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Abstract: Robot training often takes place in simulated environments, particularly with reinforcement
learning. Therefore, multiple training environments are generated using domain randomization to
ensure transferability to real-world applications and compensate for unknown real-world states. We
propose improving domain randomization by involving human application experts in various stages
of the training process. Experts can provide valuable judgments on simulation realism, identify
missing properties, and verify robot execution. Our human-in-the-loop workflow describes how
they can enhance the process in five stages: validating and improving real-world scans, correcting
virtual representations, specifying application-specific object properties, verifying and influencing
simulation environment generation, and verifying robot training. We outline examples and highlight
research opportunities. Furthermore, we present a case study in which we implemented different
prototypes, demonstrating the potential of human experts in the given stages. Our early insights
indicate that human input can benefit robot training at different stages.

Keywords: robot training; human-in-the-loop; simulation; machine learning

1. Introduction

Real-world simulations are used to train robots so that they can transfer their behavior
to the physical world, known as simulation-to-real (sim2real) [1]. An example is training
a vacuum cleaner robot in various virtual simulation environments before placing it in
a real-world setting, allowing it to learn to clean efficiently and avoid obstacles in a safe
and controlled virtual environment. However, if the training does not include all possible
real-world states, it can lead to incorrect behavior [1]. Thus, most sim2real techniques
utilize domain randomization (DR) to generate myriads of simulated environments with
randomized properties such as object location, rotation, and color. They offer enough
variability that even unrepresented real-world states can appear to the robot as other learned
variations, making it robust in new situations [1,2]. This allows a robot to execute tasks
despite encountering objects with different colors or placements [2]. In short, DR enables
robot applications to achieve adequate accuracy when deployed in the real world [2].

In contrast, narrowing the application scenario was shown to improve training perfor-
mance by generating application-specific simulation environments [3]. Eliminating virtual
states that the robot will never see in the real world means the robot does not have to learn
as many scenarios, expediting the training process. To select relevant states, context-focused
approaches cover the complexity of the real world with meaningful and diverse parame-
ter distributions [4], select object positions with task-specific probability functions [3], or
contextual information about the interference of environmental properties [5]. However,
despite the promise of these methods, they primarily emphasize algorithmic and unsu-
pervised learning strategies, often overlooking the substantial contributions that human
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expertise can bring to the table. This oversight represents a significant missed opportunity.
Human knowledge is, after all, not only invaluable during the development phase but
also allows end users, who are experts in their respective application domains, to offer
meaningful insights. Therefore, integrating this human-centric perspective could greatly
enhance the effectiveness and relevance of these approaches.

In recent years, human-centered approaches have revealed ways to utilize human per-
ception and domain knowledge to enhance related approaches and artifacts. For instance,
humans have assisted with object labeling [6], point cloud part selection, and labeling [7,8]
and interactive segmentation using touch and voice commands [9] in Virtual Reality (VR).
Thus, regarding robot training, we envision that end users can easily assist in specifying
object existence, spatial movability, or material properties to enhance current approaches to
generating realistic simulation environments. As they are experts in the application context,
we refer to them as application experts.

In this work, we propose a conceptual workflow that distinguishes five sequential stages
of human intervention in robot training: (1) validating and improving real-world scans,
(2) correcting virtual representations, (3) specifying application-specific object properties,
(4) verifying and influencing simulation environment generation, and (5) verifying robot
training. At each stage, we introduce opportunities for application experts to collaborate
in enhancing the simulation environment generation for robot training. Building on these
stages, we conducted a case study in which we developed prototypes for the individual stages.
Thereby, we aim to demonstrate the feasibility of our concept as a whole and our individual
proposed ideas to improve training. Thus, our work contributes the following:

(1) A conceptual workflow of five stages that identifies opportunities for involving
application experts in robot training, particularly for the generation of simulation
environments (Section 3).

(2) A case study in which we implemented different prototypes for the individual stages
to gain insights into their feasibility and to illustrate our set of proposed ideas for
improving robot training by keeping the human in the loop (Section 4).

