
Citation: Brown, E.J.; Fujimoto, K.;

Blumenkopf, B.; Kim, A.S.; Kontson,

K.L.; Benz, H.L. Usability

Assessments for Augmented Reality

Head-Mounted Displays in Open

Surgery and Interventional

Procedures: A Systematic Review.

Multimodal Technol. Interact. 2023, 7,

49. https://doi.org/10.3390/

mti7050049

Academic Editors: Mark Billinghurst,

Lars Erik Holmquist, Fotis Liarokapis

and Mu-Chun Su

Received: 20 February 2023

Revised: 24 March 2023

Accepted: 11 April 2023

Published: 9 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Multimodal Technologies 
and Interaction

Systematic Review

Usability Assessments for Augmented Reality Head-Mounted
Displays in Open Surgery and Interventional Procedures:
A Systematic Review
Ellenor J. Brown 1, Kyoko Fujimoto 2,†, Bennett Blumenkopf 1, Andrea S. Kim 1 , Kimberly L. Kontson 1

and Heather L. Benz 3,*,†

1 US FDA Center for Devices and Radiological Health, Silver Spring, MD 20903, USA;
kimberly.kontson@fda.hhs.gov (K.L.K.)

2 GE HealthCare, Chicago, IL 60661, USA
3 Johnson & Johnson MedTech, Cincinnati, OH 45242, USA
* Correspondence: hbenz@its.jnj.com
† The previous address is the same with Affiliation 1.

Abstract: Augmented reality (AR) head-mounted displays (HMDs) are an increasingly popular
technology. For surgical applications, the use of AR HMDs to display medical images or models
may reduce invasiveness and improve task performance by enhancing understanding of the underly-
ing anatomy. This technology may be particularly beneficial in open surgeries and interventional
procedures for which the use of endoscopes, microscopes, or other visualization tools is insuffi-
cient or infeasible. While the capabilities of AR HMDs are promising, their usability for surgery
is not well-defined. This review identifies current trends in the literature, including device types,
surgical specialties, and reporting of user demographics, and provides a description of usability
assessments of AR HMDs for open surgeries and interventional procedures. Assessments applied
to other extended reality technologies are included to identify additional usability assessments for
consideration when assessing AR HMDs. The PubMed, Web of Science, and EMBASE databases were
searched through September 2022 for relevant articles that described user studies. User assessments
most often addressed task performance. However, objective measurements of cognitive, visual,
and physical loads, known to affect task performance and the occurrence of adverse events, were
limited. There was also incomplete reporting of user demographics. This review reveals knowledge
and methodology gaps for usability of AR HMDs and demonstrates the potential impact of future
usability research.

Keywords: augmented reality; head-mounted displays; open surgery; interventional procedures;
usability; mixed reality; virtual reality

1. Introduction

Augmented reality (AR) describes the display of virtual objects integrated with the
real environment. AR has been applied across various fields, including medicine, with
surgical applications among the most common medical applications [1]. While interest
in AR for surgical applications began as early as the 1980s [2–4], the development of AR
systems for surgical planning and procedures has increased in recent years, driven by
technical advances and proliferation of commercially available head-mounted displays
(HMD) [5,6].

HMDs provide a hands-free view of virtual 2D and 3D text and images anchored
to the physician’s field of view, to a specific location in the surgical suite, to objects in
the environment, or to anatomical landmarks in or near the surgical site, with minimal
visual occlusion of the surroundings. With these capabilities, the use of AR HMDs for
surgery is purported to enhance diagnosis and surgical planning through interaction
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with virtual, patient-specific models [7]; facilitate intraoperative navigation by displaying
medical images on or near the surgical site [8–10]; improve ergonomics by displaying one
or more datasets in easily viewable locations [10–12]; and increase attention to patient vital
signs and alarms compared to conventional visual displays [13,14].

While the purported benefits of AR HMD use could be widely applicable across
surgical approaches, their use in open surgery and interventional procedures demands
special attention. In particular, the use of AR HMDs presents an opportunity to enhance
the visualization available for procedures that are not amenable to the use of endoscopes,
microscopes, or other advanced visual aids. Further, maintaining an egocentric view of
the surgical scene is a key feature of the technology, and it is not yet fully exploited in
scope-mediated procedures. As such, the usability of AR HMDs for open surgery and
interventional procedures is the focus of this work. Given the distinct visual, cognitive,
and physical demands of scope-mediated procedures (e.g., dependence on a camera for
visualization of the patient’s anatomy, flattening of 3D anatomy visualization to a 2D video
stream, and complex transformation of hand movement to tool movement), the application
of AR technologies for these procedures is not reviewed here, although it has been studied
elsewhere [15–18].

