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Abstract: The field of brain—computer interface (BCI) enables us to establish a pathway between the
human brain and computers, with applications in the medical and nonmedical field. Brain computer
interfaces can have a significant impact on the way humans interact with machines. In recent years,
the surge in computational power has enabled deep learning algorithms to act as a robust avenue
for leveraging BClIs. This paper provides an up-to-date review of deep and hybrid deep learning
techniques utilized in the field of BCI through motor imagery. It delves into the adoption of deep
learning techniques, including convolutional neural networks (CNNs), autoencoders (AEs), and
recurrent structures such as long short-term memory (LSTM) networks. Moreover, hybrid approaches,
such as combining CNNs with LSTMs or AEs and other techniques, are reviewed for their potential
to enhance classification performance. Finally, we address challenges within motor imagery BCIs and
highlight further research directions in this emerging field.
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Brain—-computer interfaces (BCls) are an emerging field of technology that combines
and allows the connection between the brain and a computer or other external devices.

Challenges, and Future Research

Directions of Hybrid and Deep

Learning Techniques for Motor BClIs have the potential to revolutionize the way humans interact with machines, opening
Imagery Brain-Computer Interface. countless possibilities both in medical and nonmedical domains. In the medical field,
Multimodal Technol. Interact. 2023, 7, it can help people suffering from locked-in syndrome to communicate [1]. Moreover,
95. https://doi.org/10.3390/ brain—computer interfaces (BCls) are displaying potential in the realm of neuroprosthetics,
mti7100095 offering the prospect for individuals with limb amputations or paralysis to command

robotic limbs or exoskeletons through their brain signals [2]. In epilepsy management, BCIs
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are researched for real-time seizure detection and intervention, potentially mitigating the
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Published: 12 October 2023 There are several methods and techniques used in BCI research (Figure 1). These meth-
ods can be categorized based on their degree of invasiveness as invasive and noninvasive.

Invasive methods require physical access to the brain and include ECoG (electrocorticog-

raphy) [6], which is the process of recording electrical activity in the brain by placing
electrodes in direct contact with the cerebral cortex or surface of the brain. Noninvasive
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(deoxy-HB), which provides an indirect measure of brain activity, particularly in the frontal
cortex, and (d) electroencephalography (EEG), [6] which is this paper’s subject and refers
to the measurement of the electrical activity produced by the brain by placing electrodes to
the subject’s scalp.
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Figure 1. Techniques of signal acquisition.

Although there are disadvantages in EEG-based BCIs compared to other techniques [10],
such as a low signal-to-noise ratio, a low spatial resolution, and variability in the signal
quality due to artifacts, their portability, cost-effectiveness, noninvasiveness and high
temporal resolution make them the most spread method for BCI applications.

There are a lot of approaches to further categorize EEG BClIs. Authors in [11,12] further
categorize BCls based on the user’s activity during the signal acquisition as passive/active.
Other approaches are based on the stimuli needed for the activation of the BCI [13], which
group noninvasive BCls into evoked (also referred as exogenous) or spontaneous (also
referred as endogenous). Another work [10] categorizes BCls based on the ability of the
system to respond on a specific time-window called synchronous or asynchronous.

In the active/passive approach (Figure 2), the term “Passive” refers to situations where
the user is either at rest or involved in a task, and brain activity is being measured. The
term “Active” refers to the situation where brain activity is measured while the user is
carrying out specific tasks or actions. For example, in motor imagery, the user thinks
about performing physical movement without actually performing the movement. On the
contrary, in the word imagery paradigm also referred to as imagined speech, the user is
required to think about certain words, while visually, auditory, and vibrotactile evoked-
potential paradigms involve the measurement of brain activity in response to an external
visual, auditory, and vibrotactile stimuli, respectively. Some applications of passive EEG
BClIs are measuring the subject’s emotion [14], cognitive load [15], and attention [16], while
active EEG BClIs have been used to control a cursor on a computer screen [17], moving a
robotic arm [18], or even helping patient rehabilitation after a stroke [19].
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Figure 2. BCI categorization based on user’s activity.

A typical pipeline for an EEG motor imagery (MI) BCI application involves several
stages (Figure 3). The first stage concerns the signal acquisition, whereas the subject is
instructed to imagine a motor movement while their brain activity is measured using EEG.
The next stage is signal preprocessing, where several different techniques are used to filter
and enhance the quality of the signal. Afterwards, feature extraction is performed, where
the processed signal is further analyzed to extract relevant features. These features are
then subjected to feature selection, where the most relevant features for the application
are identified. Finally, classification is performed using machine learning algorithms to
classify the data into different categories, such as left- or right-hand movement, and turn
these categories into machine instructions, such as moving a cursor in a 2D space, etc.

[ Raw EEG Data H Preprocessing HFeature Extraction H Feature Selection H Classification ]

Figure 3. Typical EEG BCI pipeline.

The success of this pipeline depends not only on the optimal selection of signal
processing techniques, feature extraction methods, feature selection algorithms, and classi-
fication models, but also on the user’s ability to consistently generate distinguishable brain
patterns [20].

Electroencephalogram (EEG) signals, captured noninvasively through electrodes on
the scalp, are electrical patterns reflecting the synchronized firing of neurons in the brain.
This technique has high temporal resolution, enabling researchers and clinicians to mon-
itor real-time brain activity with millisecond precision. Although EEG signals are con-
sidered 1D-signal EEG recordings, they yield time series data, where the x-axis repre-
sents time, while the y-axis represents the electrical activity observed at each electrode.
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Time series data can undergo different transformations to be reshaped into 2D or 3D for-
mats, with one common approach involving the creation of 2D images by incorporating
time—frequency information.

Data classification typically involves one of the following three categories: machine
learning, deep learning, and hybrid deep learning as shown in Figure 4. Machine learning
provides strong statistical methods for smaller datasets, while deep learning uses neural
networks for complex patterns in larger datasets. Hybrid deep learning merges the two
previously mentioned methods, extracting benefits from each method to solve problems
more effectively.

CLASSIFICATION

A 4

MACHINE HYBRID DEEP
LEARNING DEEP LEARNING LEARNING

Figure 4. Classification techniques.

Traditional machine learning is a subfield of artificial intelligence that involves the
development of algorithms which can learn from and make predictions or decisions based
on data. Unlike deep learning, which requires large datasets and focuses on artificial neural
networks, traditional machine learning techniques often work well with smaller datasets
and include methods, as shown in Figure 5, such as decision trees, support vector machines,
and linear discriminant analysis. These algorithms build models by analyzing input data
features and finding patterns or statistical relationships, which can then be used to make
predictions on new, unseen data.
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Figure 5. Machine learning architectures.

