniques, and methods used to develop and validate specific candidate biomarkers of
human exposure to Aedes bites. Potential applications of such antibody-based biomarkers of exposure
to Aedes vector bites in the field of operational research are also discussed.

Keywords: Aedes exposure; biomarker; arbovirus transmission; salivary proteins; immuno-
epidemiology

1. Introduction

Mosquitoes are vectors of numerous human pathogens that kill or debilitate millions of humans
each year. Those belonging to the genus Aedes are vectors of the major viral infections including
yellow fever, dengue, chikungunya, and Zika fever [1]. It is estimated that 200,000 new cases of
yellow fever occur each year with 30,000 deaths [2], despite the existence of a preventive vaccine.
There are an estimated 3.9 billion people at risk of infection with dengue virus (DENV) worldwide [3]
and 390 million DENV infections a year, including 500,000 severe forms and over 20,000 deaths [4].
Recent large outbreaks of chikungunya and Zika fever have affected the immunologically naive
populations of the Indian and Pacific oceans and of the Americas [5–7]. As an example, 693,000
and 500,000 cases of chikungunya and Zika, respectively, were suspected in the Americas in 2016 [8].
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All these viruses are transmitted between humans by the bite of infected Aedes mosquitoes, mainly Aedes
aegypti and Aedes albopictus [9,10].

The lack and limitations of prophylactic treatment in the vast majority of these diseases forces the
use of vector control methods to interrupt transmission. This involves extensive surveillance of these
mosquito populations to estimate risk of transmission, to plan vector control strategies, and to assess
their impact on the diseases. This surveillance is currently based on entomological methods to identify
positive breeding sites, to sample adult mosquitoes by traps, intra-housing spraying, and human
landing catches [11]. However, these methods have many limitations in efficiency and accuracy that
make them difficult to apply on large scales. Indeed, estimation of immature stage densities is time
consuming and expensive with problems of inaccessibility to all potential breeding sites. Furthermore,
larval and pupal indicators are focused on immature stages that do not perfectly correlate to the density
of adult mosquitoes. The estimation of adult female densities using human landing catches could
be more significant for sampling host-seeking mosquitoes and then determining human exposure
levels [11,12]. However, due to the infection risk of exposed volunteers to mosquito vector bites,
this method evokes obvious ethical concerns that limit its application. Furthermore, entomological
methods are mainly applicable at the community level and cannot be used to evaluate the heterogeneity
of exposure to mosquito bites between individuals.

Given all these shortcomings, there is an urgent need for more efficient and sensitive
complementary tools to improve the impact of vector control strategies (VCS) and predict the risk
of transmission of mosquito-borne diseases, and if possible at both the community and individual
levels. The development of such tools needs to explore the close interactions between the human host
and Aedes mosquitoes. The physical contact between these two protagonists involves physiological
interactions through salivary proteins of Aedes mosquitoes. Indeed, upon feeding, mosquitoes inject a
mixture of bioactive molecules into the host that assist with blood meal acquisition. These molecules
include factors that are anticlotting, vasomodulatory, and antiplatelet. Interestingly, some of arthropod
salivary proteins are antigenic and initiate an anti-saliva antibody response in the human host [13–16].
One approach is to quantify the human antibody response to mosquito salivary proteins to define
a biomarker of exposure to mosquito bites [17–24]. Indeed, the human antibody response against
mosquito salivary gland proteins varies temporally and spatially, and correlates with mosquito density
or host biting activity, suggesting the human antibody response can be used to study mosquito–human
contact [25]. In addition, biomarkers of mosquito bite exposure can be used to define the ranges of
medically important mosquitoes, identify areas of risk for vector-borne diseases, and evaluate vector
control interventions.