Incorporating AR HMDs into conventional surgical and interventional applications
is a non-trivial pursuit, requiring careful studies of physical, perceptual, and cognitive
considerations that accompany the use of AR HMDs [19,20]. The potential use of AR
HMDs in such high-stress and high-stakes applications as surgery necessitates a thorough
understanding of their usability (i.e., the users, use cases, and user–device interactions) to
ensure safety and effectiveness. To lay groundwork for future usability research and device
evaluations for AR HMDs in open surgery and interventional procedures, a comprehensive
description of published usability assessments and reporting for AR HMDs and related
technologies is presented. As the use and evaluation of AR HMD technologies is still
relatively new and may be limited, the authors included usability assessments for devices
that share a subset of technical aspects or device use characteristics with AR HMDs. This
broadened search included devices that display virtual information (i.e., anatomical models,
markings, or annotations) beyond the standard use of monitors to display 2D medical
information; devices that display any information superimposed onto the user’s field of
view, whether in the main display area or an inset display; devices that project content
onto the patient or the environment; and devices that utilize the principles of stereoscopy
to create the illusion of depth in 2D content. The included devices expand beyond the
spectrum of partial to fully virtual visualizations known as extended reality (XR); they
will be referred to here as XR+. The inclusion of devices that are related to AR HMDs was
intended to capture relevant usability assessments that are applicable for the evaluation of
AR HMDs but might not have been applied to the assessment of AR HMDs yet.

Several published reviews have addressed the usability of AR HMDs in surgical
applications. A review published in 2004 showed the use of AR in a variety of surgical
specialties, with an emphasis on HMDs [as well as heads-up displays (HUDs)] as emerging
technology [21]. The most prominent medical specialties in which AR had been applied
at that time were neurosurgery, otolaryngology, and maxillofacial surgery. The author
acknowledged the limitations associated with nascent AR systems, recognizing that they
were a relevant tool only for surgical procedures requiring low-performance surgical
dexterity. A literature review of HMDs (as well as HUDs) in surgical applications through
2017 enumerated the specific display devices used in a variety of medical specialties, how
they were used, and the medical specialties for which they were used [22]. Special attention
was given to use with live human patients. The most common applications of AR in surgery
included visualization of surgical microscopes, navigation, monitoring of vital signs, and
display of preoperative images. While this review described the broad scope of HMD
devices and use cases, an equally thorough treatment of usability assessments has not been
presented and would be beneficial for the design of future user studies.
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AR usability has been reviewed broadly across diverse applications, including medicine,
education, navigation and driving, and tourism and exploration [1]. In this article, which
included articles from 2005 to 2014, medicine was the third largest category of published
literature, behind perception and interaction. The most common uses of AR in medicine at
that time were laparoscopy, exposure therapy for phobia treatment, and physical rehabilita-
tion. Common usability assessments included subjective ratings, error/accuracy measures,
and task completion time. In the years since the publications included in this review, there
has been a continued surge in AR applications and user studies in medicine, which may
have been influenced by technological improvements and the availability of consumer AR
systems. As a result, it is now possible to identify trends and analyze gaps in user study
designs and assessments.

There have also been review articles specific to the use of AR and other XR devices in in-
dividual medical specialties, such as neurosurgery [23–26], orthopedic surgery [27] and plas-
tic surgery [28], and for various laparoscopy and robotic surgery applications [15–18,29]. A
recent review of optical see-through head-mounted displays in augmented-reality-assisted
surgery noted the important role of human factors for the devices’ utility [30].

In this review, our objective was to identify trends in the literature related to the use
of AR HMDs and other XR+ devices in open surgery and interventional procedures and
the study of their usability. Specifically, we assessed (1) the growth of AR HMD and XR+
applications and the types of devices used for these applications, (2) their relative use in
various medical specialties and in pre- vs. intraoperative applications, (3) the reporting of
user demographics, and (4) methods for assessing the usability of AR HMDs and other XR+
devices. Usability methods were analyzed to determine which aspects of usability have
been addressed, how they have been addressed, and which additional assessments may
be informative in future assessments. User studies for surgical planning and procedures
were considered regardless of participants, medical specialty, publication year, and number
of citations. However, for the reasons stated above, scope-mediated approaches were
excluded. Explicit comparisons were not made.