Deep learning has recently become a key component in the development of numerous
industries, from healthcare [21] to computer security [22-26]. Deep learning, a subfield
of machine learning, excels at managing high-dimensional and complex datasets. Its
capacity to represent complex patterns using neural networks with numerous layers has
revolutionized a variety of applications, including image recognition [27], natural language
processing [28], and the diagnosis of medical conditions [21]. Deep learning has the
ability to learn representations directly from the input data, without relying heavily on
feature engineering, which is often required in traditional machine learning. Through
multiple layers of artificial neural networks, deep learning algorithms can automatically
learn hierarchical representations, where initial layers often capture low-level features and
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deeper layers capture more complex and abstract features. This capability to automatically
extract and learn features from raw data is a major reason why deep learning has been
successful in numerous fields. Deep learning can be categorized into two main groups, deep
learning and hybrid deep learning; deep learning includes models such as transfer learning,
convolutional neural networks, and recurrent neural networks, as shown in Figure 6.

DEEP LEARNING

! ! ! | ! ! |

GENERATIVE
ADVERSARIAL

NETWORK NEURAL NETWORK NEURAL NETWORK AUTOENCODER BOLTZMANN NETWORK

MACHINE

DEEP NEURAL CONVOLUTIONAL RECURRENT DEEP DEEP RESTRICTED DEEP BELIEF
NETWORK

LONG SHORT-TERM| GATED
MEMORY RECURRENT UNIT

Figure 6. Deep learning architectures.

Recent advancements have led to the fusion of deep learning and machine learning
techniques, the so-called hybrid deep learning, as shown in Figure 7. Deep learning
techniques such as convolutional neural networks typically serve as a feature extractor
from raw data, while machine learning methods techniques serves as a classifier. This
hybrid approach leverages the strengths of both methods, creating more effective and
interpretable models.

HYBRID-DEEP

LEARNING

CNNBASED OTHERS

CNN+AE ‘ AE+TRANSFORMER|

CNN+LSTM J

CNN+OTHERS J ‘ AE+SVM ’ ‘ EMD+GAN ’ ‘ RBM+SVM ’

Figure 7. Hybrid deep learning architectures.

Several review papers have been published on the subject of EEG BClIs, but they are
either outdated [13,29-31] or focus on specific methods [32-38]. For example, the authors
in [33-35] provide a significant review but they do not explore the current trends such as
deep learning methods. In [36,37], the authors focus only on deep learning methods and
in [38], Habashi et al. examine only the proposed methods that involve generative adver-
sarial networks (GANSs). Finally, Rajwal et al. [32] focus on the state-of-the-art methods that
deploy CNNss.

While some of the aforementioned review papers report state-of-the-art deep learning
methods, they overlook the current research trend, i.e., hybrid deep learning techniques.
This could be attributed to the fact that both the field itself and the application of deep
learning within it are relatively new and rapidly evolving. In this review, our aim is to
address this gap. We provide a comprehensive survey of the entire EEG BCI motor imagery
system pipeline, focusing on deep learning methods and placing a particular emphasis on
these emerging hybrid deep learning methodologies. Furthermore, we present an in-depth
evaluation of the most commonly implemented algorithms in the field, assessing their
accuracy and computational efficiency. By doing this, we offer an up-to-date and detailed
perspective on this exciting and fast-growing area of research.
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Scopus and Google Scholar were utilized as the electronic databases to retrieve the
articles. This review includes articles related to the following keywords: (1) “EEG” or “Elec-
troencephalogram” or “electroencephalography”, (2) “MI” or “Motor Imagery”, (3) “DL”
or “Deep learning”. The Scopus database returned 201 results while Google Scholar re-
turned 92 results adding up to a total of 293 results. From the returned results, we excluded
duplicate papers and papers that were not relevant to the review, such as papers that
included hybrid methods of signal acquisition, papers that did not utilize deep learning
architectures, and papers with similar architectures, methods, and accuracies. After these
filters were applied, the number of screened papers was 53 as shown in Figure 8.
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Figure 8. Protocol for the retrieval of papers.

The rest of this paper is organized as follows, in Section 2, “Datasets”, we present all
the publicly available datasets that contains motor imagery tasks and relevant information
about the datasets. Section 3, “Deep learning”, includes the deep learning architectures
used in the literature for motor imagery brain—computer interfaces. In Section 4, “Hybrid
deep learning”, we review the hybrid architectures that contain a combination of machine
learning and deep learning architectures to tackle the problem. In Section 5, “Discussion”,
we provide our conclusions and insights from the reviewed papers, and we provide
directions for further research.

2. Datasets

Data play an indispensable role in the classification of EEG signals, as they provide
the essential foundation for building and validating algorithms. Utilizing a rich set of EEG
data, researchers and engineers can train classifiers to recognize patterns that correspond to
different tasks. While private datasets may offer good and relevant data, their accessibility
is often restricted to certain institutions or researchers. Public datasets, on the other hand,
foster a more inclusive and collaborative approach, making them essential in advancing the
field, and they serve as benchmarks in order to make the comparison among the proposed
methods more efficient. Table 1 presents the characteristics of available MI public datasets,
such as number and type of EEG motor imagery classes, number of electrodes, sampling
rate, number of subjects per dataset, number of sessions, and total trials per dataset.
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Table 1. Publicly available EEG motor imagery datasets.
Number of Sampling Rate, =~ Number of Number of Number of
*
Datasets MI CLASSES Electrodes Hz Subjects Sessions Trials
BCI Competition II
dataset 3b [39] LH, RH 3 128 3 3 2800
BCI Competition III
dataset 4a [40] RH, RF 118 1000 4 1 1400
BCI Competition IV
dataset 2a [41] LH, RH, BL, T 22 250 9 2 5184
BCI Competition IV
dataset 2b [41] LH, RH 3 250 5 1 6480
EEGMMIDB [42] BL, LE, RE, BF 64 160 12 1 9100
High Gamma
Dataset [43] LH, RH 128 160 14 13 1000
MIJoint [44] RH, RE, RS 64 1000 25 7500
GigaDB [45] LH, RH 62 1000 54 2 21,600
MISCP [46] LH, RH% LL, RL, 19 200 13 75 4000
Hohyun
Cho et al. [47] LH, RH 64 512 52 1 5500
Brodu N et al. [48] LH, RH 11 512 1 3 560
nvividual RH, FT 30 256 9 2 1400
imagery [49]
EFE EE, FS, FP,
Ofner et al. [50] HO, HC 61 512 15 2 6300

* LH: left hand, RH: right hand, RL: right leg, LL: left leg, BL: both legs, T: tongue, RE: right elbow, RS: resting
state, EF: elbow flection, EE: elbow extension, FS: forearm supination, FP: forearm pronation, HO: hands open,
HC: hands closed, BF: both fists, LF: left fist, RF: right fist.