2. Related Work

Our concept aims to reduce the number of simulation environments required to real-
istically represent real-world scenes by involving application experts. Since we focus on
human-in-the-loop simulation environment generation, all research addressing human en-
gagement in the individual stages and generation of simulation environments for human-robot
interaction is relevant.

2.1. Robot Training

To create virtual representations of real-world environments, sensors capture the
physical surroundings. Using their data, virtual representations are generated, mostly as
point clouds [10]. To map the scan data to semantically meaningful objects in the real-
world scene, pre-processing is often necessary [11,12]. Next, virtual simulations of the
environment can be designed. This requires specification of the appropriate parameters of
the object’s distribution, which can be tedious and requires expert knowledge [13]. Thus,
approaches such as Automatic Domain Randomization (ADR) automate the generation
of complex scenarios for training [14–17]. However, multiple randomized parameters
such as textures, shapes, and colors add complexity, causing the robot to learn multiple
policies. From these, developers must select the best [18]. Approaches based on Imitation
Learning (IL) also use simulation environments for learning purposes. Data are collected
via demonstrations of tasks in the simulation environment generated [19–21]. In some
cases, domain randomization is utilized to synthesize massive numbers of demonstrations
from as few human demonstrations as possible [22].
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2.2. Human Engagement in Simulation Environment Generation

Although mapping scan data to semantically meaningful objects is often performed
using 2D interfaces, VR was found to be promising due to its 3D environment, which
makes navigation easier [8]. Using VR, prior works proposed various methods for object
labeling using boundary boxes [6], point cloud part selection and labeling throughout
recorded video streams [7], or a tablet to enhance the selection accuracy for fine-grain
adjustments [23]. Users can further interactively segment point clouds by touching objects
or surfaces and verbally identifying them to trigger algorithms to reconstruct 3D models
of the selected objects [9]. Some libraries offer visualization of the physical properties
overlaying a 3D mesh while maintaining point cloud shades and real-time interference
of random walk properties of recorded trajectories, aiding in the analysis of point cloud
data [24].

Although we are not aware of any work that enables application experts to influence
simulation environment generation, approaches exist that enable non-experts to interact
with and modify environmental scans. Such scans of environments can be used to create
multiple versions of the environment [25] or make it interactive [26]. Wang et al. proposed
a workflow for remote content creation in which the environment is scanned and can be
viewed on site [25]. Furthermore, VRFromX allows users to replace real-world objects with
virtual models and add functionalities to create interactive VR scenes [26].

2.3. Mixed Reality Approaches in Human-Robot Interaction

Mixed Reality (MR) applications are increasingly being applied to human-robotics in-
teraction (HRI), mostly for teleoperation, simulation, or explaining robot actions [27]. These
applications enable humans without a robotics background to use their knowledge of the
application environment to expand the robot’s operating range [28], provide a path [29], and
validate automated systems using live visualization of simulation environments with human
actions [30]. While these approaches address the interaction between robots and humans,
our concept explores how application experts can influence robot training. Specifically, we
examine how application experts can specify information and determine its usage to generate
simulation environments that represent possible real-world scenes.

3. Human-Assisted Simulation-Based Robot Training

To enhance domain randomization methods for sim2real approaches, we developed
the human-assisted workflow in two stages. First, we analyzed the existing research using
the sim2real approach [3,18,31,32] and derived a generic simulation-based robot training
workflow without application expert supervision (see Figure 1, gray cycle). We were inter-
ested in the essential stages of a universal workflow applicable to simulation-based robot
training using real-world scans. Overall, we identified four relevant stages, described in
Section 3.1. Second, we identified opportunities where application experts could enhance
the stages to reduce the number of simulations to only those that fit the final application
context in an iterative process and extend the specified workflow (see Figure 1, blue cycle).
We discuss these opportunities in Section 3.2 and outline promising research opportunities for
the presented stages.