2. Materials and Methods

A systematic literature review was conducted in accordance with the Preferred Re-
porting Items for Systematic reviews and Meta-Analyses (PRISMA) method (Figure 1). The
PubMed, PubMed Central, EMBASE, and Web of Science databases were searched to find
articles pertinent to AR and other XR+ devices in surgical applications. HUDs were refer-
enced in the search terms as these displays are not always reported as XR in the literature
and might otherwise be under-represented in our results. The following terms and Boolean
logic, modified from the work of Dünser, Grasset [31] and Dey, Billinghurst [1], were ap-
plied to the titles, abstracts, and keywords of all available records through September 2022:

(“Augmented reality” OR “Mixed reality” OR “Virtual reality” OR “Augmented vir-
tuality” OR “Stereoscop*” OR “Head$ up Display” OR “3D visualization”) AND (surg*)
AND (“user evaluation$” OR “user stud*” OR “survey*” OR “interview*” OR “question-
naire$” OR “pilot stud*” OR “usability” OR “human factors” OR “user experience$” OR
“ergonomic*”OR (“participant$” AND “study”) OR (“participant$” AND “studies”) OR
(“participant$” AND “experiment$”) OR (“subject$” AND “study”) OR (“subject$” AND
“studies”) OR (“subject$” AND “experiment$”)).

The initial search found 4525 records. After the removal of duplicates, 2748 records
remained. Another 2533 records were excluded because they were not in English (54
records), did not describe the use of XR+ for surgery or interventional procedures (318),
did not provide a complete description of an original research study (691), only focused
on surgical training or education (1211), did not include augmentation or replacement of
visual information (31), did not include a user study (28), or focused on a scope-mediated
procedure (200).
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Figure 1. PRISMA flowchart for systematic literature review.

For the remaining 215 records, their respective articles were subject to an in-depth, full-
text analysis performed by five of the authors (E.J.B., K.F., A.S.K., K.L.K., and H.L.B.). To
start, 10 articles were analyzed by each author, and the results were compared and discussed
to arrive at a consistent coding approach. Coding involved extraction of data pertaining to
the display hardware used, XR+ visualization type, displayed information, medical spe-
cialty, task information, user demographics, usability assessments, and dependent variables.
The remaining articles were then divided among the group, coded, and later reviewed by
one author (E.J.B.) for consistency. The extracted information was organized to interpret
the trends in (1) device type and number of studies per year, (2) distribution of applications
by medical specialty and in preoperative vs. intraoperative settings, (3) user demographics
related to experience level, sex, and age, and (4) usability and related assessments. Infor-
mation related to medical specialty grouping and terminology was reviewed by a surgeon
(B.B.). During this phase, an additional 68 articles were excluded for the above-mentioned
criteria, leaving 147 articles for qualitative data synthesis (Supplemental Table S1). Fifty-
three articles described assessments of AR HMD devices.

3. Results
3.1. Device Types

The 147 articles included for data synthesis were published from 1995 to September
2022 (Figure 2). Fifty-three articles described the use of an AR HMD, the first of which was
published in 2004.
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Several types of hardware have been used for XR+ visualization. Figure 3 shows the
number and temporal distribution of publications for AR HMDs and the additional XR+
devices. Since 2017, AR HMDs have been the most prominent XR+ device type. Articles
about AR HMDs and other XR+ devices increased until 2020; it is possible that the reduced
article count in 2021 could be attributed to the COVID-19 pandemic, which may have
reduced both the ability to conduct in-person user studies and hospital research capacity.
Because the end date for the search was September 2022, counts for the year 2022 do not
represent a full year of articles.
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3.2. Surgical Applications

XR+ surgical applications spanned twelve specialties, nine of which included the
use of AR HMDs. The most featured specialties were orthopedic and spinal surgery
(40 XR+ articles, 16 for AR HMDs), neurosurgery and interventional neuroradiology (26
and 8), and surgical and interventional oncology (23 and 9); see Table 1 for the full list. The
breadth of medical specialties demonstrates the versatility and potential uses for AR HMDs
and highlights underlying procedural commonalities that motivate their use for open and
interventional procedures.