3. Deep Learning

In the following section, we delve into a comprehensive analysis of the most prevalent
methods used in the deep learning domain for the interpretation of EEG (electroencephalog-
raphy) data in the context of brain—-computer interface (BCI) with a focus on motor imagery
tasks. Our analysis explore a range of approaches from CNNs, which are extensively used
due to their proficiency in handling spatial and temporal information, to transfer learning,
deep neural networks, and other architectures.

3.1. Convolutional Neural Networks

CNNs mimic the operational principles of the human visual cortex and possess the
ability to dynamically comprehend spatial hierarchies in EEG data, recognizing patterns
associated with motor imagery tasks through multiple layer transformations [51]. A CNN
architecture begins with an input layer that accepts raw or preprocessed EEG data as shown
in Figure 9. These data can be represented in various formats, such as time—frequency
images, allowing the network to effectively process and analyze the brain signals associated
with motor imagery. These data are then convolved using multiple kernels or filters,
enabling the network to learn local features. Subsequently, the network employs a pooling
layer for dimensionality reduction, refining the comprehension of the information. As the
model progresses through these layers, it acquires the capacity to understand increasingly
complex features. The final component is a fully connected (dense) classification layer
that maps the learned high-level features to the desired output classes, such as different
types of motor imagery, effectively acting as a decision-making layer that converts abstract
representations into definitive classifications.
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Figure 9. Typical EEG CNN architecture [52].

Dose et al. proposed a CNN trained on 3 s of segments from EEG signals [53]. The
proposed method achieved an accuracy of 80.10%, 69.72%, and 59.71% on two, three, and
four MI classes, respectively, on the Physionet dataset.

Miao M et al. proposed a CNN with five layers to classify two motor imagery tasks,
right hand and right foot, from the BCI Competition III-IV-a dataset, achieving a 90%
accuracy [54].

Zhao et al. proposed a novel CNN with multiple spatial temporal convolution (STC)
blocks and fully connected layers [55]. Contrastive learning was used to push the negative
samples away and pull the positive samples together. This method achieved an accuracy of
74.10% on BCI I1I-2a, 73.62% on SMR-BCI, and 69.43% on OpenBMI datasets.

Liu et al. proposed an end-to-end compact multibranch one-dimensional CNN (CMO-
CNN) network for decoding MI EEG signals, achieving 83.92% and 87.19% accuracies on
the BCI Competition IV-2a and the BCI Competition IV-2b datasets, respectively [56].

Han et al. proposed a parallel CNN (PCNN) to classify motor imagery signals [57].
That method, which achieved an average accuracy of 83.0% on the BCI Competition IV-
2b dataset, began by projecting raw EEG signals into a low-dimensional space using a
regularized common spatial pattern (RCSP) to enhance class distinctions. Then, the short-
time Fourier transform (STFT) collected the mu and beta bands as frequency features,
combining them to form 2D images for the PCNN input. The efficacy of the PCNN
structure was evaluated against other methods such as stacked autoencoder (SAE), CNN-
SAE, and CNN.

Ma et al. proposed an end-to-end, shallow, and lightweight CNN framework, known
as Channel-Mixing-ConvNet, aimed at improving the decoding accuracy of the EEG-Motor
Raw datasets [58]. Unlike traditional methods, the first block of the network was designed
to implicitly stack temporal-spatial convolution layers to learn temporal and spatial EEG
features after EEG channels were mixed. This approach integrated the feature extraction
capabilities of both layers and enhanced performance. This resulted in a 74.9% accuracy
rate on the BCI IV-2a dataset and 95.0% accuracy rate on the High Gamma Dataset (HGD).

Ak et al. performed an EEG data analysis to control a robotic arm. In their work,
spectrogram images derived from EEG data were used as input to the GoogLeNet. They
tested the system on imagined directional movements—up, down, left, and right—to
control the robotic arm [59]. The approach resulted in the robotic arm executing the
desired movements with over 90% accuracy, while on their private dataset, they achieved
92.59% accuracy.

Musallam Y et al. proposed the TCNet-Fusion model, which used multiple techniques
such as temporal convolutional networks (TCNs), separable convolution, depthwise con-
volution, and layer fusion [60]. This process created an imagelike representation, which
was then fed into the primary TCN. During testing, the model achieved a classification
accuracy of 83.73% on the four-class motor imagery of the BCI Competition IV-2a dataset
and an accuracy of 94.41% on the High Gamma Dataset.
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Zhang et al. proposed a CNN with a 1D convolution on each channel followed by a 2D
convolution to extract spatial features based on all 20 channels [61]. Then, to deal with the
high computational cost, the idea of pruning was used, which is a technique of reducing
the size and complexity of the neural network by removing certain connections or neurons.
In the proposed method, a fast recursive algorithm (FRA) was applied to prune redundant
parameters in the fully connected layers to reduce computational costs. The proposed
architecture achieved an accuracy of 62.7% in the OPENBCI dataset. A similar approach
was proposed by Vishnupriya et al. [62] to reduce the complexity of their architecture.
The magnitude-based weight pruning was performed on the network, which achieved an
accuracy of 84.46% on two MI tasks (left hand, right hand) in Lee et al.’s dataset.

Shajil et al. proposed a CNN architecture to classify four MI tasks, using the common
spatial pattern filter on the raw EEG signal, then using the spectrograms extracted from the
filtered signals as input into the CNN [63]. The proposed method achieved an accuracy of
86.41% on their private dataset.

Korhan et al. proposed a CNN architecture with five layers [64]. The proposed
architecture was compared using only the CNN without any filtering, then with five
different filters, and finally, with common spatial patterns followed by the CNN with the
last architecture, which achieved the highest accuracy of 93.75% in the BCI Competition
III-3a dataset.

Alazrai et al. proposed a CNN network, with the raw signal transformed into the
time—frequency domain with the quadratic time—frequency distribution (QTFD), followed
by the CNN network to extract and classify the features [65]. The proposed method was
tested on their two private datasets, with 11 MI tasks (rest, grasp-related tasks, wrist-related
tasks, and finger-related tasks) and obtained accuracies of 73.7% for the able-bodied and
72.8% for the transradial-amputated subjects.

