
Citation: Rosilius, M.; Spiertz, M.;

Wirsing, B.; Geuen, M.; Bräutigam, V.;

Ludwig, B. Impact of Industrial Noise

on Speech Interaction Performance

and User Acceptance when Using the

MS HoloLens 2. Multimodal Technol.

Interact. 2024, 8, 8. https://doi.org/

10.3390/mti8020008

Academic Editor: Alexey Karpov

Received: 13 December 2023

Revised: 8 January 2024

Accepted: 21 January 2024

Published: 27 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Multimodal Technologies 
and Interaction

Article

Impact of Industrial Noise on Speech Interaction Performance
and User Acceptance when Using the MS HoloLens 2
Maximilian Rosilius 1,* , Martin Spiertz 1, Benedikt Wirsing 1, Manuel Geuen 2, Volker Bräutigam 1

and Bernd Ludwig 3

1 Institute Digital Engineering, Technical University of Applied Sciences Würzburg-Schweinfurt,
97070 Würzburg, Germany

2 Department of Community Health, Bochum University of Applied Sciences, 44801 Bochum, Germany
3 Department of Information Science, University of Regensburg, 93053 Regensburg, Germany
* Correspondence: maximilian.rosilius@thws.de

Abstract: Even though assistance systems offer more potential due to the increasing maturity of the
inherent technologies, Automatic Speech Recognition faces distinctive challenges in the industrial
context. Speech recognition enables immersive assistance systems to handle inputs and commands
hands-free during two-handed operative jobs. The results of the conducted study (with n = 22 partici-
pants) based on the counterbalanced within-subject design demonstrated the performance (word
error rate and information transfer rate) of the HMD HoloLens 2 as a function of the sound pres-
sure level of industrial noise. The negative influence of industrial noise was higher on the word
error rate of dictation than on the information transfer rate of the speech command. Contrary to
expectations, no statistically significant difference in performance was found between the stationary
and non-stationary noise. Furthermore, this study confirmed the hypothesis that user acceptance
was negatively influenced by erroneous speech interactions. Furthermore, the erroneous speech
interaction had no statistically significant influence on the workload or physiological parameters
(skin conductance level and heart rate). It can be summarized that Automatic Speech Recognition is
not yet a capable interaction paradigm in an industrial context.

Keywords: error case; human–machine interaction; performance; technology acceptance; speech
recognition; industrial noise; loudness; information transfer rate; speech command

1. Introduction

Progressing research and development in immersive assistance systems open new
opportunities for further use cases. The proofs of concept in an industrial context are also
increasing. However, the high complexity of the systems continues to inhibit the acceptance,
and thus, crossing of the productive threshold. The main potential of immersive assistance
systems lies in their ability to present the right information in the right place at the right
time, thus enabling users to perform the same amount of work in less time with less
perceived workload; see [1]. In this context, immersive assistants can record a lot of
information in a limited lapse of time, especially for hands-free operation, thanks to voice
input. The challenge here remains the resilience under real operating conditions in an
industrial environment. Associated literature on cognitive immersive assistance systems
(ASs) shows that people reject assistance systems due to a lack of acceptance and previous
negative experiences, among other things (see [2,3]). This hypothesis can be inferred
from the socio-technical interaction framework consisting of humans, technology and
organization (HTO) (see [4,5]), which extends to the so-called Human-(Centered) Cyber-
Physical System (HCPS) (see [6–8]). Accordingly, to the human–computer interaction
loop approach (see Figure 1), we derived the following question: What is the influence
of errors on performance and acceptance with human–machine interaction? The research
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design of this contribution evaluated the performance of Automatic Speech Recognition
(ASR) as an alternative interaction paradigm to gesture control for industrial use of the
HMD MS HoloLens 2 (HL2). The industrial environment is a complex challenge for ASR.
An industrial site emits high levels of ambient noise wherein resilient ASR performance
is required.
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Figure 1. Schematic representation of immersive human–machine interaction loop model in the
industrial context.

2. Related Work

Industry applications in the context of ASR: ASR technology simplifies the industrial
use of human–machine interaction with an AS [9]. By avoiding manual tasks and entering
keystrokes, several tasks can be carried out in parallel using an AS (‘while hands or eyes
can serve other functions’) [9]. According to [9], ASR is spreading and gaining acceptance
as a key technology in ASs across various industrial fields. Today, ASR technology is used
in several areas of ASs, such as medical, industrial, forensics, law enforcement, defense,
aerospace, telecommunication, home automation, access control and consumer electronics,
and is widely accepted [9].