Table 1. Analyzed articles listed by medical specialty.

Medical Specialty Publications for AR HMDs and
Other XR+ Devices

Orthopedic/
Spinal Surgery (40)

AR HMD (16): [6,9,32–45]
Other (24): [46–69]

Neurosurgery/
Interventional Neuroradiology (26)

AR HMD (8): [10,70–76]
Other (18): [53,77–93]

Surgical Oncology/Interventional Oncology (23) AR HMD (9): [8,94–101]
Other (14): [58,68,102–113]

Cardiac Surgery/Interventional Cardiology (16) AR HMD (4): [7,114–116]
Other (12): [105,117–127]

Oral and Maxillofacial Surgery (13) AR HMD (4): [128–131]
Other (9): [58,77,132–138]

General Surgery (12) AR HMD (4): [139–142]
Other (8): [143–150]

Endovascular Surgery (7) AR HMD (3): [151–153]
Other (4): [154–157]

Otolaryngology (7) AR HMD (3): [158–160]
Other (4): [161–164]

Dermatology/Plastic Surgery (3) AR HMD: –
Other (3): [165–167]

Emergency Medicine/Trauma (3) AR HMD (2): [168,169]
Other (1): [170]

Anesthesiology (2) AR HMD: –
Other (2): [171,172]

Obstetrics (1) AR HMD: –
Other (1): [173]

XR+ technologies were used in both pre- and intraoperative settings. Fifty-eight
percent of all analyzed articles (85) and 79% of AR HMD articles (42) were used to perform
a real or simulated surgical procedure. XR+ devices were used for planning alone in
49 articles (8 with AR HMDs), although some of these applications involved rehearsal for
a real surgery using a patient-specific simulation [89,91,154]. Thirteen articles describe
surgical planning and use of this planning technology during the procedure, with three of
these using AR HMDs. The distribution of all pre- and intraoperative applications over
time (Figure 4a) suggests an emphasis on XR+ use during procedures, particularly for AR
HMD use (Figure 4b).

3.3. User Demographics

One hundred and nine (109) XR+ articles (83%) specified the total number of subjects
in the user studies. The mean number of subjects was 13.6, with a median of 10 and a
range from 1 to 77 subjects. Only 24 articles (18%) specified the number of female users,
precluding further analysis. For AR HMDs, 35 articles (80%) specified the total number
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of subjects. The mean and median sample size were 12.9 and 10, with a range of 1 to 62.
Eleven (11) articles reported the number of female users (25%).
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Across all XR+ articles and the subset of AR HMD articles, user demographic data
based on surgical experience revealed a lack of complete reporting, particularly for studies
that included expert users (Table 2). For this review, novices were defined as subjects
with no reported medical education, trainees were subjects currently engaged in medical
training (e.g., medical students, residents, and fellows), and experts were subjects who were
reported as attending or expert surgeons or proceduralists. One hundred and four (104)
XR+ articles included expert users, but only 15 of these articles (12%) included statistics
on the number of female subjects, while 14 articles (14%) included the age of the users.
For articles that included novices, 41% reported the number of female users (13), and 52%
reported ages of subjects (16). The reporting percentages for articles that included trainees
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were similar to but higher than those of articles including experts (35% for number of
female users and 33% for age statistics).

Table 2. Experience levels and reported demographic data of users.

Experience-Level Subset of Included Users

Article Subset Novice Trainee Expert Not Reported

All XR+ Articles 31 48 104 17

Includes Number of Users 30 48 88 8

Includes Number of Female Users 13 17 15 0

Includes Age Statistics 16 16 18 0

All AR HMD Articles 12 14 36 6

Includes Number of Users 11 14 30 2

Includes Number of Female Users 5 8 6 0

Includes Age Statistics 7 8 9 0

For AR HMDs, 36 articles included expert users, of which 6 articles (17%) included
statistics on the number of female subjects and 9 articles (25%) included the age of the users.
In the 12 articles where novice subjects were included, 5 articles reported the number of
female users (42%) and 7 reported age (58%). For articles that included trainees, reporting
percentages for age and sex were on par with those for novice users (57% for both).