Even though this approach may appear to be valid, the use of whole saliva or salivary gland
extracts (SGE) of Aedes vectors as a biomarker of exposure could be inadequate because some salivary
factors are shared between mosquitoes or arthropods from different genera that induce immune
cross-reaction. In the objective to optimise this promising indicator and to use it on a large scale
with high reproducibility, the identification of specific and antigenic salivary proteins or peptides,
or both, of Aedes has been done. This led to the identification of the putative 34 kDa family secreted
salivary protein that appeared to be antigenic and specific to the Aedes genus [26]. Interestingly, one
peptide (the Nterm-34 kDa) from Ae. aegypti saliva was recently identified and validated as a pertinent
and specific candidate biomarker of human exposure to bites of major Aedes species (Ae. aegypti and
Ae. albopictus) in several countries: Benin, Côte d’Ivoire, Lao PDR, and La Reunion Island [27–30].

This review focuses on studies highlighting the epidemiological approaches, techniques,
and methods used to develop and validate specific candidate biomarkers of human exposure to
Aedes bites. Potential applications of such antibody-based biomarkers of exposure to Aedes vector bites
in the field of operational research for arboviral diseases control are highlighted.
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2. Development of Antibody-Based Biomarker of Exposure to Aedes Bites

2.1. The Concept

The penetration of haematophagous arthropod mouthparts into the host skin elicits haemostatic,
inflammatory, and immune responses by the vertebrate host (animal, human). These reactions aiming
to prevent blood loss, promote tissue repair, and prevent colonisation of the damaged tissues by
opportunistic pathogens, can largely impair haematophagous arthropod blood intake. Blood-feeding
behaviour then requires solutions to counteract vertebrate host defence responses to successfully obtain
a blood meal. Thus upon feeding, the female Aedes, like all haematophagous arthropods, injects into the
mammal host a mixture of bioactive molecules that assist with blood intake by inhibiting physiological
responses of the host (Figure 1) [13,31]. Interestingly, some of them (salivary proteins) are antigenic
and initiate an antibody response in the host [13,14].
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Figure 1. Human-vector relationships during arthropod-borne diseases. During the bite, the vector
(Aedes) injects its saliva in the human skin. Once in the skin, salivary proteins take the control of (1) the
human haemostatic system by inhibiting the platelet activation and clotting mechanism, and (2) the
inflammatory system. (3) The salivary proteins modulate the human immune response and promote
the production of anti-salivary antibodies. (4) If ever the (Aedes) vector carries a pathogen, the salivary
proteins contribute to its transmission into the human.

The first studies on the effects of mosquito salivary proteins on the immune system of the
host concerned allergic reactions due to Aedes and Culex mosquito bites. These mosquitoes express
in their saliva a panel of allergens responsible for a production of specific immunoglobulin (Ig)
E antibodies [18,32]. Some of these salivary allergens are now well characterised. For example,
four recombinant Aedes aegypti salivary allergens corresponding to a 68 kDa salivary apyrase (rAed
a1), a 37 kDa protein belonging to the D7 family (rAed a2), a 30 kDa salivary gland allergen (rAed a3),
and a 67 kDa α-glucosidase (rAed a4) elicit predominantly specific IgE responses in mosquito-allergic
individuals [33–36]. The authors concluded that these recombinant proteins can be used as tools for
diagnosis and treatment of allergic reactions due to mosquito bites.

A panel of serological studies have demonstrated a relation between the exposure of various
hematophagous arthropod density and the anti-saliva Ab response levels [21,37]. Regarding Aedes
mosquitoes, several studies in Finnish Lapland [25], Canada [38], Senegal [17], Bolivia and Reunion
Island [23,39], have reported an increasing anti-saliva IgG Ab during the peak of human exposure
or in persons living in sites with higher Aedes density. Anti-saliva IgG responses have shown to
potentially wane just 15 days after a decrease in Aedes albopictus densities [40]. Other studies performed
in domestic animals showed that IgM antibodies against the saliva of triatomine bugs can be detected
after one day of exposure and waned rapidly (18 days) [41,42].