3.1. Classical Workflow for Generating Simulation Environments without Application
Expert Involvement

Based on prior work [3,18,31,32], we identified four main stages to create simulation
environments from sensor scans using the sim2real approach. These encompass scanning
the real-world scene (Figure 1a), computing virtual representation(s) (Figure 1b), generating
simulation environments (Figure 1d), and robot training (Figure 1e).
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3.1.1. Scanning the Real-World Scene (Figure 1a)

All publications covering real-world scans first involve recording the environment [18,31].
Thus, our workflow starts with the robot sensing the environment. Sensors are often
directly mounted on robots, allowing them to perceive and capture the environment. The
data gathered in this stage represent the scanned environment, commonly using point
clouds [10].

bbb
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CCC

Robot

aaa

eee

AAA

EEE
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BBB

Figure 1. Without application experts (gray cycle), current workflows involve scanning the real-world
scene (a), creating virtual representations (b), generating simulation environments (d), and training
robots (e). We propose application experts to assist (blue cycle) in this process by validating or
enhancing scans (A), refining virtual representations (B), specifying object properties (C), influencing
simulation environment generation (D), and validating robot training (E).

3.1.2. Computing Virtual Representation(s) (Figure 1b)

The sensor data is used to create a virtual representation of the robot’s environment.
To reconstruct all virtual objects [10,33], it needs to be processed, often encompassing
various methods such as segmentation, filtering, classification, and mesh generating algo-
rithms [31].

3.1.3. Generating Simulation Environments (Figure 1d)

Given all objects in a scene, the object instances can be modified to generate simulation
environments. This stage involves creating multiple variants of the simulation environment
using DR [3,32]. DR can randomize object positions, rotations, sizes, and textures. It gener-
ates multiple simulation environments characterized by the variance of these properties to
enable a robot agent to generalize its training and, thereby, respond appropriately when
confronted with unknown scenarios [2].

3.1.4. Robot Training (Figure 1e)

Finally, the robot agent learns expected behavior using either Reinforcement Learning
(RL) methods [18,31,34,35] by training in simulated environments or Imitation Learning
(IL) by copying demonstrations collected in simulation environments [19,20,22]. In RL,
where simulation environments play a bigger role, the robot agent actively explores the
environment and receives information about which actions help fulfill the task through
rewards. Next to adjusting its learning through hyperparameters, RL also requires a
definition of rewards, depending on the task, and a description of the actions the robot can
perform [36].
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3.2. Monetizing Expertise: Application Expert Integration

Guided by the idea that a collaboration of humans and machines “is better than
either humans or technology alone” [37], in multiple brainstorming sessions, we identified
opportunities for application expert supervision to enhance the robot training and reduce
the number of simulations to those that fit the later application context. We believe this
context-focused approach can optimize training outcomes (like Prakash et al. [3]) without
requiring prior assumptions about the context or engineering requirements. It could also
represent a paradigm shift in how robot training is conceptualized and executed.

3.2.1. Validation and Improvements of Real-World Scans (Figure 1A)

In the current workflow (gray circle), virtual representations are constructed from envi-
ronmental scans, mostly utilizing visual perception sensors for environment samplings [10].
However, these can exhibit shortcomings due to their type, the complexity of the scene, or
the algorithms employed in the reconstruction process. The sensor’s data quality can differ,
depending on the sensor’s resolution and precision, affecting the accuracy and reliability of
the recordings [38]. For instance, scanning object surfaces with optical sensors can introduce
artifacts, which are often a consequence of reflection, the distance at which the acquisition
is made, and varying environmental conditions [38]. In addition, the complexity of scenes,
especially those with occlusions, reflective surfaces, and transparent objects, necessitates
acquiring data from multiple viewpoints to ensure comprehensive capturing of all elements.
This requirement often leads to either the introduction of artifacts or the omission of critical
information, necessitating corrective measures through the acquisition of data from varied
angles. Active exploration of scenes typically leads to high computational and time costs
since most approaches are based on sampling approaches and lack human intuition and
real-world understanding. For instance, active vision approaches generally compute the
best view by sampling all possible views and computing the scores for each view [39,40].
The higher the resolution of the scene and views, the higher the overall cost is, and these
tend to increase exponentially. Learning-based approaches are often application-specific
and require huge amounts of domain-specific data for training the models [41].