3.4. Usability Assessments

For each article, user assessments and dependent variables from the included user
studies were summarized and categorized. These results are summarized in Table 3.
The included assessments covered open questions of feasibility, hardware and system
characterization, and human factors relating to physiological loads on the user. Seven
categories of usability assessments and two additional related categories emerged during
analysis, listed in descending order of use in XR+ articles. Usability assessments were:

1. Task Performance (84)—Assessments of motor or visuomotor task success.
2. User Experience (80)—Interviews, surveys, or other user-reported feedback about the

usability and effectiveness of visualization type or hardware.
3. Completion Times (55)—Duration of setup or task performance.
4. Cognition (27)—Assessments of mental and attentional demands or changes in deci-

sion making.
5. Visual Effects (22)—Objective assessments of visualization quality or accuracy, relative

effectiveness among visual augmentations or rendering options, visual perception, or
adverse physiological events related to visual perception.

6. Efficiency (17)—Quantification of intraoperative imaging use, material use, or tool
path length.

7. Physical loads (1)—Quantification of muscle activity or body movement.

Additional assessments related to usability were:

8. System Performance (39)—Measurements of visualization hardware and software
accuracy and speed.

9. Validity/Reliability (12)—Comparison of simulators to real situations, or comparisons
within and across users or observers.
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Table 3. Usability assessments from analyzed articles.

Category Assessments

Task Performance
(84 XR+ Articles)

Error of position or orientation; Number of task completions;
Success rate; Complication Rate; Performance rating; Feasibility;
Objective Structured Assessment of Technical Skills (OSATS);
Surgical Outcomes.

User Experience (80)

Feedback on effectiveness, usefulness, quality, ergonomics, or
visual effects; User preferences for system tools or visualization
technique; User interaction/engagement with the visualization;
Tool, material, or procedure choices compared with standard tools;
System Usability Scale (SUS); Non-technical skills (NOTECHS) for
surgeons; Mayo High Performance Teamwork Scale (MHPTS).

Time Management (55) Task completion time; Diagnosis/Planning time;
Setup/Co-registration time.

System Performance (39)
Frame rate; System display lag; Co-registration error; Calibration
error; Effects of lighting and glove color on hand gesture controls;
Effects of user movement on visualization accuracy.

Visual Effects (22)

Effects of shading/color/transparency on depth perception;
Identification of anatomical/surgical landmarks; Text readability;
Contrast perception; Stereo Fly Test (SFT); Pseudo-Isochromatic
Plate (PIP) color vision test; Color and greyscale perception under
varying ambient lighting conditions; Geometric and rendering
distortions; Visual discomfort.

Efficiency (17) Tool path length/deviations; X-ray acquisitions; Contrast volume
used; Cineloops used.

Cognition (27)
Attention shifts; Cognitive load (NASA-TLX, Surg-TLX); Task recall;
Mental rotation test; Influence on diagnosis, surgical approach,
or revisions.

Validity/Reliability (12)

Face validity; Content validity; Interrater variability for anatomical
landmark detection; Intra- and inter-operator variability of
measurements; Inter-observer variability of performance
assessment; Statistical similarity of virtual and real landmarks.

Physical Load (1) Muscle fatigue; Posture.

4. Discussion
4.1. Usability Assessments for XR+ Devices
4.1.1. Task Performance

Task performance was most often assessed using a measurement of error from a land-
mark in the surgical space or from the surgical plan. Other common metrics included the
number of task completions within a time frame, the rate of successful task completions
across trials, performance ratings based on standardized evaluation tools or observation
by experts, general feasibility of device use, or remarks regarding post-surgical patient
outcomes. Interestingly, Scherl, et al. [159] used an AR HMD during a live human surgery
and noted that a reversible complication that occurred in 3.7% of procedures without
the device did not occur during its use. The Objective Structured Assessment of Techni-
cal Skills (OSATS), a validated global rating scale developed to assess surgical skills of
trainees [174,175], was also used.