Trop. Med. Infect. Dis. 2018, 3, 80 4 of 14

Since the acquisition of an Ab response against mosquitoes’ (and hematophagous arthropods’)
saliva depended on the level of exposure of an individual to mosquito bites, it seemed logical to
develop serological tools for monitoring human–vector contacts. The concept ‘anti-saliva Ab response
= biomarker of vector bite exposure’ had just emerged. The idea was that the level of specific Ab of an
individual is proportional, as a proxy, to the intensity of mosquito bites received by the individual
(Figure 2). For example, it has been shown that an individual slightly exposed to Aedes bites thus
produces a low-level Ab response (≤0.70 ∆OD) to Aedes salivary antigens, while a highly-exposed
individual to Aedes bites produces a high-level Ab response (≥1.2 ∆OD) to Aedes salivary antigens [40].
The advantage of such a tool is that it is quantitative (values are expressed in optical densities (OD))
and individual (one OD value represents the level of exposure to bites of one individual).
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Figure 2. The concept of salivary biomarkers to vector bites.

A low-exposed individual to Aedes bites would develop a low-level Ab response to salivary
antigens while a highly exposed one would develop a high Ab response to Aedes salivary antigens.

2.2. Validation of the Concept

To validate the proof of concept ‘anti-saliva Ab response = biomarker of vector bite exposure’,
it was necessary to find creative methods to reach this goal. But curiously, all studies undertaken for
this purpose were directly carried out in the field. Although this approach could seem surprising,
it represents a great benefit for testing the validity of the Aedes salivary biomarker as it allows the
taking into consideration of specific conditions closely related to the epidemiology of mosquito-borne
diseases. To be valid, the Aedes salivary biomarker should fulfil four fundamental criteria: (i) to
discriminate exposed individuals to Aedes vector bites from those who are not exposed, (ii) to evaluate
the density and fluctuations of vector populations that can bite human populations, (iii) to classify
individuals according to their level of exposure to Aedes vectors, and (iv) to be usable at a population
level. To demonstrate that the Aedes salivary biomarker met these criteria, Ae. aegypti SGE were then
collected and run on ELISA in serum samples from young Senegalese children living in an area of
exposure to the Ae. aegypti mosquitoes [20]. Specific IgE and IgG4 responses increased during the
rainy season of high exposure to Aedes bites, compared to the dry season. In addition, the evolution
of anti-saliva isotype levels during the rainy season presented spatial heterogeneity between studied
villages. These preliminary results supported the potential approach of using anti-saliva Ab responses
for evaluating exposure to Aedes vectors and the risk of emerging arboviral infections.

From these results, several studies were undertaken to evaluate the relevance of using salivary
biomarkers to determine the risk of exposure to Aedes bites, thus to the viruses that they transmit.
For example, several Colombian and French travellers were reported to develop specific Ab responses
against Ae. aegypti saliva after a stay of 2 to 5 months in areas with Ae. aegypti mosquitoes and their
specific Ab responses strongly decreased several weeks after the end of their trip [20,24]. In three
sites in south-eastern France, a positive association was observed between the average levels of IgG
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responses against Ae. caspius SGE and spatial Ae. caspius densities. Additionally, the average level
of IgG responses increased significantly during the peak exposure to Ae. caspius at each site and
returned to baseline four months later [22]. A rapid decrease of anti-Ae. albopictus SGE IgG levels
was also reported just two weeks after the implementation of control measures (elimination of all
breeding sites and insecticide space spraying with deltamethrin) in an urban city in Reunion Island [40].
Other studies using Ae. aegypti and Ae. albopictus SGE also demonstrated that exposed individuals
to these Aedes mosquito species developed a high anti-SGE IgG Abs compared to unexposed ones
(Figure 3). In addition, anti-SGE IgG Abs were shown to vary according to the level of exposure
(measured by entomological methods) and age of individuals [23,39].
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Figure 3. IgG Ab response to Ae. albopictus salivary gland extracts (SGEs) between exposed and
unexposed individuals to Ae. albopictus bites in La Reunion Island [23]. Black points indicate individual
IgG response (∆OD) and bars represent the median value in each group. Dotted line represents the
cut-off of specific Ab response (∆OD > 0.181) and p value was calculated using the Mann–Whitney
U test.