Table 2 summarizes the research articles that utilize CNNs along with the tasks, the
datasets used, and their performance.

Table 2. Reviewed CNN architectures, datasets and their accuracies.

Authors Accuracy Dataset MI Tasks
Dose et al. [53] 59.71% EEGMMIDB LH, RH, RS, BL
Miao M et al. [54] 90% BCI III-4, private RH, RF
74.10%, 73.62%, BCI I1I-2a, SMR-BCI,
Zhao R et al. [55] 69.43% OpenBMI RH, RF
Liu X et al. [56] 83.92%, 87.19% BCI IV-2a, BCI IV-2b LH,RH,BL, T
Han et al. [57] 83% BCI IV-2b LH, RH
Ma et al. [58] 74.9%, 95.0% BCI IV-2a, HGD LH,RH,BL, T
Ak et al. [59] 92.59% Private U,D,L,R
Musallam 83.73%, 94.41% BCI IV-2a, HGD LH, RH, BL, T
et al. [60]
Zhang et al. [61] 62.7% OpenBMI LH, RH
Vishnupriya o
etal. [62] 84.46% Lee et al. LH, RH
Shajil et al. [63] 86.41% Private LH, RH, BH, BL
Korhan et al. [64] 93.75% BCI III-3a LH,RH,BL, T
. o o . RS, SDG, LG, ETG, RDW,
Alazrai et al. [65] 73.7%, 72.8% Private EW, FI, EM, FR, FL, FT

LH: left hand, RH: right hand, RL: right leg, BL: both legs, T: tongue, RS: resting state, BF: Both fists, LF: left fist,
RF: right fist, U: up, D: down, L: left, R: right, SDG: small-diameter grasp, LG: lateral grasp, ETG: extension-type
grasp, RDW: ulnar and radial deviation of the wrist, EW: extension of the wrist, FI: flexion and extension of
the index finger, FM: flexion and extension of the middle finger, FR: flexion and extension of the ring finger,
FL: flexion and extension of the little finger.
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3.2. Transfer Learning

In the realm of machine learning, transfer learning offers a valuable approach to
improve model performance and efficiency. It involves leveraging the knowledge learned
from one task and applying it to a different but related task. The foundation of transfer
learning lies in pretrained models, which have been trained on large-scale datasets. This
approach is beneficial when considering the computational resources required for training
deep learning models from scratch, i.e., time, complexity, and hardware. Transfer learning
also offers a noble solution when available training data are not enough to train effectively
novel deep learning models. In these situations, where collecting training data is hard or
expensive, as in the case of EEG data, a need to develop robust models using available
data from diverse domains arises. However, the effectiveness of transfer learning relies on
the learned features from the initial task being general and applicable to the target task.
By transferring this learned knowledge to a new model and fine-tuning it on a smaller,
domain-specific dataset, we can effectively tackle new problems with limited labeled data.

Some popular deep learning models utilized for transfer learning are AlexNet [66],
ResNet18 [67], ResNet50, InceptionV3 [68], and ShuffleNet [69]. These models are CNN
networks trained on millions of images to classify different classes. For example, AlexNet
consists of eight layers with weights, the first five are convolutional layers followed by
max-pooling layers, and the last three layers are fully connected layers followed by a
softmax layer to provide a probability distribution over the 1000 class labels. Figure 10
shows the architecture of the AlexNet architecture.

192 128 204¢ 204

g \dense

48
- — 3 = dense n.
S 27 ENIN 3] B {13 i dense
IR 3‘ ] 1000

o 192 192 128 Max
228\llstrige Max 128 Max pooling
of 4 pooling pooling

3 48

2048 2048

Figure 10. AlexNet architecture [66].

ResNet (residual network) is a deep learning model in which the weight layers learn
residual functions with reference to the layer inputs. This method addresses the problem
of vanishing gradients in deep neural networks by introducing skip connections, also
known as residual blocks. The information can flow directly across multiple layers, mak-
ing it easier for the network to learn complex features. There are various versions of
ResNet utilized for EEG classification, e.g., ResNet34, ResNet50, etc. Figure 11 shows the
architecture of ResNet.

While some research papers rely on pretrained models for transfer learning, others
take a different approach. Let N be the total number of subjects in a dataset. Researchers
train a custom CNN on N-1 subjects, and afterwards, they use the trained CNN as a
base model for transfer learning. That is, they use the remaining N subject to train the
aforementioned CNN, and afterwards, they finetune the whole model. Moreover, some
research papers ([70,71]) opt for alternative architectures, such as the one proposed by
Schirrmeister et al. [43], to facilitate transfer learning in their studies.

Zhang et al. utilized transfer learning to train a hybrid deep neural network (HDNN-
TL) which consisted of a convolutional neural network and a long short-term memory
model, to decode the spatial and temporal features of the Ml signal simultaneously [72]. The
classification performance on the BCI Competition IV-2a dataset by the proposed HDNN-TL
in terms of kappa value was 0.8 (outperforming the rest of the examined methods).
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Figure 11. Architecture of the ResNet [67].

Wei et al. [70] proposed a multibranch deep transfer network, the Separate-Common-
Separate Network (SCSN) based on splitting the network’s feature extractors for individual
subjects, and they also explored the possibility of applying maximum mean discrepancy
(MMD) to the SCSN (SCSN-MMD). They tested their models on the BCI Competition IV-2a
dataset and their own online recorded dataset, which consisted of five subjects (male) and
four motor imageries (relaxing, left hand, right hand, and both feet). The results showed
that the proposed SCSN achieved an accuracy of (81.8%, 53.2%) and SCSN-MMD achieved
an accuracy of (81.8%, 54.8%).

Limpiti et al. used a continuous wavelet transform (CWT) to construct the scalograms
from the raw signal, which served as input to five pretrained networks (AlexNet, ResNet18,
ResNet50, InceptionV3, and ShuffleNet) [73]. The models were evaluated on the BCI
Competition IV-2a dataset. On binary (left hand vs. right hand) and four-class (left hand,
right hand, both feet, and tongue) classification, the ResNet18 network achieved the best
accuracies at 95.03% and 91.86%.

Wei et al. [74] utilized a CWT to convert the one-dimensional EEG signal into a
two-dimensional time-frequency amplitude representation as the input of a pre-trained
AlexNet and fine-tuned it to classify two types of MI signals (left hand and right hand).
The proposed method achieved a 93.43% accuracy on the BCI Competition II-3 dataset.

