
Citation: Teutscher, D.; Weckerle, T.;

Öz, Ö.F.; Krause, M.J. Interactive

Scientific Visualization of Fluid Flow

Simulation Data Using AR

Technology-Open-Source Library

OpenVisFlow. Multimodal Technol.

Interact. 2022, 6, 81. https://doi.org/

10.3390/mti6090081

Academic Editor: Mu-Chun Su

Received: 16 August 2022

Accepted: 7 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Multimodal Technologies
and Interaction

Article

Interactive Scientific Visualization of Fluid Flow Simulation
Data Using AR Technology-Open-Source Library OpenVisFlow
Dennis Teutscher *, Timo Weckerle, Ömer F. Öz and Mathias J. Krause

Lattice Boltzmann Research Group, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
* Correspondence: dennis.teutscher@kit.edu

Abstract: Computational fluid dynamics (CFD) are being used more and more in the industry to
understand and optimize processes such as fluid flows. At the same time, tools such as augmented
reality (AR) are becoming increasingly important with the realization of Industry 5.0 to make data
and processes more tangible. Placing the two together paves the way for a new method of active
learning and also for an interesting and engaging way of presenting industry processes. It also
enables students to reinforce their understanding of the fundamental concepts of fluid dynamics in an
interactive way. However, this is not really being utilized yet. For this reason, in this paper, we aim to
combine these two powerful tools. Furthermore, we present the framework of a modular open-source
library for scientific visualization of fluid flow “OpenVisFlow” which simplifies the creation of such
applications and enables seamless visualization without other software by allowing users to integrate
the visualization step into the simulation code. Using this framework and the open-source extension
AR-Core, we show how a new markerless visualization tool can be implemented.

Keywords: AR; CFD; open source; scientific visualization; OpenLB; library; QR code; geometry
overlap; teaching

1. Introduction

Computational fluid dynamics (CFD) is a very useful tool to understand and optimize
complex processes and machines. It is widely used in industries such as automotive [1],
aerospace [2], and chemical engineering. Thus, the simulation results serve as a basis for
decision-making. Since CFD is already part of the everyday life of an engineer, this tool is
being taught to students as standard during studies. However, building and understand-
ing resulting simulation data can be very time-consuming, and additional tools such as
Paraview or Gnuplot are needed to bring the results into a suitable and presentable form.
Depending on the discipline, this can be a problem for teaching, as students can lose their
concentration over time [3]. This in turn leads to a worsened learning experience. It can be
helpful if the simulation results are visualized in advance or just in time, so that students
can better interact with them.

In the past few years, there has been a strong growth in the demand for augmented
reality (AR) and virtual reality (VR) applications, as Mojtaba Noghabaei et al. [4] show in
their work, taking into account extensive surveys. AR in particular is increasingly used
in areas such as medicine, mechanical engineering, and process engineering. Even for
the medical field, especially for surgery, it can be a powerful tool to provide additional
information to the surgeon, as shown in the work by Raabid Hussain et al. [5]. In the work
by Anna V. Iatsyshyn et al. [6], they analyze in detail the usability in the modern era. They
show that AR has a significant value for teaching. Furthermore, they explain that there are
currently not many experts in this field and that future experts should be trained for the
new technological era. While there are already specific applications that combine CFD with
AR, there is not yet one that provides an interface to easily visualize any simulation.

Multimodal Technol. Interact. 2022, 6, 81. https://doi.org/10.3390/mti6090081 https://www.mdpi.com/journal/mti

https://doi.org/10.3390/mti6090081
https://doi.org/10.3390/mti6090081
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mti
https://www.mdpi.com
https://doi.org/10.3390/mti6090081
https://www.mdpi.com/journal/mti
https://www.mdpi.com/article/10.3390/mti6090081?type=check_update&version=2

Multimodal Technol. Interact. 2022, 6, 81 2 of 21

Several AR applications are already available that are geared toward the teaching
field, and many areas benefit from these. The application cleARmath [7] can visualize
vector geometries in AR and thus provide a playful learning experience as well as a better
understanding of the position of planes, vectors, etc. TeachAR [8] is an application that
allows non-English speakers to playfully learn colors, 3D shapes, and spatial relations in
English. The BARETA [9] application is designed to provide medical students with a better
understanding of where the ventricular system is located in the brain. Evaluations were
carried out for each of the applications mentioned. The majority of the persons tested
were able to derive a benefit from the respective application. Based on this information,
an application that visualizes complex processes such as fluid flow in AR would be a
viable tool to better understand them. There are already AR applications with respect to
computational fluid dynamics (CFD). In their work, Jia-Rui Lin et al. [10] visualized the
thermal environment that occurs indoors in AR. They developed their own file format
(cfd14a) which can be accessed via a server on the smartphone. There are several papers
dealing with the visualization of CFD simulations [11–15].

Serkan Solmaz and Tom Van Gerven [16] describe in their work that CFD simulations
are difficult to understand for non-experts, which limits their use. They present a method
using Unity with the Vuforia extension to retrieve CFD simulations from a server and
display them in AR. In our work, we take a different approach. We do not use the closed-
source extension Vuforia, but the open-source variant Google AR Core. With this, we are
able to develop an open-source modular library. The goal is to create an interface between
powerful tools such as CFD and AR visualization that can be used by developers to create
applications that can visualize complex processes. Furthermore, the main goal of the library
is to fully integrate visualization into the simulation itself to allow users to visualize the
mentioned processes on a cluster and stream the results in real time. Such a feature would
enable interesting training and testing applications in a variety of domains. In this paper,
we present the framework for such a library, which allows us to embed computed transport
fields into 3D objects. In addition, the library allows the developer to choose from different
visualization methods. One of these methods is the markerless geometry overlay that we
developed, which is also presented in this paper. Since the ARCore extension is open source,
everything can be customized to the user’s personal needs. Extensions such as Vuforia do
not allow this because they are closed source. This enables research into new visualization
approaches, as shown in this paper with the novel markerless geometry overlay.