The relationship between anti-SGE Ab responses and arbovirus infections was also investigated
in some studies. Londono-Renteria and colleagues found significantly higher anti-SGE IgG Abs in
DENV positive patients with some difference in exposure to Ae. aegypti bites among DENV serotypes
(Figure 4) [24]. Similarly, the same authors reported higher Ab responses to Ae. aegypti SGE in people
exposed to DENV, with a positive correlation between anti-SGE IgM and IgG to DENV antigens.
In addition, a significant higher level of anti-SGE IgG in subjects living in houses with Ae. aegypti
aquatic stages was found [43].
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Figure 4. Levels of anti-Ae. aegypti SGE antibodies according to the acute dengue infection status in Los
Patios in subjects with DENV (dengue virus) (+) (DENV+) and subjects without infection (DENV−) [24].
Statistical significance of Mann–Whitney test * p < 0.05.

Taken together, these results demonstrate that the estimation of human Ab responses to Aedes
SGEs could be a valuable indicator or a biomarker for evaluating the level of human exposure to Aedes
bites, the risk of arbovirus infection or transmission, and the effectiveness of vector control strategies.
However, a biomarker of exposure based on the use of Aedes SGE or whole saliva may not be very
reliable for epidemiological purposes. Indeed, saliva is a cocktail of various molecular components
with different nature and biological functions, and some of which are shared between species, genus,
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families, orders, or classes of bloodsucking Diptera or arthropods [13]. Therefore, the evaluation of
vector control effectiveness or the risk of arbovirus infection based on the immunogenicity of SGE could
be under or overestimated due to possible cross-reactivity between common epitopes. In addition,
the collection of saliva or SGEs is tedious and time consuming and saliva batches appeared to be not
reproducible in terms of protein quantities and antigenicity. Therefore, it will be difficult or even
impossible to have an adequate production of mosquito saliva needed for large scale epidemiological
studies. Also, the standardisation of immunological assay using whole saliva appeared difficult and
time consuming. An alternative for optimising the specificity of this immunological test would be to
identify Aedes genus-specific proteins or peptides [44].

2.3. From the Whole Saliva to Synthetic Salivary Peptide of Aedes

Recent progress in sialotranscriptomic studies have allowed the identification of more specific
antigens that have enhanced the specificity of Aedes salivary biomarkers [45–47]. Two main approaches
have been used for that purpose: (i) the recombinant protein strategy based on the identification of
genus-specific salivary proteins and (ii) bioinformatics analysis of the sialotranscriptomic data used to
design specific and antigenic peptides.

2.3.1. The Recombinant Protein Approach

Proteomic studies on arthropods’ saliva aim to identify which salivary proteins are antigenic and
recognised by the vertebrate host during blood intake. These studies revealed the antigenicity of a
broad range of arthropod vector salivary proteins [26,48]. This proteomic approach confirmed the
Ab cross-reactivity observed in the field with Aedes SGE. Western blot analyses on Aedes mosquitoes’
saliva revealed common antigens between Aedes species. Individuals exposed to Aedes bites recognised
the 36 and 22 kDa salivary proteins which belong to several Aedes species, notably Ae. communis
and Ae. aegypti [18]. Similarly, the screening of Ae. albopictus salivary protein using two-dimensional
electrophoresis technique combined with immunoblotting and mass spectrometry analysis revealed
extensive immune cross-reactivity with Ae. aegypti salivary proteins [49]. However, some salivary
proteins that may represent candidate biomarkers of exposure at a genus or species level were identified
by proteomic tools and produced in their recombinant form so as to be tested under different scenarios.
This process led to the development of recombinant proteins such as rTisP14.6 derived from Triatoma
infestans [50], rLJM17 and rLJM11 proteins produced from Lutzomyia longipalpis [51,52], gSG6 from An.
gambiae [53,54], and fSG6 derived from An. funestus [55]. For Aedes, one protein, the ‘family secreted
salivary putative 34 kDa protein’, was identified and described as specific to the Aedes genus [46].
Immunological assays with the recombinant form of this protein in serum samples of rabbits exposed
to Ae. aegypti, An. gambiae, and Cx. quinquefasciatus confirmed its antigenicity and its specificity to
Aedes mosquitoes [56]. Obviously, this protein seemed to constitute a relevant candidate biomarker
of exposure to Aedes bites. However, the production of recombinant proteins is not an easy task and
it is also challenging to produce protein with a high degree of purity and with total reproducibility
between production batches to ensure a correct assessment of the anti-saliva Ab response. In addition,
recombinant proteins may carry more than one epitope which could increase the risk of immune
cross-reactivity, impairing the specificity of candidate biomarkers. To address these limitations linked
to the production of recombinant proteins, a peptide approach was developed.