Advantage of industrial ASR: Speech input is intended to reduce workers’ fatigue and
increase the speed and flexibility of command transmission, as the hands can handle other
tasks simultaneously. ASR results in less exhaustion and intuitively involves the operator in
the workflows [9]. The speech interaction assists in monitoring and operating the machines,
enabling the completion of the assigned tasks more easily, faster and with less effort [10].
ASR supports handicapped employees, and hence, is helpful for inclusion [9].

ASR in augmented reality technology: As an alternative interaction technique to
gestures, ASR can be used on the MS HoloLens [11,12] because text input via gesture was
measured to be very slow on the MS HoloLens 1 (5.41 words per minute) [10]. ASR is
not limited to the immersive application itself but also facilitates control over production
machines and robots via connected interfaces (e.g., OPC-UA). Speech commands (SPCs),
like ‘start or stop production’, among other parameters, or navigating menu structures of
integrated machines are made possible [13].

Evaluation of ASR: In studies, different ASR engines have already been tested with
audio files from different sources on participants using the Word Error Rate (WER) metric
(see [14–16]). ASR was investigated in industrial studies but was deemed incapable of use
at Sound Pressure Levels (SPLs) > 81 dB. Between 81 dB and 84 dB, 90% of SPCs were not
received [17]. SPC capabilities were also evaluated on the HL2 but under laboratory condi-
tions. In addition, only correctness was measured and the effective information payload per
time was not considered [16]. On the MS HoloLens 1 (HL1), the research design and results
(n = 16) were tested in terms of the parameters input speech, WER, perceived workload and
perceived system usability as a function of SPL exclusively involving native speakers [18].
Based on the research design of [18], a study was conducted (with n = 16 participants)
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on the HL2 (research design was replicated and extended to further HCI assessments).
However, no statistically significant differences in the WER were demonstrated in relation
to the SPL conditions. The mean WER was measured at various SPL conditions of 36%,
68% and 48%. No statistically significant differences were found for the perceived system
usability in the given experimental setup [19].

Motivation: Errors in an AS influence technology acceptance and the effective per-
formance of humans and machines, depending on the level of automation [20]. With
automation support or the use of an AS, studies indicate that acceptance depends on
the reliability of the system [21]. Over the last decade, user-related studies have been
conducted on immersive systems spanning various fields, considering usability, emotion,
cognitive load, attention, learnability, decision making, etc. [22–24]. It can be summarized
that there are challenges to overcome for AR technology as an interface between humans
and machines.

Research demand: In general, the error weighting needs to be explored in detail
regarding the acceptance factors [25,26]. The contributions about taxonomies of errors in
ASs (see [27–29]) require a focus on the error effects. To be successful in ASR applications,
the limitations of current technology must be adequately considered [9]. Most voice
interface technology providers engage with users to understand the crucial human factors
that influence product usage and applications [9]. The reference scenarios of the related
work were carried out under simplified conditions. In a preliminary study, considerable
issues occurred due to ambient noise. The participants were asked to interact with the
system using ASR during a pick-and-place task. The ambient noise caused significant
errors in the ASR, which was detrimental to the task, and thus, the study was discontinued.
As a result, ASR was replaced with a Bluetooth clicker, which enabled the study to proceed
successfully [30]. It should be noted that contrary to the recommendation of [31], a single-
syllable word was used. However, some industrial tasks require the flawless hands-free
operation of systems that make alternative means of interaction imperative. It is necessary
to evaluate the capabilities and effects of the HL2 under SPLs found in an industrial
environment [18].

3. Methodology

A research demand was identified in accordance with the preliminary work. Objec-
tives, research questions and hypotheses were derived from this. The conducted study was
part of an overarching research model. This model for error analysis was derived from the
HCPS approach (see [4–6]) and was based on a control loop (human–computer interaction
loop; see [25]). The model was designed to investigate errors and their effects on immersive
assistance systems in operational tasks in an industrial context. The model consisted of the
following components (see Figure 1).

The control unit consisted of the assistance system and the HMI. It was tasked with
comparing the data that originates from the measuring device (e.g., KPI) with the stated
operating goals. The prepared data, including the recommended action, was presented
to the actuator (human) adapted to the situation. Therefore, the control unit and actuator
combined form the human–machine interaction. The human as the actuator followed
the provided recommended actions toward the controlled system (e.g., machine in the
factory). The model analyzed the effects of data, visibility, interaction, and training errors
on performance, acceptance and stress.