4.1.2. XR+ User Experience

As this review focused on articles describing usability assessments, more than half
of the reviewed XR+ articles described the use of user experience (UX) questionnaires to
gather feedback on the effectiveness, usefulness, or comfort of using various XR+ devices.
The System Usability Scale (SUS) is a widely used questionnaire that was featured in several
papers [176]. The vast majority of UX questionnaires and usability assessments captured
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the experiences of single users working alone. In contrast, Willaert, Aggarwal [91] captured
single subject and group dynamics by using the SUS along with the Non-technical skills
(NOTECHS) for surgeons rating scale [177] and the Mayo High Performance Teamwork
Scale (MHPTS) [178]. Whole surgical teams evaluated virtual surgical simulations for
patient-specific rehearsal. The application of these or similar assessments for communica-
tion and teamwork during multi-user AR HMD-assisted surgeries would provide valuable
insight into the safety and effectiveness of AR HMD use in surgical applications. Indeed,
real surgeries are almost exclusively performed in teams, and failures in teamwork are a
strong predictor of surgical errors [179]. While UX and user preferences are often captured
through subjective measures, Harake, Gnanappa [120] endeavored to link survey data
to objective measures. To quantify user preferences between 2D and 3D presentations of
echocardiograms, the investigators measured time spent viewing each image type and
rotations of the images as a metric of engagement. Beyond capturing user preferences, this
type of analysis could be used to understand how users interact with the visualized data
and which aspects of the visualized data or user interface are of most value or draw the
most attention.

4.1.3. Completion Times

Metrics used for completion time included completion times for system setup, sys-
tem calibration, co-registration of virtual information to the real environment, and pre-
and intraoperative task performance. One of the unique metrics in this category was the
time needed for a team to discuss and reach consensus on congenital heart disease diag-
noses [121]. This analysis answers the overarching question of potential time reduction but
also targets behavioral and cognitive aspects of the clinical process that might be enhanced
by novel visualization technologies.

4.1.4. Cognition

To address issues of cognition, some articles measured cognitive load, spatial cognition,
attention, and decision making. Cognitive load was assessed through use of the NASA-
TLX [6,123] and a surgery-focused variant, the Surg-TLX [50]. The NASA-TLX [180,181]
remains a popular assessment tool despite questions regarding the construct validity [182]
and interpretability [183,184] of the results. Objective measures may prove favorable
alternatives, such as metrics derived from physiological signals [e.g., cortical activity
via electroencephalography (EEG) or functional near-infrared spectroscopy (fNIRS) or
physiological stress via galvanic skin response (GSR) or heart rate variability (HRV)].

To assess attentional demands, Andersen, Popescu [143] recorded gaze shifts between
the novel XR+ visualization and the available standard monitor. Where XR+ devices are
purported to increase attention by improving the location of displayed data or providing
multiple data streams in the user’s field of view, analyses of gaze shift may be used to assess
this claim. Another paper compared the display viewing times for subjects who received
task instructions on an AR HMD or standard display terminal [153]. The results present
some complexity in the assessment of attention, as subjects completed tasks faster with the
monitors but spent a higher percentage of time viewing them and shifted attention from
the task to the display more frequently. Furthermore, analyses of attentional focus could
benefit from additional information on “blindness” or inattention to quantify the extent
to which a novel visualization method is distracting or requires such excessive cognitive
demand that overall situational awareness is reduced [185,186]. Spatial cognitive demand
may be dependent upon the user’s spatial reasoning abilities. The Mental rotation test [187],
used in Pahuta, Schemitsch [64] and Sadri, Kohen [151], or a similar assessment may help
determine which users will benefit most from these technologies.

Another dimension of cognition considered in some studies was the impact of visual-
ization on surgical decision making. Kendoff, Citak [61] showed that intraoperative use of
a monitor-based AR technology revealed technical errors not visible with standard visual-
ization and prompted immediate revision in 46 of 248 joint reconstruction surgeries. Others
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describe changes to the surgical intervention or strategy during planning [7,86,88,92,154].
This evidence speaks to potential increases in the safety and effectiveness of surgical
interventions through advanced visualization technology.