2.3.2. The Peptide Approach

The peptide approach is based on the exploitation of sialotranscriptome databases and an in
silico analysis to identify potential epitopes based on physicochemical properties of amino acids.
This peptide design approach was previously used for the identification of the famous and well
validated gSG6-P1 (gambiae salivary gland protein-peptide 1) salivary peptide, biomarker of human
exposure to major malaria vectors [57–60]. Basically, several algorithms were employed for prediction
of potential immunogenic sites of the putative 34 kDa protein by using bioinformatics. The prediction



Trop. Med. Infect. Dis. 2018, 3, 80 7 of 14

of immunogenicity was based on the determination of physicochemical properties of the amino-acid
(AA) sequences with BcePred and FIMM databases and on the identification of major histocompatibility
complex class 2 binding regions using the ProPred-2 online service. This led to defining four peptides
(highlighted in red) of 11 to 19 AA residues in length (Figure 5).
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Figure 5. Amino acids’ sequence of the 34 kDa salivary protein of female Ae. aegypti mosquito
(gi|94468336 [46]). The blue sequence corresponds to the signal peptide.

Similarities and specificity were also searched using the Blast family programs, including both
the genome and EST libraries of other vector arthropods available in Vectorbase and of pathogens
and organisms in non-redundant GenBank CDS databases. All these sequence alignments predicted
that only the N-terminal peptide (Nterm-34 kDa) would be very specific to Ae. aegypti species and
potentially antigenic (Figure 5) [27]. This peptide was then selected and chemically synthetised to be
validated as a potential candidate biomarker of human exposure to Ae. aegypti mosquito bites.

2.3.3. Validation of the Synthetic Aedes Nterm-34 kDa Salivary Peptide

The evolution of specific IgG levels to the Nterm-34 kDa salivary peptide was evaluated
during dry and rainy seasons in a cohort of 420 under five-year-old children and compared to the
accumulated monthly rainfall recorded in the same studied area [27]. A positive association was
found between specific IgG Ab responses against the Nterm-34 kDa and the rainfall. Indeed, IgG Ab
responses to the Nterm-34 kDa salivary peptide increased significantly from the dry (low exposure
to Aedes) to the rainy season (high exposure to Aedes) (Figure 6). These findings indicate that IgG
Ab to Nterm-34 kDa salivary peptide may represent a reliable biomarker to detect the difference,
heterogeneity, and evolution in human exposure to Ae. aegypti bites, and thus to evaluate the risk of
arbovirus transmission.
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Figure 6. Evolution of individual IgG response to Nterm-34 kDa peptide between the dry and the
rainy season [27]. Results are presented for the peak of the dry (February) and the rainy (July) season
in 2008. Black points indicate individual IgG response (∆OD) and bars indicate the median value for
each group. Dotted line represents the threshold (TR) of specific Ab response (∆OD = 0.151) and the
statistical significant difference between medians is indicated (non-parametric Wilcoxon test).
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This peptide appeared then to satisfy several requirements that an exposure biomarker should
fulfil. First, so far, it appears to be specific to Aedes genus and therefore, no relevant cross-reactivity
phenomena with epitopes from other proteins of arthropods or pathogens would be expected. Second,
its synthetic nature guarantees high reproducibility of the immunological assay. Third, it elicits a
specific Ab response which correlates well with the level of exposure to Ae. aegypti bites.

Now having a specific biomarker of exposure to Ae. aegypti bites, the question is what could be
the potential applications of such a tool in epidemiological contexts?