In this model, the independent variable errors dk acted as stimuli and the correspond-
ing dependent variable effects ej and effective performances pi were investigated; see
Table 1.
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Table 1. DOE and description of overarching human–machine interaction loop model.

Variables Description Reference Definition Acc. Reference

d1
The AS provides the user with

incorrect information See [28] External fault/augmented
environment fault

d2
The visibility of the immersive

information is imperfect See [28] External fault/equipment/
conditions fault

d3 Interaction error See [28]

d4 Training error See [28] Personnel/experience fault

p1 Response time See [23] Metric according to a
metareviewp2 Accuracy See [23]

e1
Acceptance is evaluated via

UTAUT2 model See [32] ‘Behavioural Intention’
among other subscales

e2

Perceived
workload/stress/frustration

measured via the NASA
TLX questionnaire

See [33] Evaluated via mean of
all subscales

e3 Excitation level/technostress See [34]
Via metrics of skin

conductance level and heart
rate level

According to related work, there is a research demand for speech input within immer-
sive applications for industrial contexts. Therefore, from the overall research context, only
the voice interaction was evaluated here toward performance and acceptance in an adverse
industrial noise environment. The low performance of the ASR induced by a high ambient
noise represented the interaction error d3. The dedicated research design was developed to
answer the following research questions:

Research question 1: Is Automatic Speech Recognition capable as an interaction design in an
industrial environment on a current AR HMD?

Research question 2: What influence does erroneous Automatic Speech Recognition have on
user acceptance?

Based on the results and the discussion of the related work, the following hypotheses
could be derived:

Hypothesis HA.1.: The Sound Pressure Level has a negative impact on the performance of Auto-
matic Speech Recognition on an MS HoloLens 2.

Hypothesis HB.1.: Automatic Speech Recognition on an MS HoloLens 2 performs better in
stationary rather than non-stationary ambient noise.

Hypothesis HC.1.: Erroneous Automatic Speech Recognition reduces the user acceptance of an
assistance system on an MS HoloLens 2.
(The corresponding HA.0/B.0/C.0 hypotheses are negated accordingly.)

3.1. Design of Experiment

The research design was a counterbalanced within-subject design. The metrics of
WER and Information Transfer Rate (ITR) were considered as dependent variables to
measure the ASR performance. As a reference measurement, the WER was collected
in parallel on an Apple iPad Pro 12.9. To measure the acceptance, the metrics of the
UTAUT2 questionnaire were surveyed. For further analysis, the perceived workload of the
NASA TLX questionnaire and the physiological parameters were recorded to determine
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the stimulation level (e.g., technostress). The independent variables were the SPL, the
stationarity of the ambient noise and the experimental order.

Word Error Rate: the metric used to measure performance was the WER according to
Equation (1); see [14–18]:

WER = (substitutions + deletions + insertions)/(total of words), (1)

Information transfer rate: to evaluate the quality (number of correct commands in
relation to the time consumed) of the SPC capability, the ITR index was calculated based on
the metric for evaluating brain–computer interfaces (see [35]); see Equations (2)–(4):

B[bit/trial] = log2(N) + P ∗ log2(P) + (1 − P) ∗ log2((1 − P)/(N − 1), (2)

Q [trials/min] = S/T, (3)

ITR [bit/min] = B ∗ Q, (4)

where B—information transferred in bits per trial, N—number of targets and P—classi-
fication accuracy.

UTAUT2: The standardized UTAUT2 questionnaire was used to assess the acceptance
and the inherent sub-dimensions; see [32]. The UTAUT2 item price value was consciously
not asked because, in the industrial context, monetary considerations do not play a role for
the user.

NASA TLX: the standardized NASA TLX questionnaire assessed the impact of errors
on workload.

Physiological parameter: the Empatica E4 wearable device measured the level of stress
via the metrics of the heart rate level and skin conductance level; see [36,37].

Text input: All participants were native German speakers and spoke the following text
(seven inhomogeneous sentence fragments consisting of 39 words):

Original version (German):

‘Platziere den Gabelstapler im Raum

Fenster im Raum anheften

Ich denke also bin ich

Ich glaube also bin ich

Arbeit besiegt alles unablässiges Mühen bezwingt alles bringt alles fertig

Gehe zum Ende des Paragraphen

Gehe zum Anfang des Paragraphen‘

Translated version (English):

‘Place the forklift in the room

Attach the window in the room

I think therefore I am

I believe therefore I am

Work conquers all ceaseless struggle conquers all accomplishes all

Go to the end of the paragraph

Go to the beginning of the paragraph’

Sound Pressure Level: For the definition of the SPL, measurements (machining indus-
try) were carried out in real industrial production, and the legal requirements (see [38])
were also considered. The lower value of 64.2 dB(A) was measured as the average min-
imum value on the shop floor; 85 dB(A) was the upper value as an exposure limit for 8
h a day due to regulatory requirements regarding safety at work (see [38], paragraph 1b
of Article 3). The SPL value of 87 dB represents the maximum permissible exposure limit
(see [38], paragraph 1a of Article 3). The SPL value of 0 dB(A) was chosen, at which no
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noise was emitted by the speakers. It is explicitly stated that the study was carried out with
all participants wearing appropriate noise protection.