As application experts are familiar with the robot’s operating environment [29,42],
they can detect missing information and identify errors (e.g., missing objects) by reviewing
the initial recordings; thereby, they can also assess scan quality. For instance, they may
assist in filtering the recordings by selecting high-quality images or deleting faulty ones,
thus improving the overall acquisition set. If insufficient images are found, they could
initiate new scans or retakes. Furthermore, once application experts have identified an
area with missing information, they could assist in pointing out areas of missing data, for
example, by marking them, directly providing new sensor positions, or steering the capture
via teleoperation for a complete capture. On-site AR systems may assist in this process by
overlaying the scans with the original environment. Algorithmic approaches that suggest
new scan positions can also be utilized during the interaction. These include algorithmic
suggestions based on predictive models or real-time analysis, which experts can refine for
optimal scan positions. Since steering a robot with human suggestions may be limited
to the robot’s operation area during acquisition (e.g., a static robotic arm that can only
operate in a specific range), such approaches may require communication of the robot’s
characteristics to the application experts.

3.2.2. Correcting Virtual Representations (Figure 1B)

Creating virtual objects from scene scans involves various techniques, such as segmen-
tation, filtering, classification, and mesh generation (described in Section 3.1.2). During
segmentation, all data points belonging to an object must be identified and labeled. Seg-
mentation algorithms based on traditional and machine learning (ML) algorithms can
produce high-quality results [38] but also inaccurate and unreliable results in many cases.
Noisy segmentations result in coarse boundaries between entities in the scenes, and in
some cases, identify ghost objects that are not present in the scene. This is also due to
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algorithms relying on databases, which remain incomplete [43]. Once all object points have
been identified, object meshes can be generated using mesh triangulation algorithms to
enable interaction with virtual objects. However, computing meshes can be challenging [44]
due to assumptions about the environment and the need for pre-defined parameters, such
as requiring a constant point density in the raw images or planar surfaces in the output
mesh [45]. Thus, they often yield noisy meshes that do not represent objects. Both inaccura-
cies from segmentation and mesh reconstruction necessitates uncertainty quantification
when a highly reliable reconstruction is needed.

Humans excel at object recognition [38], which makes them valuable for improving the
computed virtual representations of recordings using their scene understanding [29,42]. To
enhance the recorded virtual scans, they could specify data points, extend planar surfaces,
insert single or clusters of data, draw missing objects, or add objects from collections. Such
intervention could also be performed iteratively with databases or generative algorithms
(as in VRFromX [26]) to harness the respective strengths of humans and computers. Appli-
cation experts could further contribute to the segmentation of objects from environmental
scans such as point clouds by manually selecting objects, adjusting mesh boundaries, colors,
and labels, or removing erroneous data [8,46] if a computed segmentation is incorrect or
cannot be performed. The next stage involves creating meshes from the identified objects
to enable interaction with virtual objects. Application experts could directly intervene by
grasping and moving the boundaries of erroneous meshes. For instance, when working
with point cloud data, these could be utilized as adjustment points to snap mesh boundaries
during interaction. Another research opportunity is exploring how application experts
could assist in creating textured meshes and improving the virtual representations of ob-
jects. To generate textures or adapt the visual representation, including a user-controlled
generative artificial intelligence (AI) or databases for adaptation could further support the
adaptation process.

3.2.3. Specifying Application-Specific Object Properties (Figure 1C)

Given an environment with interactable virtual objects, one challenge is reducing the
number of generated simulation environments using DR to only those that are realistic and
application-specific to improve training results. Real-world environments change through
human intervention, as their habits, legal regulations, and work processes influence an
object’s state, which is expressed through its properties. Hence, robot agents may need to
learn the physical and temporal properties of the objects and the scene in order to build
a realistic simulation environment [47,48]. However, approaches for the agent to actively
explore and understand such properties are unreliable and difficult to implement, and
current works are at a very nascent stage. Thus, such approaches are often excluded [49]
from robot training.