Arunabha proposed a multiscale feature-fused CNN (MSFFCNN) efficient transfer
learning (TL) and four different variations of the model including subject-specific, subject-
independent, and subject-adaptive classification models to exploit the full learning capacity
of the classifier [75]. The proposed method achieved a 94.06% accuracy on for four dif-
ferent MI classes (i.e., left hand, right hand, feet, and tongue) on the BCI Competition
IV-2a dataset.

Chen et al. proposed a subject-weighted adaptive transfer learning method in conjunc-
tion with MLP and CNN classifiers, achieving an accuracy of 96% on their own recorded
private dataset [76].

Zhang et al. proposed five schemes for the adaptation of a CNN to two-class motor
imagery (left hand, right hand), and after fine-tuning their architecture, they achieved an
accuracy of 84.19% on the public GigaDB dataset [71].

Solorzano et al. proposed a method based on transfer learning in neural networks to
classify the signals of multiple persons at a time [77]. The resulting neural network classifier
achieved a classification accuracy of 73% on the evaluation sessions of four subjects at a
time and 74% on three at a time on the BCI Competition IV-2a dataset.

Li et al. proposed a cross-channel specific-mutual feature transfer learning (CCSM-FT)
network model with training tricks used to maximize the distinction between the two
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kinds of features [78]. The proposed method achieved an 80.26% accuracy on the BCI
Competition IV-2a dataset.
A summary of the aforementioned methods can be found in Table 3.

Table 3. Reviewed transfer learning architectures and their accuracies.

Authors Accuracy Dataset MI Tasks
Zang et al. [72] 0.8 (kappa) BCIIV-2a LH,RH, BL, T
Wei et al. [70] 81.8%, 54.8% BCIIV-2a, private LH, RH
Limpiti et al. [73] 95.03%, 91.86% BCIIV-2a LH,RH, BL, T
Wei M et al. [74] 93.43% BCIII-3 LH, RH
Arunabha M. [75] 94.06% BCIIV-2a LH,RH, BL, T
Chen et al. [76] 96% Private EB,L RS
Zhang et al. [71] 84.19% GigaDB LH, RH
Solorzano et al. [77] 74% BCIIV-2a LH,RH,BL, T
LiDetal. [78] 80.26% BCIIV-2a LH,RH, BL, T

LH: left hand, RH: right hand, RL: right leg, BL: both legs, T: tongue, RS: resting state, BF: Both fists, LF: left fist,
RF: right fist, F: forward, B: backward, L: left, R: right, R: rest, S: stop.

3.3. Deep Neural Networks

Deep neural networks, a subset of artificial neural networks, have the ability to tackle
complex problems. Unlike shallow neural networks that consist of only a few layers, deep
neural networks are characterized by their depth, featuring multiple hidden layers between
the input and output layers. Each hidden layer progressively extracts higher-level features
from the data, allowing the network to learn complex representations and patterns from
vast quantities of data.

Suhaimi et al. [79] proposed a deep neural network with four layers each including
50, 30, 15, and 1 node, respectively, achieving a 49.5% classification accuracy in the BCI
Competition IV-2b with two MI tasks selected (arm and foot movement).

Cheng et al. proposed a deep neural network which accepted as input multiple sub-
bands of the raw signal extracted by a sliding window strategy [80]. Under these sub-bands,
diverse spatial-spectral features were extracted and fed into a deep neural network for
classification, achieving an accuracy of 71.5% on their private dataset.

Yohanandan et al. proposed a binary classifier (relaxed and right-handed MI tasks)
using a deep neural network with the p-rhythm (8-12 Hz frequency) data being fed into the
network [81]. The authors used different sliding windows from 1 s to 9 s to determine the
highest-accuracy window. An average accuracy of ~83% was achieved on their privately
collected dataset from seven human volunteers.

Kumar et al. proposed a deep neural network for the classification of extracted features
using a common spatial pattern in the BCI Competition III-4a dataset, achieving an accuracy
of ~85% on two MI tasks (right hand and left foot) [82].

Table 4 shows the performance of each one of the aforementioned architectures.

Table 4. Reviewed deep neural network architectures and their accuracies.

Authors Accuracy Dataset MI Tasks
Suhaimi et al. [79] 49.5% BCI Competition 2b LH, RH
Cheng et al. [80] 71.5% Private LH, RH
Yohonanndan et al. [81] 83% Private RS, RH
Kumar et al. [82] ~85% BCI Cﬁrlr_lf:tltlon RH, LF

LH: left hand, RH: right hand, LF: left foot, RS: resting state.
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3.4. Others

Several alternative methods have been proposed for classifying motor imagery (MI)
tasks, aiming at leveraging the potential of different deep learning techniques. Autoen-
coders [83], which are designed for data reconstruction, have been explored in the context
of MI task classification. Autoencoders are neural network architectures that consist of
two main phases: encoding and decoding. During the encoding phase, the input signal is
passed through a neural network with a progressively reduced number of neurons in each
layer until it reaches the bottleneck layer, which has a lower dimensionality compared to
the input data. In the decoding phase, the network strives to reconstruct the original signal
from this lower-dimensional representation, preserving essential information. This encod-
ing stage in autoencoders enables them to effectively learn compressed representations of
input data, such as EEG data, by reducing its dimensionality while retaining significant
information. Figure 12 shows an autoencoder used to reconstruct an EEG signal.

Autoencoder

Reconstructed
Signal

1 sec EEG Segment Output Class:

Classifier Epileptic/

ic
PllEp

Figure 12. Autoencoder architecture [84].

Autthasan et al. proposed an end-to-end multitask autoencoder and tested it on three
datasets, BCI Competition IV-2a, SMR-BCI, and OpenBMI, achieving accuracies of 70.09%,
72.95%, and 66.51%, respectively [85].

Similarly, capsule networks, which introduce a hierarchical structure to capture pose
and viewpoint information, have shown promising results in MI task classification [86].
Capsules in capsule networks utilize vector-based representations. This property enables
the network to capture hierarchical relationships and spatial dependencies among features.
Each capsule comprises a group of neurons, with each neuron’s output representing a
different property of the same feature, enabling the recognition of the whole entity by first
identifying its parts. Ha et al. proposed a capsule network, using the images extracted
with the short-time Fourier transform as input to the capsule network [87]. Their proposed
method achieved a 77% accuracy on the BCI competition IV-2b dataset (left-hand and
right-hand MI tasks).