4.1.5. Visual Effects

Several articles evaluated visual effects, including depth perception, color rendering
and perception, visibility of anatomical landmarks, text readability, and grayscale contrast
perception. For example, the work of Hansen, Wieferich [145] dealt with rendering tech-
niques to improve understanding of relative depth of blood vessels in the liver. These
considerations may be particularly important across applications dealing with vasculature,
nerves, or abundant overlapping structures. In Sadri, Kohen [151], the Stereo Fly Test
(Stereo Optical Co., Inc., IL, USA) and the Pseudo-Isochromatic Plate (PIP) color vision
test [188] were utilized as pre-tests for depth and color perception, respectively. This base-
line information was useful to identify any confounding factors affecting the user’s ability
to understand and manipulate color-coded 3D virtual heart models displayed via AR
HMD. Qian, Barthel [6] demonstrated text readability and contrast perception assessments
adapted for AR HMD use. These types of analyses are of particular importance given
the transparency of the display, which allows ambient lighting conditions to impact the
appearance of virtual content. Contrast perception of grayscale images is also relevant
for the display of medical images, such as intraoperative X-ray fluoroscopy used for the
orthopedic surgery application presented in the article. Despite the significance of contrast
perception and text readability for speed and accuracy of data interpretation, this article
presents the only objective, quantitative analysis of these characteristics among the articles
included in the present review. Other aspects of image quality and accuracy were addressed
by Southworth, Silva [115], such as geometric and rendering distortion and the dynamic
range of color and grayscale test patterns under darkened and bright ambient conditions.
Additional studies are needed to assess the risks of HMD alignment with the eyes, such
as errors in the adjustment of interpupillary distance or subpar placement of the HMD on
the head, and consequences for visual perception. Published and anecdotal data suggest
that small alignment errors can create significant errors in perceived location of virtual
data [189,190].

Prolonged visual loading and certain visual stimuli can cause eye fatigue, dizziness,
cyber-sickness, or seizure. Some articles mentioned the potential for these events or gath-
ered feedback on the occurrence of symptoms, but no objective measures of physiological
predictors or symptoms were recorded. Potential indicators include blinking, pupil diame-
ter, HRV, gastric activity, GSR, and other physiological stress signals. Additionally, system
performance metrics that relate to adverse visual effects could be quantified and assessed
for safety. Low frame rates, visual lag, and flicker can cause cyber sickness [191–193] as
well as errors in task performance [194], and flicker may also cause seizures in susceptible
individuals [191].

4.1.6. Efficiency

Efficiency was quantified with quality of movement (e.g., path length when using
tools) and minimal use of additional imaging or materials (e.g., X-ray acquisitions or
contrast volume used). The enhanced spatial cognition provided by XR+ technologies may
lead to reduction in the patient and surgeon’s exposure to radiation, improving the safety
of procedures requiring intraoperative imaging.

4.1.7. Physical Loads

Measures of physical load such as EMG and motion capture data allow for objec-
tive, quantitative analysis and comparison of ergonomics across visualization types by
pinpointing altered muscle activity, movements, or postures that could result in chronic
pain or injury. One article quantified physical loading or biomechanics of XR+ device
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use. Zuo, Jiang [152] collected electromyography (EMG) data to detect fatigue of the
sternocleidomastoid muscle, a rotator and flexor of the neck, during AR HMD use.

4.2. Additional Assessments and Reporting Related to Usability
4.2.1. User Demographics

A few articles provided age and sex data, but most articles did not. This incomplete
reporting is in stark contrast to the detailed information often provided about the patients
in these studies and is particularly troublesome given that trainees as well as experts may
be the intended users for these devices. This lack of information limits understanding of
the usability results and their generalizability across user groups.

The age and sex of users can influence the safety and effectiveness of XR+ device use.
Age-related presbyopia, an inability to focus on close objects, causes blurred vision of close
objects. Hardening of the eye lens during natural aging hinders accommodation, or the
mechanism of adjusting the eye lens to focus between distant and near images [195,196].
This is especially important to consider for near-eye displays like HMDs [196], for the
tasks being performed (surgical tasks are often done within arm’s length) [197], and for the
intended users (surgeons are often in their middle age or older) [198].

Sex also plays a role in user XR+ device usability. Various studies have shown that
women experience cybersickness more often than men [199–201]. Some studies have also
shown that females tend to have lower visuospatial reasoning ability [202–204], although
other studies have shown no differences [205–208] or differences that are diminished with
training [209]. In any case, users with lower spatial reasoning skills may benefit most from
the improved spatial understanding that AR can provide.