Stationarity: For the industrial noise, an audio recording of a water jet cutting machine
was used. The spectrogram of the stationary signal (water jet cutting) shown in Figure 2
presents an almost constant spectrum over time (stationarity). It can be assumed that a
stationary background noise is easier to fade out for both humans and algorithms than a
non-stationary one; see [39].

1 
 

 
 

 

Figure 2. Water jet cutting analysis: top shows the amplitude and bottom the spectrogram of the
stationary signal.In contrast, to investigate the influence of stationarity, a non-stationary signal (free
jazz) was also examined; see Figure 3.

1 
 

 
 

 

Figure 3. Free jazz analysis: top shows the amplitude and bottom the spectrogram of the station-
ary signal.

Experimental order: Two experimental orders were defined as groups. In one group
(start error), the participants started in two loud conditions (SPLs 86.9 dB(A) and 84.9 dB(A)),
and afterward, ended in quiet conditions (0 dB(A) and 64.2 dB(A)). In the other group (end
error), the experimental order was reversed, starting quietly and ending loudly.

3.2. Experimental Setup

The experiment was conducted in a recording studio (10.5 m × 7.3 m). The concrete
walls and floor were covered by a green screen cave. Figure 4 shows the setup schematically.

The speakers (Yamaha MSP5 active speakers) were aligned at a distance of 0.5 m
toward the walls at a 45◦ angle (facing the corners). The goal of the acoustic setting was to
recreate a diffuse sound field. In industrial plants, the sound emitted by several machines
is reflected by numerous sound-reflecting surfaces, resulting in a diffuse sound field. This
creates a constant soundscape in terms of the intensity and temporal distribution (see [40]).
One supervisor of the study at the speakers managed the sound, while the other supervisor
instructed the participant. The text to be read was placed in front of the participant, along
with the iPad on a stand at approx. 20 cm distance. The aim was to ensure the distance
between the mouth reference point to the HL2 was the same as the distance to the iPad.
Next to the stand holding the iPad an immersive browser window was shown. It contained
the Google Notes website, which documented the output of the HL2s ASR.
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3.3. Experimental Plan

The study was conducted according to the experimental flowchart; see Figure 5. At the
beginning of the experiment, the participants were asked to answer a socio-demographic
questionnaire. Subsequently, the so-called relaxation phase (baseline) of the physiological
parameters was measured for 5 min using the wearable Empathica E4. Next, the participant
was equipped with the HL2 and noise protection. The experimental groups and conditions
were randomized. During the action phase (execution of the experiment), the physiological
parameters were recorded. For each SPL, the following procedure was applied: Depending
on the experimental order, the volume was calibrated according to the experimental plan
using the external sound card Scarlett 2i2 (controlled by device Digital Sound 8928).

Then, the ambient noise with the respective SPL and stationarity was played to the
participant while they spoke the text. Afterward, the research application for investigating
the SPC was started. The participant had to press the virtual button (turquoise), see Figure 4,
so that the automatic time measurement was started. The participant was asked to speak
out the given command for each slider labeled by position, e.g., see Figure 6 (English: ‘move
left slider upwards’). Once all five dedicated commands were carried out correctly using
the ASR of the HL2, the measurement was automatically stopped (see Figure 6).

The correctness of the system’s actions regarding the SPCs was documented by the
supervisor of the study. If the participant correctly articulated the command but the ASR did
not recognize it, it was remotely activated by the supervisor of the study and documented.
Afterward, the sound was stopped again and the same procedure was repeated with the
complementary sound (stationarity) at the same SPL. Then, the procedure was repeated
with the next SPL. After the first two SPLs, the recording of the physiological parameters
was stopped and started again with the last two SPLs. At the end of the experiment, the
participant was asked to complete the UTAUT2 and the NASA TLX questionnaire.
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3.4. Estimation of Sample Size and Formal Procedure

In accordance with [18], no statistically significant differences could be demonstrated
between the SPL effects on the HL2 using the WER. In contrast, the analogous research
design on the HL1 (see [19]) revealed a significant effect (F(1.37, 20.47) = 13.56, p < 0.05,
η2p = 0.475). In order to estimate an appropriate sample size and to demonstrate the
concept of the research design, a pre-study with 5 participants was conducted, from which
the first data were generated and calculated; see Table 2.
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Table 2. Calculated sample size via G*Power V 3.1.9.7.