Long short-term memory (LSTM) networks [88], a type of recurrent neural network,
have been utilized to model temporal dependencies in MI data, enabling effective sequence
learning for classification. Leon-Urbano et al. proposed an LSTM approach on an MNE
python library dataset which consisted of two MI tasks (feet, hands), and after fine-tuning
their model, they achieved a 90% accuracy [89]. Saputra et al. also deployed an LSTM
network on the BCI Competition IV-2a dataset, achieving an accuracy of 49.65% [90].
Hwang et al. also performed a classification based on an LSTM on the BCI competition
IV-2a dataset with a feature extraction based on overlapping band-based FBCSP (filter-bank
common spatial pattern), with an accuracy of 97% [91].

Ma et al. proposed a parallel architecture including a temporal LSTM and a spatial
bidirectional LSTM [92]. The proposed method was tested on the four MI tasks (moving
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both feet, both fists, left fist and right fist) from the EEGMMIDB dataset and achieved an
accuracy of 68.20%.

Another proposed method is the restricted Boltzmann machine [93], a type of proba-
bilistic graphical model, leveraging its ability to model joint probability distributions. Xu
et al. utilized a restricted Boltzmann machine and a support vector machine (SVM) to
classify and recognize deep multiview features [94]. The proposed method achieved an
accuracy of 78.50% on the BCI competition IV-2a dataset.

Moreover, metalearning [95] empowers models to acquire the skill of learning on their
own, with a limited quantity of data. This is achieved through training the model on a
diverse range of tasks, allowing it to leverage the knowledge gained from these tasks when
presented with new challenges. Among the various metalearning algorithms, one of the
most prominent ones is MAML (model-agnostic metalearning) [95]. MAML trains the
model to efficiently update its parameters, facilitating a rapid adaptation to new tasks with
minimal updates. Li et al. proposed a metalearning method which learned from the output
of other machine learning algorithms [96]. The proposed method achieved an 80% accuracy
on the Physionet dataset (on left fist vs. right fist and both fists vs. both feet).

Contrastive learning [97] is a self-supervised learning technique that aims to create
meaningful representations by contrasting positive and negative pairs of data. Han et al.
proposed the so-called contrastive learning network. The proposed method was tested on
the BCI competition IV-2a dataset achieving an accuracy of 79.54% when all the training
labels were used [98].

A deep belief network (DBN) [99] is an unsupervised neural network known for its
feature extraction from raw data. It uses a two-step training process: unsupervised pretrain-
ing with a restricted Boltzmann machine and supervised fine-tuning. Li et al. proposed a
deep belief architecture where the time—frequency information from the raw EEG signal
was fed into the DBN, which was used for the identification and classification [100]. The
proposed method achieved an accuracy of 93.57% on the BCI competition II-3 dataset.

A synopsis of the above-mentioned proposals can be found in Table 5.

Table 5. Other reviewed deep learning architectures and their accuracies.

Authors Accuracy Dataset MI Tasks Architecture
. . BCIIV-2a,
Autthasan et al. 70.09%, 702.95 % SMR_BCI, Open LH, RH, BL, T Autoencoder
[85] 66.51%
BCI
Ha et al. [87] 77% BCI IV-2b LH, RH Capsule network
Urbano et al. [89] 90% MNE dataset BF, BH LSTM
Saputra et al. [90] 49.65% BCI IV-2a LH,RH, BL, T LSTM
Hwang et al. [91] 97% BCI IV-2a LH,RH, BL, T LSTM
Ma et al. [92] 68.20% EEGMMIDB LFE RF, BL, BF LSTM, bi-LSTM
Xu et al. [94] 78.50% BCIIV-2a LH,RH, BL, T Boltzmann
Machine
Lietal. [96] 80% EEGMMIDB LFE RF, BL, BF Meta-learning
Han et al. [98] 79.54% BCI IV-2a LH, RH, BL, T Contrastive
learning
Li et al. [100] 93.57% BCIII-3 LH, RH Deep belief
network

LH: left hand, RH: right hand, RL: right leg, BL: both legs, T: tongue, RS: resting state, BF: both fists, LF: left fist,
RF: right fist.
4. Hybrid Methods

Hybrid neural networks are a powerful fusion of different types of artificial neural
networks, combining the strengths of various architectures to address complex problems
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effectively. By integrating components from different neural network types, such as con-
volutional neural networks (CNNs), recurrent neural networks (RNNs), and feedforward
neural networks (FNNs), hybrid networks can leverage their specialized capabilities to
tackle complex problems.

4.1. CNN-Based
4.1.1. CNN and LSTM

Amin et al. proposed a novel deep learning-based lightweight model based on an
attention-inception convolutional neural network and long short-term memory [101]. The
model was tested on the BCI Competition IV-2a dataset and the High Gamma Dataset,
achieving accuracies of 82.8% and 97.1%, respectively.

Khademi et al. proposed a CNN-LSTM hybrid network to extract spatial and temporal
sequence features simultaneously and compared it with the same architecture but with
pretrained CNN models, ResNet-50 and Inception-v3 [102]. A CWT was used to generate a
2D representation in the time—frequency domain as input for the CNN. The highest accuracy
was 86% and achieved with the Inception-v3 hybrid network on the BCI Competition
IV-2a dataset.

Echtioui et al. compared a CNN model and a CNN-LSTM model with similar archi-
tectures, showing that the addition of the LSTM layer in the model performed worse in
terms of accuracy [103]. The CNN-LSTM model achieved a 55.55% accuracy on the BCI
Competition IV-2a dataset as opposed to 62.45% for their CNN method.

Li et al. proposed a hybrid network combining a CNN, a DNN, and an LSTM, each as
an independent classifier [104]. First, the HNN made a separate prediction for each of the
three networks. These predictions were then normalized so that they added up to one. This
was done to ensure that the predictions from the three networks could be compared with
each other. The maximum prediction from each network was then selected. This gave three
values, one for each network. The largest of these three values was then selected as the final
prediction. The proposed method achieved an accuracy of 72.22% on the BCI competition
IV-2a dataset.

Li et al. [105] proposed a hybrid neural network combining a deep-separation CNN
(DSCNN), which is a convolution network divided into two or more convolutions to
produce the same output, and a bidirectional LSTM (BLSTM). The proposed model achieved
a 98.09% accuracy on the EEGMMIDB dataset, which contains five tasks (eyes closed,
open/close left and right fists and open/close both fists, and open/close both feet).