In such cases, human expertise can be crucial to incorporating human behavior in
simulation environment generation. We envision the application experts either specifying
their usage of objects in an environment directly or providing data about their behavior
(e.g., with technologies such as Internet of Things (IoT) sensors). Application experts, with
their domain expertise of the scenario and execution, could further specify parameters
such as object positions, restrictions to their degrees of freedom (DoF), relations, occurrence
probabilities, temporal characteristics, physical characteristics, and other properties. In
addition, regulations, limitations, and users’ preferences influence their object interactions.
A structured process and interface for experts to input these parameters would be beneficial
to obtain this information in a way that can be used for the simulation. Furthermore,
visualization techniques in MR could assist by representing abstract concepts such as
uncertainty or object relations. Hence, incorporating them could also lead to more context-
specific selection of simulation environments. Including such human-based influences for
building realistic scenarios could mean that visualizing abstract properties (e.g., uncertainty
or object relations) could be challenging, despite them potentially aiding the specification of
the spatial environment. Another task that could influence the training and is linked to the
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simulation is providing robot task information, considering subjective user preferences. For
instance, depending on the application context, an application expert may prefer specific
execution, such as sorting a fridge or a cupboard in a particular way or excluding areas
from cleaning.

3.2.4. Verifying and Influencing Simulation Environment Generation (Figure 1D)

Utilizing DR leads to the generation of multiple simulation environments with varied
randomized properties (Section 3.1.3). However, DR still suffers from intrinsic challenges.
Besides the object properties to be randomized, it also requires algorithmic parameters for
constrained randomization to receive application-specific simulations [3]. However, modeling
such specific simulations requires time [3] and knowledge about the application context.

Since application experts are unfamiliar with RL or robotics, they may not directly
contribute to parameters for DR. However, using their domain knowledge could assist in
verifying whether the generated simulation environments represent real-world scenes that
occur in the expected context. By incorporating application-specific object properties (see
Section 3.2.3) and iterating on the subsequently generated environment (e.g., using pre-
views), experts can ensure that only simulation environments matching their experiences
are created. They can identify discrepancies and adjust object properties in the previously
mentioned stages or delete the incorrect configurations to adjust the generation. In addition,
they could help select diverse simulation environments that cover a range of real-world
scenarios for training purposes and provide scenario probabilities to consider when deter-
mining their appearance frequencies during training. We see potential in evaluating how
such feedback could influence training results.

3.2.5. Verifying Robot Training (Figure 1E)

Lastly, the robot agent learns to perform the task by training in the generated sim-
ulation environments. In addition to defining rewards and robot actions, RL requires
hyperparameter tuning, which can be time-consuming [36] and results in the agent learn-
ing multiple strategies (policies) due to the myriad of generated environments. Ultimately,
developers have to decide which policy to apply [18]. As non-machine learning experts,
application experts may not have the expertise to select the optimal hyperparameters.
However, they can assist in specifying rewards [50] since they understand the task re-
quirements and the limitations of the process, as shown in Reinforcement Learning with
Human Feedback (RLHF) [51]. Tasks can also be user-specific if there are preferences for
execution, which could be considered in the training. They could observe the agent’s
performance in the simulation environment and assist in selecting the learned policy that
best suits their use case (e.g., by watching a virtual robot perform actions using different
policies and choosing the one that best suits their context). Hence, application experts
could relieve machine learning developers of having to choose a policy. They could also
indicate unwanted behavior or missing actions using methods for flagging and reporting
these issues, as feedback on the learned behavior was shown to benefit the training [52].

4. Case Study

In the previous section, we described how application experts can use their domain
knowledge to assist in the generation of application-specific simulation environments. In
the following, we describe the initial insights of a case study in which we showcase several
prototypes, each implementing an idea we previously proposed. Our primary goal is to
demonstrate the feasibility of our proposed ideas, and our secondary goal is to gather
insights into the different stages of the introduced workflow.