Statistical Parameter Value

η2p 0.157
Power 0.8

α 0.05
Number of groups 1

Number of measurements 6
Calculated sample size 16

For the main study, a total of n = 22 participants were recruited via a regional student
mailing list. The following demographic data characterized the cohort of participants: 55%
male and 45% female; 9% of the participants had completed vocational training, 55% had
university entrance qualifications and 36% had a university degree; the participants were
aged between 20 and 41 years and the average age was 25.7 years. Figure 7 shows the results
of the experience level in dealing with speech interaction regarding the self-assessment of
the participants.
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The study was conducted in week 34 of 2023. All data sets were recorded anonymously.
The participant joined the study voluntarily and received no monetary compensation. Each
participant was informed about the guidelines for good ethical research and needed to give
their explicit willingness to participate. The experimental duration was approx. 50 min.
The equipment was completely disinfected after each participant. The experimental order
was randomly determined in advance.

3.5. Statistical Procedure

The statistical analysis was run in Jamovi 2.3.2. To analyze the influence of the
independent variables SPL and stationarity on the dependent variables WER and ITR,
repeated measures ANOVA with hypothesis tests were performed; see [41]. To avoid an
over-interpretation of anomalies for the statistical analysis, outliers were cleansed by means
of winsorizing according to Equations (2)–(4); see [42,43]:

upper boundary = Q3 + 1.5 ∗ IQR (5)

In order to filter out the effects of undefined, linguistic, technical or organizational
problems, both the response time (upper boundary = 27.9 s) as a factor of the ITR and the
WER (upper boundary = 77.85%) were winsorized. Based on the logical causality, 0 was
the natural lower boundary for both variables. As an assumption check, the violation of
sphericity was tested. In the case of significant differences between the SPLs, a post hoc
comparison, including a Scheffe α-error correction, was carried out. Since SPL 0 dB(A) had
only half the data points, it did not qualify for the ANOVA. Therefore, a paired samples
t-test (one-tailed hypothesis) was performed for SPL 0 dB(A) against the other SPLs; see [44].
As an assumption check, the normal distribution was tested first. If this was violated, a
non-parametric t-test needed to be carried out (n < 30). The effects of the interaction error
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were assessed for both the NASA TLX and the UTAUT2 as independent t-tests with a one-
tailed hypothesis. As an assumption check, normality and homogeneity of variances were
tested in advance. If the homogeneity of variances was violated, a Welch t-test needed to be
performed. If, on the other hand, the normal distribution was violated, a Mann–Whitney
U test was carried out. From the measured skin conductance values, mean values for
experimental order were calculated (loud versus quiet). To isolate the effects of excitement,
the baselines were subtracted from the action phases. An independent t-test was performed
(one-tailed hypothesis) on both groups (loud and quiet). The evaluation of the heart rate
was carried out in an analogous way.

4. Results

The results were evaluated using the methods presented in Section 3.5. The influences
of the independent variables stationarity, SPL and experimental order on the dependent
variables WER and ITR were analyzed and the results are given below. In addition to the
data, the results are presented via boxplots and barplots. The boxplots are structured in
such a manner that dots represent the outliers, the lower edge of the box represents the
first quartile, the upper edge the third quartile, and the wiskers delimit the 1.5-fold IQR.
The horizontal line represents the median and the black dot the mean.

4.1. Analysis of Data

Stationarity: For the independent variable stationarity, sphericity was met due to the
repeated measures ANOVA having only two levels. Via repeated measures ANOVA, no
statistical significance was found for either WER (F(1, 20) = 0.004, p = 0.95, η2p = 0.001,
power 0.05) or ITR (F(1, 20) = 2.8, p = 0.109, η2p = 0.123, power 1.00).

SPL: Regarding the WER, the statistical significance of the independent variable SPL
(F(2, 40) = 14.80536, p < 0.001, η2 = 0.119, η2p = 0.425, power 1.00) was demonstrated
via repeated measures ANOVA. Sphericity was not violated. Table 3 shows the post
hoc comparison.

Table 3. WER post hoc tests with Scheffe correction.