Fadel et al. proposed a hybrid neural network consisting of a deep CNN followed
by an LSTM, layer using as input to the model delta [0.5-4 Hz], mu [8-13 Hz], and beta
[13-30 Hz] frequency bands [106]. The model was tested on the EEGMMIDB dataset, which
includes five different classes (four motor imagery tasks and one resting task), achieved an
accuracy of 70.64%. Table 6 shows in brief the hybrid CNN-LSTM architectures.

Table 6. Reviewed hybrid CNN-LSTM architectures and their accuracies.

Authors Accuracy Dataset MI Tasks
Amin et al. [101] 82.8%, 97.1% BCIIV-2a, HGD LH,RH,BL, T
Khademi et al. [102] 86% BCIIV-2a LH,RH,BL, T
Echtioui et al. [103] 55.55% BCIIV-2a LH,RH,BL, T
Lietal. [104] 72.22% BCIIV-2a LH,RH,BL, T
Lietal. [105] 98.09% EEGMMIDB RC, LE RF, BE, BL
Fadel et al. [106] 70.64% EEGMMIDB RC, LF, RF, BE, BL

LH: left hand, RH: right hand, RL: right leg, RS: resting state, BL: Both legs.
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4.1.2. CNN and Autoencoders

Tabar et al. proposed a model with a CNN acting as a feature extractor and a stacked
autoencoder with six hidden layers acting as a classifier [107]. The proposed architecture
achieved an accuracy of 77.6% in the BCI Competition IV-2b dataset.

Dai et al. proposed a model with a CNN acting as a feature extractor but a variation
autoencoder which is a directed model that uses learned approximate inference and can be
trained purely with gradient-based methods, with seven layers acting as a classifier [108].
The proposed method was tested on the BCI competition IV dataset 2b achieving a kappa
value of 0.564.

Hwaidi et al. proposed a network with a variational autoencoder to denoise the signal,
followed by a CNN model to extract features and classify the processed signal [109]. The
model was tested on the MI tasks of the Physionet dataset MI tasks, left fist, right fist, both
fists, and both feet, achieving an accuracy of 98.20%.

A summary of these methods is given on Table 7.

Table 7. Reviewed hybrid CNN + AE architectures and their accuracies.

Authors Accuracy Dataset MI Tasks
Tabar et al. [107] 77.6% BCIIV-2b LH,RH,BL, T
Dai et al. [108] 0.564 (kappa) BCIIV-2b LH, RH
Hwaidi et al. [109] 98.20% EEGMMIDB RC, LF, RF, BE, BL

LH: left hand, RH: right hand, RL: right leg, RF: right fist, LF: left fist, RS: resting state, BL: both legs, T: tongue,
BF: both fists.

4.1.3. Other CNN Architectures

Gomes et al. proposed a hybrid pretrained CNN (VGG16 and LeNet) and random
forests with 100 trees to classify right- and left-hand MI tasks on the BCI Competition
IV-2b dataset [110]. Pseudosinogram images were fed to the pretrained model to extract
features and then to a random forest classifier. The VGG16 pretrained model slightly
outperformed the LeNet with an accuracy of 89.13 and 89.10, respectively, after performing
data augmentation.

Ma et al. proposed a CNN that extracted relevant spatial information, which was
followed by a transformer layer which captured the long-range dependencies and temporal
relationships between different EEG signal segments [111]. The proposed method achieved
an accuracy of 83.91% on the BCI Competition IV-2a dataset.

Gao et al. [112] proposed a gated recurrent unit (GRU) and convolutional neural
network (CNN), receiving inputs simultaneously, with the CNN extracting frequency and
spatial features and the GRU extracting temporal features from the signal, combining their
output as an input to the classifier. The proposed method was tested on the BCI competition
IV-2a dataset and achieved an accuracy of 80.7%.

Ye et al. proposed a hybrid model with a CNN architecture with three layers with a
“ReLU” activation, followed by a gated recurrent unit (GRU) with 64 units to extract the
time-dependent relationship [113]. This method achieved an accuracy of 99.40% on the BCI
competition IV-2a dataset.

In Table 8, a summary of the discussed architectures is given.

Table 8. Other CNN-based architectures reviewed with their accuracies and architecture.

Authors Accuracy Dataset MI Tasks Architecture
Gomes et al. [110] 89.13% BCIIV-2b RH, LH CNN + RF
Maetal. [111] 90% BCIIV-2a RH,LH,BL, T CNN + Transformer
Gaoetal. [112] 80.7% BCIIV-2a RH,LH,BL, T CNN + GRU
Ye et al. [113] 99.40% BCIIV-2a RH, LH, BL, T CNN + GRU

LH: left hand, RH: right hand, RL: right leg, RS: resting state, BL: both legs, T: tongue.
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4.2. Other Methods

Almagor et al. utilized an autoencoder to denoise the signal, comprising of three layers
for the encoder and three layers for the decoder, followed by a feature extractor (filter-bank
common spatial patterns) and a feature selector (mutual information-based best individual
feature), to act as an input to the SVM classifier [114]. The proposed method achieved an
accuracy of 59.6% on two MI tasks (right hand, relax) on their privately collected dataset.

Stephe et al. [115] proposed a method which first used an empirical mode decom-
position (EMD) to decompose the EEG signals into intrinsic mode functions (IMFs), and
then these signals were feed into a GAN which was trained to distinguish between EEG
signals for two different motor imagery tasks (right hand, right foot). The proposed method
achieved an accuracy of 95.29% on the BCI competition IlI-4a dataset.

Xu et al. proposed a method where time, frequency, time—frequency, and spatial
features were extracted from the raw EEG signal, then fed into a multilayer restricted Boltz-
mann machine network followed by a support vector machine for the classification [94].
The proposed method achieved an accuracy of 78.50% on the BCI competition IV-2a dataset.

Jiang et al. proposed an autoencoder for dimensionality reduction, in combination with
a transformer layer, which consisted of an encoder and a decoder, each with a multihead
attention layer and a feedforward layer [116]. The proposed method was tested on the BCI
Competition III-3 dataset and achieved an accuracy of 91.30% for left-hand and right-hand
MI tasks.

A short summary of the above papers is presented in Table 9.

Table 9. Other reviewed architectures and their accuracies and architecture.

Authors Accuracy Dataset MI Tasks Architecture
Almagor et al. [114] 59.6% Private RH, RS AE + SVM
Stephe et al. [115] 95.29% BCI I1I-4a RH, RF EMD + GAN
Xu et al. [94] 78.50% BCIIV-2a RH,LH, BL, T RBM + SVM
Jiang et al. [116] 91.30% BCI III-3 LH, RH AE + transformer

LH: left hand, RH: right hand, RS: resting state, BL: Both legs, T: tongue, RF: right foot.