There are multiple technologies available through which application experts can be
included in the robot training process, such as desktop solutions and MR technologies [25].
However, MR technologies, such as Augmented Reality (AR) and Virtual Reality (VR),
offer great potential because they facilitate intuitive interaction with visual representations
in three-dimensional space [8,29]. Thus, we choose to use VR to enable remote operation,
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allowing persons not physically present to interact with the system. We developed the
following prototypes in VR using Unity3D and deployed the applications on the Meta
Quest 2 as the selected VR head-mounted display.

4.1. Validation and Improvements of Real-World Scans

In our proposed workflow, we detailed opportunities for application experts to vali-
date and enhance real-world scans by detecting missing information and initiating new
scans (see Section 3.2.1). We concentrated on a scenario in which a robot has to perform a 3D
scan of a scene as the first stage of transferring real-world knowledge into the simulation.
We want to assess the degree to which a human expert can assist in this task. Multiple
scans are needed to capture a three-dimensional scene, covering different perspectives.
Therefore, we focused on the different sensor poses and implemented a VR environment
in which users can define these poses, such that the robot can use them for the recording.
We implemented two variations for interaction: one where users directly place the sensor
positions and another where they mark areas with missing data, letting the system calculate
scan positions from their input. Using the first variant (see Figure 2A), users can set and
delete cameras inside the VR environment using a button press. Each camera displays
its field of view to communicate its coverage when taking scans. Users can draw planes
above areas with missing information with the second variant (see Figure 2B). Their size
and angle are used to calculate the sensor position needed to cover the plane entirely. We
prepared two scenes with different objects and positions to cover the different occlusions
and complexities of objects. A user starts with one initial scan of the scene that is incom-
plete and adds camera positions using one of the interaction methods. After adding one
or more poses, they can request that the remote robot take the images of the provided
poses. Upon sampling, the point cloud representing the scanned scene is updated with
the new information. Users can then choose to add new poses iteratively or confirm the
representation as complete when satisfied. For the setup, we used the Panda robotic arm
from Franka Emika (Franka Emika. https://www.franka.de/, last accessed: 20 November
2023), which was placed on a table and controlled using ROS1 and MoveIT. We utilized a
depth sensor from RealSense, whose scans were used to calculate a mesh of the scene that
was then transferred into a point cloud representation. All data was exchanged between
the robot unit and the VR application in Collada format.

Robot Unit Direct Method

B

Indirect Method

A C

Figure 2. To direct an entire scene capture, we tested two interaction methods in a teleoperation setup
with a robotic arm (A); Using the direct method, users can place and modify the cameras directly
with the controllers (B); With the indirect method, they can specify missing areas in the scan using a
virtual plane (C); The application then spawns a camera that covers the defined plane.

A preliminary self-exploration indicated that both methods have merits. The direct
position input felt intuitive, as it was designed to mimic real-life photography, but the
indirect method was beneficial when defining fine-grained areas of missing information,
due to the indication of what should be recorded. Overall, we saw that remotely directing
scan captures via a robotic arm is feasible using our approach. However, a comparison
with automatic algorithms such as next-best view (NBV) shows that planning is needed
to fully understand the efficiency and time efficiency differences between human and
algorithm-based sampling.

https://www.franka.de/
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4.2. Correcting Virtual Representations

We identified multiple opportunities for application experts to improve virtual rep-
resentations obtained from environmental scans, including initial scan correction, seg-
mentation, mesh generation, and addition of missing scene objects (see Section 3.2.2).
Since we recognized that the segmentation and mesh generation are often error-prone, we
tested ways to involve application experts in segmenting point cloud scans obtained from
real-world scans using two different implementations.

Using the natural perspective within the 3-dimensional environment of VR, we first
aimed to create an easy-to-use segmentation tool. We started our initial prototype by
implementing a bounding box for the segmentation task, spanning between both controllers
(see Figure 3A). It selects or deselects points within it based on the user’s mode choice,
thus functioning as a universal segmentation tool. To segment an object, users start in
the VR application to view the initial environmental scan. They can select or deselect
points using the selection tool and, upon confirmation, delete them. This process allows for
iterative refinement, as the user removes points not part of the target object until it is fully
segmented (see Figure 3A, right). To test if the implementation is usable both for simple
and complex scene constellations, we included an example of each in our testing session.