SPL MeanDiff SE df t pscheffe

64.2 84.9 12.57 3.97 20 3.17 0.017
64.2 87 19.74 4.03 20 4.90 <0.001
84.9 87 7.18 2.92 20 2.46 0.071

Table 4 shows the results of the WER with a paired samples t-test of the SPL factor
level 0 dB(A) compared with the others. Since normality was violated, a non-parametric
paired samples t-test was performed.

Table 4. Non-parametric paired samples t-test WER—SPL.

SPL df t p MeanDiff SE Co‘d Power

0 64.2 13 3.38 0.005 8.06 2.38 0.715 0.945
0 84.9 13 5.09 <0.001 20.61 4.05 0.884 0.991
0 87 13 6.57 <0.001 28.85 4.39 0.990 0.998

Table 5 shows the descriptive values.
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Table 5. Descriptive data of the WER—SPL.

SPL N Mean Median SD SE

0 22 3.03 1.28 3.93 0.838
64.2 44 15.09 9.62 16.20 3.453
84.9 44 27.97 22.44 23.05 4.914
87 44 36.77 29.49 28.28 6.030

Table 6 gives a detailed overview of inherent errors leading to the WER.

Table 6. Detailed relative errors of WER in percent (raw data before winsorizing).

SPL Substitutions Deletions Insertions

0 69 0 31
64.2 34 61 5
84.9 40 54 5
87 33 61 6

Figure 8 shows the corresponding boxplots.
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For the ITR, the statistical significance of the independent variable SPL (F(2, 40) = 13.208,
p < 0.001, η2 = 0.095, η2p = 0.398, power 1.00) was demonstrated via repeated measures
ANOVA. Sphericity was not violated. Table 7 shows the post hoc tests.

Table 7. ITR post hoc tests with Scheffe correction.

SPL MeanDiff SE df t pscheffe

64.2 84.9 −11.62 1.88 20 −6.19 <0.001
64.2 87 −8.93 2.75 20 −3.24 0.015
84.9 87 2.69 2.39 20 1.12 0.542

Table 8 shows the results of the ITR with paired samples t-tests of the SPL factor level
0 dB(A) compared with the others. The normality was not violated.
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Table 8. Paired samples t-test ITR—SPL.

SPL df t p MeanDiff SE Co‘d Power

0 64.2 21.0 −0.937 0.180 −2.72 2.90 0.200 0.231
0 84.9 21.0 −4.121 <0.001 −14.53 3.53 0.879 0.990
0 87 21.0 −3.461 0.001 −11.79 3.41 0.738 0.956

Table 9 gives the descriptive values and Figure 9 gives the corresponding boxplots.

Table 9. Descriptive data of the ITR—SPL.

SPL N Mean Median SD SE

0 dB 22 38.5 40.9 13.7 2.93
64.2 dB 44 35.8 40.8 12.6 2.69
84.9 dB 44 24.0 23.4 12.3 2.62
87 dB 44 26.8 28.6 13.2 2.82
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Experimental order: All sub-dimensions of the UTAUT2 questionnaire showed a
statistically significant difference between the start error (SER) and end error (EER) groups.
The results of the independent t-test are shown in Table 10. The homogeneity of variances
was not violated, but the normality was partially violated. Where indicated, a Mann–
Whitney U test was performed as a result. Table 11 shows the results of the descriptive data
analysis and Figure 10 the vertical barplot of the UTAUT2 sub-dimensions.

Table 10. Independent samples t-test UTAUT2—experimental order.

Dimension Type t df p Co‘d Power

UTAUT2_PE Student’s t 2.17 20 0.021 0.926 0.675
UTAUT2_EE Mann–Whitney U 20.0 0.004 0.669 0.434
UTAUT2_SI Student’s t 2.16 20 0.022 0.921 0.670
UTAUT2_FC Student’s t 1.98 20 0.031 0.845 0.606

UTAUT2_HM Student’s t 3.79 20 <0.001 1.614 0.978
UTAUT2_HT Mann–Whitney U 27.0 0.014 0.554 0.337
UTAUT2_BI Student’s t 3.65 20 <0.001 1.555 0.970
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Table 11. Descriptive data of the UTAUT2—experimental order.