3. Potential Applications of Aedes Salivary Biomarker in the Field

In endemic areas for mosquito-transmitted diseases like arboviruses, the estimation of the level
of human–mosquito contact is an important indicator to measure the risk of transmission of such
diseases. For this purpose, discovering that mosquito salivary proteins and peptides can elicit into
the human host a specific Ab response that is correlated to its level of exposure to mosquito bites
has stimulated researchers to identify specific biomarkers for mosquito bite exposure [17,23,39,57].
Recently, the human IgG Ab response to Ae. aegypti Nterm-34 kDa salivary peptide has been validated
as biomarker of Ae. aegypti and Ae. albopictus bite exposure, the main vectors of arboviruses [27].
The availability of such a tool could help to accurately identify individuals exposed to Aedes vector bites,
consequently at risk of arbovirus transmission, and to evaluate the effectiveness of VCS implemented
by sanitary authorities on human–Aedes contact.

3.1. Evaluation of Human Exposure to Aedes Bites

There is an obvious need of new indicators and methods to evaluate the heterogeneity of human
exposure to Aedes mosquito bites so as to focus and prioritise interventions in areas, seasons, or groups
of individuals at high risk of arbovirus transmission. The relevance of using human IgG Ab responses
to the Nterm-34Da peptide as a biomarker of Aedes bite exposure was firstly tested in rural areas
of Benin, West Africa. Specific IgG Abs to the Nterm-34 Da salivary peptide were evaluated in the
same children, during dry and rainy seasons, which generally represented periods of low and high
exposure to Aedes bites, respectively, and compared with cumulated monthly rainfall registered at the
same periods. Specific IgG responses showed significant seasonal variations in the study site. Indeed,
specific IgG responses were detected in 29% of children in the dry season, whereas this percentage
reached 99% in the rainy season. In addition, the median level of specific IgG Ab responses significantly
increased between the dry and the rainy season (Figure 6) [27]. This result perfectly correlated with the
intensity of rainfall at the same periods and highlighted the sensitivity and specificity of the Nterm-34
kDa epitope(s). This points out the relevance of using the biomarker of Aedes bite exposure for
monitoring the risk of arbovirus transmission in areas colonised by Aedes mosquito vectors. Recently,
another study in urban area of Senegal (Saint-Louis city) revealed considerable individual variations in
anti-Nterm-34 kDa IgG levels between and within districts [61]. Similarly, heat maps of IgG responses
to the Nterm-34 kDa indicated variations in the spatial distribution of the intensity of Ab responses
inside urban districts. Of the four studied urban districts, hot spots of arbovirus transmission risk were
located in some patches in the north of one district and were dispersed throughout the other urban
district. The two remaining districts showed no hot spots of arbovirus transmission [61]. These results
emphasised the significance of using such a serological tool to identify, target, and prioritise vector
control strategies in areas with high risk of arbovirus transmission.

So far, studies aiming to validate anti-Nterm-34 kDa IgG Ab as a biomarker of Aedes bite exposure
were only carried out in areas where Ae. aegypti was widely implanted. The study conducted in La
Reunion Island revealed a very high immune cross-reactivity between the Nterm-34 kDa peptide of
Ae. aegypti and that of Ae. albopictus [29], the second principal vector of arboviruses worldwide. Indeed,
IgG Ab response against the Nterm-34 kDa peptide identified in Ae. aegypti saliva was measured
in individuals only exposed to Ae. albopictus bites. Results indicated that individuals exposed to
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Ae. albopictus recognised the Nterm-34 kDa peptide of Ae. aegypti, suggesting that this peptide could be
used to evaluate human exposure to these two major arbovirus vectors.