BA

Figure 3. We enabled the segmentation of objects from point cloud scans using a box spanning
between the controllers, such that users could segment even occluded objects inside a scene (A), and
a coarse and a fine segmentation tool, realized through a bounding box enabling remote interaction
and a sphere attached to a stick (B).

Our self-assessment of the prototype revealed that the segmentation tool was usable
for both simple and complex scenes, though it required further refinement for more com-
plex tasks. We found the natural view within VR beneficial during segmentation, especially
for distinguishing between overlapping objects. In later work, we contrasted the implemen-
tation with comparable applications for desktop and tablet to assess which of these devices
are most suitable for segmenting simple and complex point clouds regarding efficiency and
effectiveness [8].

Next, we aimed to further enhance the segmentation in VR. We wanted to enable
segmentation with different segmentation tools, as different characteristics may suit dif-
ferent tasks. Since we had only included a box in the previous application, we wanted
to include a sphere-like segmentation tool for curved surfaces. Thus, we developed a
coarse and a fine segmentation tool (see Figure 3B) using the Mixed Reality Toolkit (Mi-
crosoft. https://docs.microsoft.com/de-de/windows/mixed-reality/mrtk-unity/mrtk2
/?view=mrtkunity-2022-05 (last visited on 20 November 2023)) (MRTK). For a coarse seg-
mentation tool, we implemented a virtual box (similar to the previous application) that
selects points within it and can be adjusted using the interactive markers via grasp or
ray cast interaction. The fine tool, a sphere on a stick, deletes specific points and can be
shrunken or enlarged. Post-segmentation, our system uses the Ball-Pivoting Algorithm [53]
to generate object meshes, which can then be labeled. For testing, we downloaded six point
clouds of objects and placed them in a three-dimensional scan of a bedroom [54] to assess
segmentation quality. We sequentially segmented the six objects in a testing session using
both segmentation tools.

https://docs.microsoft.com/de-de/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05
https://docs.microsoft.com/de-de/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05
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Our initial tests revealed effective object isolation, with a segmentation accuracy of
96.7% in the median when comparing the object’s point clouds to the segmentation result.
However, switching between the segmentation tools and repositioning oneself during
segmentation to obtain a good work position for the changes lead to higher segmentation
times. Handling the fine segmentation tool was perceived as easy, but using ray casts to
adjust the coarse segmentation was perceived as challenging.

4.3. Specifying Application-Specific Object Properties

Human behavior influences the object positioning based on the object usage (Section 3.2.3).
To model how objects change due to interaction, application experts can specify the properties
of the previously created virtual objects. Many object properties need to be modeled to generate
realistic simulation environments, such as object weight, friction, overlap, transparency, and
lighting. In addition, all need a pose, including translation properties (along x-, y-, and z-axes)
and rotations (pitch, yaw, and roll). Furthermore, these poses could have different occurrence
probabilities, which must be considered. Thus, we focused on object probabilities, including
poses and relationships, for initial testing (see Figure 4). An object’s pose, translation, and
rotation can be specified just by moving it from the catalog into the VR scene. In addition to
independent object poses, we specified parent-child relationships regarding object poses. When
an object is specified as a child of another object, its position is considered in relation to its parent
during an arrangement. This can lead to a translation or rotation in accordance with the parent
object. For instance, a parent-child relationship can ensure that a pillow (child) is always on a
bed or sofa (parent). In addition, we introduced a virtual slider for users to assign probabilities
to these specifications. For testing, we modeled three scenarios using the application: a child’s
bedroom, a student’s single-room apartment, and a living room.