Dimension Group N Mean SD SE

UTAUT2_PE
SER 11 4.91 1.300 0.392
EER 11 3.61 1.51 0.454

UTAUT2_EE
SER 11 6.00 0.866 0.261
EER 11 4.52 1.54 0.464

UTAUT2_SI
SER 11 4.73 1.577 0.476
EER 11 3.21 1.71 0.515

UTAUT2_FC
SER 11 5.55 1.011 0.305
EER 11 4.27 1.88 0.566

UTAUT2_HM
SER 11 6.42 0.804 0.242
EER 11 4.33 1.65 0.496

UTAUT2_HT
SER 11 3.21 1.887 0.569
EER 11 1.76 1.22 0.368

UTAUT2_BI
SER 11 5.03 1.362 0.411
EER 11 2.73 1.59 0.480

All sub-dimensions of the NASA TLX questionnaire, except frustration, showed no
significant differences between the experimental orders. The evaluation of the independent
t-test (t(11.4) = −3.07, p = 0.01, Cohen’s d = −1.31, power 0.8) showed that the experimental
order start error (M = 5.45, SD = 4.91) implies a lower frustration than the end error
(M = 9.55, SD = 7.22). In contrast with the homogeneity of variances, normality was
not violated. The physiological parameters showed significant differences in stimulation
(e.g., stress) between the experimental order groups.

iPad: To classify the ASR capability of the HL2 in the industrial environment,
the results of the iPad were compared. From the paired t-test (t(21) = 10.9, p < 0.001,
Cohen’s d = 2.32), statistically significant differences between the WER on the iPad
(M = 66.5, SD = 10.9) versus the HL2 (M = 17.2, SD = 17.2) were observed in all con-
ditions. Here, the conditions of normality were met.

4.2. Interpretation of Results

The results of the study allowed for the following conclusions to the hypotheses:

Hypothesis HA.1. The sound pressure level has a negative impact on the performance of automatic
speech recognition on the MS HoloLens 2.

Proof of Hypothesis HA.1. was confirmed, and thus, Hypothesis HA.0. was rejected.
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The ANOVAs showed a significant influence of the independent variable SPL on both
the WER (F(2, 40) = 14.80536, p < 0.001, η2 = 0.119, η2p = 0.425, power 1.00) and the ITR
(F(2, 40) = 13.208, p < 0.001, η2 = 0.095, η2p = 0.398, power 1.00). A negative influence of the
SPL was demonstrated using the mean values of the post hoc tests; see Tables 3 and 7.

Hypothesis HB.1. Automatic speech recognition on the MS HoloLens 2 performs better in stationary
rather than non-stationary ambient noise.

Proof of Hypothesis HB.1. was rejected, and thus, Hypothesis HB.0. was confirmed.

The ANOVAs showed no significant influence of the independent variable stationarity
on either the WER (F(1, 20) = 0.004, p = 0.95, η2p = 0.001, power 0.05) or ITR (F(1, 20) = 2.8,
p = 0.109, η2p = 0.123, power 1.00).

Hypothesis HC.1. Erroneous automatic speech recognition reduces the user acceptance of an
assistance system on the MS HoloLens 2.

Proof of Hypothesis HC.1. was confirmed, and thus, Hypothesis 3. HC.0. was rejected.

All sub-dimensions of the UTAUT2 questionnaire showed a statistically significant
difference within the independent variable experimental order; see Table 10. According to
this, Table 11 demonstrates that all mean values of UTAUT2 were lower if the condition
end error was given to the participants.

The research questions could be answered as follows:

Research Question 1. Is automatic speech recognition capable as an interaction design in an
industrial environment on a current AR HMD?

Answer 1. Considering the cut-off value of a WER of approx. 22.5%, the ASR on the HL2
did not provide an alternative interaction method (see cut-offs of 25% [45] and 20% [46])
for an SPL > 64.2 dB(A). The SPC results show that the SPL factor had a distinctly smaller
effect on the ITR than on the WER. The data revealed two statistically significant levels of
0 dB(A)–64.2 dB(A) and 84.9 dB(A)–87 dB(A). Considering the means over the two SPL
ranges, the ITR dropped from Mquiet = 37.15 bits/min to Mloud = 25.4 bits/min. The
error effect for the SPCs was significantly lower than for the text input. Generally, if a voice
command is ignored, it could be repeated because the missing action can be identified
easily. In contrast, dictation does not allow for repetition in case of failure.

Research Question 2. What influence does erroneous automatic speech recognition have on
user acceptance?

Answer 2. The results of the study demonstrated that an erroneous ASR, as an interaction
error, had a negative impact on the acceptance factors. This effect can therefore be recurred
to immersive AS, as ASR is an inherent technology. An error-free speech interaction thus
has a positive effect on all recorded sub-dimensions of the UTAUT2: BI, PE, FC, HT, HM
and EE were increased. Furthermore, the results indicated that the participants’ level of
frustration was increased by an erroneous ASR. The results of the social influence due to an
erroneous ASR were not logical from a theoretical perspective. The participants had already
obtained the attitude or the opinion of their peers before the study and the social influence
consequently should not be manipulated by the experiment. Neither the questionnaires
nor physiological parameters indicated stress due to a malfunctioning ASR.