4.2.2. System Performance

System performance was most often characterized by frame rate, system display lag,
co-registration error, and calibration error. A major challenge of AR is the integration of vir-
tual imagery with real objects and environments. Accurate image-to-patient co-registration
is needed for surgical navigation. Several papers described novel co-registration meth-
ods, such as the use of externally affixed fiducial markers [87], manual image placement
through hand gestures [79], automatic co-registration based on selected virtual points [8],
or tracking of 3D surface features [137]. After initial co-registration, intraoperative physio-
logical movements and shifting of tissue require continuous monitoring and corrections to
ensure accuracy throughout the procedure. Physiological movement, such as breathing and
heartbeat, can cause rhythmic co-registration errors [210–212]. User movement profiles also
introduce varying levels of registration error [152]. Compensation for these movements
may require advanced algorithms for motion correction. Another source of co-registration
error is intraoperative tissue shifting due to handling or removal of tissue. The use of
intraoperative imaging has been used to maintain co-registration during these shifts. Ultra-
sound methods have been demonstrated for brain shift in neuro-oncology [78], orthopedic
surgery at the pelvis [33], and pedicle screw placement [51]. El-Hariri, Pandey [33] reported
RMS co-registration errors ranging from 3.22 to 28.30 mm, which they deemed promising
but insufficient for surgical applications. These results suggest the need for studies of image
co-registration to establish error thresholds for intraoperative use.

Another aspect of system performance considered for AR HMDs was the effectiveness
of the user interface under varying conditions. Kubben and Sinlae [72] evaluated the
effects of various lighting conditions and colors of the surgeon’s gloves on hand gesture
recognition for manipulation of virtual objects. While the authors reported that there
were no noticeable differences across conditions for the HoloLens, similar analyses may be
informative for other commercially available or custom-built AR HMDs for surgical use.

4.2.3. Validity and Reliability

Metrics of validity and reliability included face validity, content validity, and var-
ious metrics of intra- and inter-rater or user variability. For example, Timonen, Iso-
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Mustajarvi [163] validated the accuracy of a virtual surgical simulation by measuring
the distances between anatomical landmarks in a cadaver and in the virtual model and
performing Bland–Altman analyses of similarity.

4.3. Limitations

The authors acknowledge that the search terms do not include less popular terms,
such as “extended reality” or the specific terms for various hardware types; “augmented
reality” and “virtual reality” were expected to be present in any articles that also included
synonymous or similar terms. The search terms were also broadened to include surgical
applications that did not involve AR HMDs. Uses of AR HMDs are emphasized in the text
for clarity.

To focus on articles that included user studies, the articles were required to mention
“user(s),” “participants(s),” or other common usability research terms in the abstract, title,
or keywords. This stipulation may have excluded otherwise eligible articles from con-
sideration. Further, the term “surg*” was intended to find articles related to surgery. No
synonyms were included in the search terms.

Scope-mediated procedures were excluded to focus on open surgery and interven-
tional procedure application spaces. However, usability articles for AR in scope-mediated
procedures do include methodologies that could be pertinent for AR HMD use; future work
could catalogue these methodologies as well. Lastly, the articles included are all published
works. Publication bias may have excluded usability assessment information that would
be relevant to this review.

Because no effect sizes were estimated, a protocol has not been archived, and this
review was not registered.

5. Conclusions

This systematic literature review identified trends in the use of AR HMDs and related
technologies for surgical applications, including the number of publications for AR HMDs
and related devices, the distribution of AR HMD and XR+ publications across medical
specialties in pre-operative vs. intraoperative applications, the user demographics reported
in these user studies, and how usability has been assessed. The results show a growth
in the published literature over the past two decades for XR+ devices, with AR HMDs
particularly gaining prominence within the past decade. Orthopedic applications were
most common, followed by neurosurgery and oncology. Whereas XR+ devices have been
growing in use in both pre- and intraoperative settings, AR HMDs have most commonly
been featured in intraoperative use. We found a lack of objective usability assessments for
physiological loading and underreporting of age and sex user statistics. The perceptual,
cognitive, and physical loads imposed by XR+ device use are key components of device
usability that are often overlooked, as demonstrated by the lack of articles that address
the relevant assessment categories. For this review, perceptual loading assessments were
limited to vision and related adverse effects due to the lack of user studies for haptic
and auditory augmentations in surgery. While it is known that heightened physiological
loads can diminish task performance, cause use errors, and negatively affect the user’s
health [213], only 29% of the XR+ articles directly assessed physiological loads.

The contributions of this work include a list of usability assessments, categories
of usability considerations to address, and potential assessments to address common
methodology gaps. These findings are intended to inform future usability research for AR
surgical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mti7050049/s1, Table S1: Summary of XR+ Devices, Use Cases,
and Assessments from Analyzed Articles. File S1: PRISMA_2020_checklist.
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