5. Discussion

This literature review provides a comprehensive overview of the flourishing research
landscape within the realm of brain—-computer interfaces (BCIs) utilizing electroencephalo-
grams (EEGs), with a specific focus on the motor imagery paradigm. Notably, the integra-
tion of deep learning methodologies, particularly convolutional neural networks (CNNs),
has emerged as a prominent and successful approach, yielding notable improvement in
terms of accuracy rates when applied to relevant datasets. It is imperative to acknowl-
edge that the efficacy of deep learning and hybrid deep learning, comes hand in hand
with the substantial computational power it demands, thereby signifying a notable cost
implication. The complex nature of CNN algorithms necessitates a substantial volume of
training patterns, ranging from tens of thousands to even millions in certain instances, to
facilitate an optimal performance and robust generalization. Complex algorithms benefit
from extensive and robust datasets, with the BCI competition IV-2a dataset serving as a
key reference point for researchers. However, the EEG-based BCI field urgently requires
more comprehensive and larger public datasets to propel progress and innovation. While
combining datasets may seem like a viable solution to enhance dataset size, the diverse
sampling rates, electrode configurations, and motor imagery tasks across different datasets
present integration challenges. To address this, some researchers turn to data augmentation
techniques, such as utilizing GANS, to artificially expand dataset size. This not only helps
prevent overfitting but also enhances model resilience, particularly in the presence of
real-world environmental noise, resulting in more robust and practical EEG-based BCI
models. Besides the requirement for large datasets, these complex algorithms also require a
vast amount of computational power and time to train. For this reason, some authors such
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as Zhang et al. [61] have addressed this problem by using techniques such as pruning, to
reduce the amount of time needed to train the network. As the field advances, it becomes
imperative to not only address the computational demands of these intricate architectures
but also to simultaneously enhance their efficiency and real-world applicability.

Within the realm of brain—computer interface (BCI) research, a consistent pattern
emerges: the notable increases in accuracy can predominantly be attributed to the initial
stages of preprocessing and the extraction of relevant features. This encompasses activities
such as enhancing signals and exploring the time—frequency domain. This pivotal prepara-
tory phase, which involves refining raw signals and extracting informative features, stands
as a pivotal factor in achieving substantial progress in accuracy across various algorithmic
approaches, which can be seen in Korhan et al.’s paper [64], which compares the same
network architecture with different feature inputs.

The concept of “BClI illiteracy” [20] holds some significance. BCI illiteracy refers to
the challenge that some individuals may face in effectively modulating their brain activity
to produce distinguishable patterns during motor imagery tasks. This phenomenon can
stem from various factors, such as a lack of familiarity with the task, insufficient cognitive
engagement, or physiological variations that affect EEG signals. Addressing Ml illiteracy is
essential in designing inclusive and accessible BCls, necessitating personalized training
protocols, task adaptations, and innovative algorithms to accommodate users with varying
levels of proficiency in generating discernible Ml-related EEG patterns.

In the realm of motor imagery (MI), the number of commands that can be reliably
extracted is inherently limited, as can be observed by the dataset’s distinct classes. This
limitation arises due to the finite nature of distinct motor imagery tasks that users can
effectively perform and differentiate in their mental simulations. The challenge lies in
striking a balance between expanding the range of commands for diverse applications
and maintaining a manageable set of tasks that users can consistently generate through
mental imagery. This constraint underscores the importance of thoughtful task selection
and user-centric design in the development of effective systems within the MI paradigm.

Finally, Table 10 offers a comparative analysis of the aforementioned algorithms,
showcasing their respective strengths, weaknesses, and prospects for future research.

Table 10. Advantages and disadvantages of the reviewed methods.

Architecture Advantages Disadvantages
Deep learning High accuracy ngh.computatlonal c.omplex1ty,
requires a vast quantity of data
CNN Effective feature extraction Computationally expensive
Auto encoder Unsuperv1s?d feature Potential for vargshmg /exploding
learning gradients
. Hyperparameter tuning may be
Neural network High accuracy
needed
Increased complexity, requires more
Hybrid deep learning Combmatlpn of multiple computatl(')nal resources, requires a
architectures vast quantity of data, requires more

time to train the model

Combined spatial and
CNN + LSTM temporal information for Computationally expensive
improved accuracy

Benefit from both spatial
CNN + AE feature extraction and
unsupervised pr-training

Computationally expensive, potential
for vanishing/exploding gradients
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6. Future Research Directions

The consideration of computational time in real-time applications is crucial when
evaluating machine learning and deep learning techniques. While deep learning indeed
achieves elevated accuracy rates, the question of whether the benefits outweigh the compu-
tational burden becomes paramount. Although the inference of DL is quite fast and can
be considered as real time, DL intricate architectures demand significant computational
resources. That is, very powerful computers (in terms of processing power, memory, GPUs)
are needed to train DL models, typically in a significant time. Balancing the pursuit of
accuracy with the deployment of DL models that need less resources and less time to train
remains a pivotal challenge.

The transition from a controlled lab environment with stable patients to a real-time
application in a dynamic real-world setting introduces a notable shift in challenges. In
the real environment, various types of noise can infiltrate the EEG signal, factors such
as environmental interference, movement artifacts, and physiological variations. These
noise sources can significantly degrade signal quality, making accurate interpretation
and classification more difficult. Therefore, addressing the complexities of the real-world
research field necessitates increased attention and consideration.

The dataset’s diversity and quality are crucial aspects, encompassing a range of
characteristics specific to each dataset. Nevertheless, the absence of a standard benchmark
dataset presents a notable constraint. This gap could potentially be mitigated through
augmentation methods, including artificial augmentation. By layering additional variations
onto existing data, these techniques aim to expand the dataset’s horizon, simulating diverse
real-world scenarios. However, it is crucial to recognize that artificial augmentation might
fall short in fully replicating the complexities of human experiences and interactions.
Moreover, uncertainties persist regarding the exact conditions under which the experiments
are conducted, adding an additional layer of complexity to the datasets.

7. Conclusions

In this paper, a thorough review of motor imagery (MI) EEG-based brain— computer
interface (BCI) techniques was presented. This study delved into the realm of both deep
learning and hybrid deep learning methodologies. Through an exploration of recent
progress, this literature review provided a comprehensive and up-to-date insight into the
advancements within this domain. Moreover, a discussion on the presented techniques
was provided along with a comparison among them and future research directions.
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