5. Discussion

The research design addressed the relevance of the call to investigate ASR functions
up to an SPL of 90 dB (or > 70 dB(A)); see [47]. In contrast with [18], the investigated
SPL range > 70 dB was extended. In this study, experiments were limited to 87 dB(A), as
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this is not a tolerable level of exposure for health. To mitigate harmful effects and reflect
industrial conditions, experiments were carried out wearing hearing protection, enabling
realism. In summary, previous results show that the HL1 has a WER of 55% (at 70 dB(A);
see [18]) and the HL2 according to [19] has an average WER of 51% (SPL 40–70 dB(A)).
In this study, a WER of 37% was demonstrated at 87 dB(A) with a German text template.
Overall, a significant improvement in the ASR could be noted from the HoloLens versions
1 to 2. Analogously, comparing the performance of the gesture control on the HL1, the
WER was about 0.12%; see [10]. In contrast with [19], a significant influence of the SPL
on the WER was shown. Although [19] did not find a significant effect on the perceived
system usability, this contribution did confirm a significant difference in performance and
effort expectancy (see UTAU2 PE and EE) by manipulating the experimental orders with
start error and end error conditions. In contrast with [18,19], the perceived workload could
not be confirmed in this study. By way of a critical analysis of [18,19], it can be assumed
that the research design entailed a bias due to the participants’ habituation effects. It can be
stated that the design was suboptimal due to the long-winded and repeated interviews.
Our findings (influence of stimulus/error on acceptance factors) confirmed the proposed
research design. Participants experience all conditions counterbalanced and are being
questioned afterwards only once in questionnaires. Our design enabled the probands to
distinctly differentiate between correct and imperfect ASR. In contrast with the previous
work, the study was conducted in German, widening the scope of contributions on the one
hand but reducing comparability on the other. In this study, a larger sample size (n = 22)
was taken into account (see [18] with n = 16 and [19] with n = 13), which increased the
statistical power. Not only the dictation function but also the SPC function, which also
extended the scope of the research in the level of detail, was analyzed. The disadvantage
of the study was that no standardized text was applied for better comparability. The ITR
metric was introduced to evaluate the SPC, but its comparability and meaningfulness have
yet to be shown due to the lack of comparative studies. The applied methodology for the
evaluation of the skin conductance level and the HR must be optimized from a medical
point of view.

6. Conclusions and Further Research

Human–machine interaction may not be everything, but if human–machine interaction is
flawed in the context of assistance systems, then everything is nothing.

This statement is strengthened by the results of this study. As expected, the volume
significantly influenced the performance of the ASR. Within the industrial context, a WER
between 3% and 36% can be expected on the HL2. Assuming that an acceptable WER
is below 22.5%, ASR does not present an alternative paradigm of interaction. A more
extended approach to research design is presented as lessons learned from the previous
studies. It was shown that the ITR metric from brain–computer interaction research offers
the potential for evaluating SPCs, which requires further investigation. SPCs can achieve
between 27 bits/min and 39 bits/min depending on the SPL. Regarding the overarching
research design, this study delivered a powerful contribution regarding the evaluation
of interaction error. It was shown that an imperfect HMI had a negative impact on the
acceptance of the AR technology and the AS. On the other hand, both the subjective user
survey and the measurement of physiological parameters in this specific study indicate
no influence of the error on stimulation or technostress. This calls for interdisciplinarity
beyond the field of engineering and toward psychology or medicine in the research of HMI.
The research design and the ongoing questions regarding the errors of the immersive HMI
invite further research. In this work, attention was paid to a comprehensible statistical
approach and detailed description. In further studies, replications of the overall research
design will be carried out with a focus on errors of visibility, instruction and information
value. Nevertheless, the research design can be adapted and applied to a range of additional
error types and stimuli. Furthermore, in this work, which will be based on the speech
interaction error, other independent variables, such as the speech tempo or volume, should
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be investigated. It is likely that workers in a noisy environment, especially with hearing
protection, may unconsciously modify their voice due to the Lombard effect or others;
see [48]. These variations of speech production might be considered a feature in application
design or speech behavior. Especially in the future context of an industrial metaverse, ASR
will play a relevant role. Nevertheless, the current technology maturity is not yet ready
for this.
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