Setting the occurence
probability through a slider

Relationships Pose Distribution Probability

A B C

2

A Line displays the
relationship between
objects

1

Figure 4. We implemented the prototypes for application experts to specify (A) object relationships
such as parent-child or sibling relationships using color highlighting and (1) connected lines for
visualization, (B) object translations, object rotations, and arrows to specify an object’s front side,
as well as (C) object distribution probabilities, provided through (2) a slider to define how often it
should appear in the generated simulations.

Using the system, we were able to model the different scenarios. The color highlighting
was found to be helpful in obtaining an overview of the already-made specifications and
viewing the inserted relationships. Working in the virtual environment was found to be
satisfactory, although the number of specifications was time-consuming.

4.4. Verifying and Influencing Simulation Environment Generation

As detailed in Section 3.2.1, application experts can also assist in verifying the realism
of the created simulation environments. Upon recognizing mismatches, they could point
them out or iteratively adjust their specifications. With this in mind, we incorporated
an animation of simulation environments generated from the specifications using the
probability prototype for verification purposes. Hence, we customized our DR algorithm
to incorporate the provided constraints (poses, relations, and probabilities) for placing the
virtual objects. Inside the VR application, users can view different generated environments
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based on their specifications and skip between them using a button press (see Figure 5).
Afterward, they can refine their inputs to fine-tune the randomization. Like before, we
modeled three scenarios using the application for testing, enabling the new functionality
of viewing the generated room instances: a child’s bedroom, a student’s single-room
apartment, and a living room. The test person could enter the viewing mode at any time
during the process but only complete a room after viewing the final outcome.

Verification of Valid Positions

BA

Figure 5. We enhanced our object probability prototype to include animations of created environments
using the specified object properties to facilitate verification. It enabled a steerable sequence to
view different object properties, such as varying can poses in the simulations, positioned either
(A) farther or (B) closer on the table.

Compared to the version without the verification, the tester reported a higher level
of certainty and an improved overview of the specifications. Furthermore, it led to faster
recognition of errors, as they were directly visible in the generated scenes.

4.5. Outlook

In our case study, we showcased the feasibility of involving application experts in
the simulation generation process for sim2real transfer, suggesting an enhancement in
the quality and relevance of robotic applications in the different stages of our workflow
is possible. It allows the integration of specialized knowledge, uniquely possessed by
the system’s end users. Despite having tested only a subset of our proposed ideas, we
believe, in line with Schmidt et al. [37], that the synergy between human and machine
expertise surpasses the capabilities of either humans or machines alone. Nevertheless,
a comprehensive evaluation of the workflow is still needed, as is a comparison of the
individual algorithms employed in its various stages. This opens a multitude of research
opportunities. Future studies could shed light on the effectiveness of the collaboration,
focusing on training outcomes, time efficiency, and its impact across various application
contexts. Such investigations may enhance our understanding of the interplay between
human expertise and machine intelligence in the realm of robotic applications.

5. Conclusions

This paper introduced a new conceptual workflow for human-in-the-loop sim2real
transfer to utilize the application expert’s domain knowledge for robot training. Based on
existing research on robot training using sim2real, we derived a workflow for simulation-
based robot training. We extended this workflow by outlining five main stages in which
application experts can contribute to the generation of real-world simulation environ-
ments: (1) validating and improving real-world scans, (2) correcting virtual representations,
(3) specifying application-specific object properties, (4) verifying and influencing the simula-
tion environment generation, and (5) verifying the robot training. We highlighted research
opportunities in each identified stage and explained how our human-in-the-loop approach
can enhance robot training. Thereafter, we presented a case study in which we implemented
different prototypes, demonstrating the potential of human experts in each of the five stages.
We used VR as the interaction technology because of its three-dimensional rendering and
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intuitive head pose tracking. We expect that application experts can improve robot training
by applying their context-specific knowledge to the training process. We hypothesized
that this may reduce the complexity of the training process, making it more focused on the
application at hand. However, a detailed evaluation of the workflow and comparison with
individual algorithms used in different stages is yet to be conducted. Our early insights are
promising and show that, despite strong efforts toward full automation, humans can offer
valuable input that should not be underestimated or minimized in future work.
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