3.2. Evaluation of Arboviral Transmission Risk

Previous works provided data on human exposure to Aedes saliva and its relationship with
dengue infection in the Americas [24,43]. Using the Nterm-34 kDa salivary peptide, one study aimed to
evaluate the risk of dengue transmission in urban settings of Vientiane city, Lao PDR [28]. The authors
reported no significant difference in anti-Nterm-34 kDa IgG levels between DENV-positive and
DENV-negative individuals (evaluated by anti-DENV IgM assays to detect current dengue infection).
However, the level of IgG Ab response to Nterm-34 kDa peptide deferred significantly according to
the neighbourhoods’ degree of urbanisation (Figure 7). Specific IgG response among individuals living
in the second urbanised belt (the periphery with low urbanisation) was higher than those from the
first urbanised belt or from the central highly urbanised area. Interestingly, the prevalence of current
DENV infection was higher in individuals living in the periphery (4.5%) than those living the central
zone (2.2%). This study indicates the potential usefulness of human IgG Ab response to Nterm-34 kDa
salivary peptide for predicting areas with a higher risk of dengue virus transmission in urban settings
of developing countries. Nonetheless, further studies in different epidemiologic settings are required
before validating this biomarker as a proxy of dengue transmission risk.
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Figure 7. IgG Ab response to Nterm-34 kDa salivary peptide in the studied population according the
level of urbanisation of their residential areas in Vientiane city [28]. Black dots indicate individual
IgG response (∆OD), and bars represent the median value in each group. Dotted line represents the
cut-off of a specific Ab response (∆OD > 0.250). Statistically significant differences between the three
groups (P = 0.0003, nonparametric Kruskal–Wallis test) and between the first and second urbanised
belts (P < 0.0001, Mann–Whitney U test) are indicated.

3.3. Evaluation of Vector Control Strategies’ Effectiveness

A recent study has reported that human IgG response to the Ae. aegypti Nterm-34 kDa peptide
could be used for assessing the effectiveness of VCS against Aedes [29]. During this study, specific
IgG response was assessed from 102 individuals living in urban area in La Reunion Island before and
after the implementation of VCS against Ae. albopictus mosquito species (elimination of all breeding
sites and insecticide space spraying with deltamethrin). A rapid and significant decrease of specific
IgG response was reported only 15 days after the VCS implementation. This specific IgG response
continued to decrease until 30 days after VCS implementation and then remained unchanged at
45 days (Figure 8). A similar trend was observed with the percentage of immune responders to the
peptide. The proportion of immune responders decreased from 88% (before VCS implementation)
to 68%, 30 days after VCS implementation. However, a slight increase was observed 45 days after
VCS implementation. This decrease in specific IgG response was associated with the decline of Aedes
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mosquito densities, as estimated by entomological parameters and closely correlated to the efficacy
of vector control implementation. The impact of implemented VCS were also assessed according the
initial level of IgG Ab response in individuals.
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Figure 8. IgG Ab response to Nterm-34 kDa salivary peptide from individuals exposed to Ae. albopictus
bites before and after vector control implementation [29]. Individual IgG Ab response (∆OD)
is presented just before (T0) and then 15, 30, and 45 days after vector control implementation.
Bars indicated the median value in the population at each time point and the dotted line represents
the cut-off of immune response. P-values indicating differences in IgG response level at the overall
time points (Kruskal–Wallis test) or between two different time points (Wilcoxon matched pair test) are
presented. Vertical solid grey line indicates timing of Vector Control Implementation (VCI).

All these results showed that this candidate biomarker can detect the short-time variations
of human exposure to Aedes mosquito bite after vector control implementation. This immuno-
epidemiological tool appears to be relevant to assess the effectiveness of VCS against the vectors
of arboviruses.

4. Conclusions and Perspectives

This review emphasizes the potential of using biomarkers of human exposure to Aedes vectors,
based on antibody responses to Aedes salivary proteins to evaluate: (i) the level of human population
exposure to Aedes bites and its heterogeneity, (ii) the risk of arbovirus transmission or infection, and (iii)
the effectiveness of vector control means implemented to prevent arbovirus transmission. To improve
the specificity of salivary biomarkers, a peptide approach was developed to identify species and
genera-specific salivary antigens to Aedes. One peptide, the Nterm-34 kDa, was identified as specific to
Aedes species. IgG Ab to this peptide was validated as biomarker of human exposure to both Ae. aegypti
and Ae. albopictus species. The availability of such a tool allows the assessment of the risk of arbovirus
transmission in low-level exposure and transmission areas and to accurately evaluate the effectiveness
of current or experimental VCS. For a direct impact in the fight against arboviruses directly in the
field and at a large scale, the biomarker is currently in development into a rapid diagnosis test (under
its auto-reactive dipstick form) for direct assessment of the level of exposure and the effectiveness of
vector control means by sanitary authorities.
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