The contributions in our paper can be summarized as follows: Development of an
application OpenLBar with updateable simulations; a method of geometry overlay without
using a neural network; introducing an open-source library for AR application development.
The resulting framework allows an easy extension of visualization methods and offers the
possibility to fully integrate simulations into the code.

In the remainder of the paper, we first present the basic concept of our project. Then,
the functionalities of the application and the open-source library are presented in the real-
ization part using the example application OpenLBar. Finally, the advantages of visualizing
simulations in AR are quantitatively and qualitatively reviewed.

2. Concept

The main aim is a scientific visualization concept that allows CFD data to be expe-
rienced with AR/VR and provides an interface between simulation and visualization
software. Creating a direct link between the two allows for the direct visualization and
subsequent streaming from the cluster as well as an option to integrate changes made in
VR back to the simulation on the cluster. In short, it would allow for the creation of a truly
interactive simulation environment.

The visualization should be in different display modes such as screen, AR, and VR.
As shown in Figure 1, it should also serve as a direct interface between simulation software
and the visualization tool. With it, different applications, such as OpenLBar, which is
presented in this paper, can be created. OpenLBar is the first result of this library.

Multimodal Technol. Interact. 2022, 6, 81 3 of 21

In the CFD area, the Navier–Stokes equation (NSE) is of particular importance. For sim-
plicity, we consider the simplified NSE for non-compressible fluids [17]. This is defined as

D~u
Dt

= −∇p
ρ

+ ν · ∆~u + ~F, (1)

where D
Dt =

δ
δt
+ u · ∇ is the material derivative which indicates the temporal and spatial

changes; ρ is the density; ∆ is the Laplace operator; ν is the kinematic viscosity; ∇p is
the pressure gradient; ~F is the force vector; and ~u is the velocity vector. By solving this
equation with the finite difference or lattice Boltzmann method (LBM), one then obtains
the information about the pressures p and the velocities u. It should be noted that the LBM
equations are not the same as the NSE, since they describe the mesoscopic level; however,
the NSE can be recovered from LBM with the Chapman–Enskog analysis [18], although
this will not be discussed further here, since it is not the focus of this work.

Version September 2, 2022 submitted to Journal Not Specified 3 of 21

The visualization should be in different display modes like screen, AR, and VR. As90

shown in Figure 1, it should also serve as a direct interface between simulation software91

and the visualization tool. With it, the different applications like OpenLBar, which is92

presented in this paper, can be created. OpenLBar is the first result of this library.93

In the CFD area, the Navier-Stokes equation (NSE) is of particular importance. For94

simplicity, we consider the simplified NSE for non-compressible fluids [17]. This is95

defined as96

Du⃗
Dt

= −∇p
ρ

+ ν · ∆u⃗ + F⃗, (1)

where D
Dt =

δ
δt
+ u · ∇ is the material derivative which indicates the temporal and spatial97

changes.; ρ is the density; ∆ is the Laplace operator; ν is the kinematic viscosity; ∇p is98

the pressure gradient; F⃗ is the force vector and u⃗ is the velocity vector. By solving this99

equation with the finite difference or lattice Boltzmann method (LBM), one then obtains100

the information about the pressures p and the velocities u. It should be noted that the101

LBM equations are not the same as the NSE, since it describes the mesoscopic level,102

however the NSE can be recovered from LBM with the Chapman-Enskog analysis [18].103

Although, this will not be discussed further here, since it is not the focus of this work.104

OpenVisFlow

OpenLB OpenFOAM

p , u⃗ UnityAR-Core

VR AR

Figure 1. Concept of the OpenVisFlow library, bridging the gap between simulation software (red)
and helping libraries (yellow) to directly write programs and apps that scientifically visualize the
calculated flows in AR, VR, or on an ordinary screen. Some of the OpenVisFlows functions can be
seen in the OpenLBar application.

There are several ways to make the results obtained by the simulation software105

usable for the library. In the first, we access the simulation software directly with106

functions. However, this only works if the simulation is running in near real-time.107

Figure 1. Concept of the OpenVisFlow library, bridging the gap between simulation software (red)
and helping libraries (yellow) to directly write programs and apps that scientifically visualize the
calculated flows in AR, VR, or on an ordinary screen. Some of the OpenVisFlows functions can be
seen in the OpenLBar application.

There are several ways to make the results obtained by the simulation software usable
for the library. In the first, we access the simulation software directly with functions.
However, this only works if the simulation is running in near real time. For this reason, this
will be implemented at a later time . In the second solution, and thus the one pursued in
this paper, ready-made simulations are provided externally. These are then to be displayed
using different visualization techniques. To achieve this, an RES interface between web

Multimodal Technol. Interact. 2022, 6, 81 4 of 21

server and end device is implemented. For the development of our visualization methods,
we access the functionalities of Unity and AR Core. To show the use of OpenVisFlow,
an application named OpenLBar was created with it. This is intended to allow students
to interact with simulations of fluid flows and thereby gain a better understanding of the
complex processes involved.

3. Realization

In this section, we first discuss the method for providing the simulation data. For this,
we use a server, as in [16], on which the data are stored ready for retrieval. What follows is
the visualization of the CFD data on a QR code. Here, instead of the closed-source extension
Vuforia, as in [16], the open-source variant Google ARCore is used. After that, the marker-
less geometry overlay is described. Since the making of 3D objects and the implementation
of AR-Code can be a lengthy, drawn-out process, we propose and implement a framework
for an open-source library in order to simplify and streamline the visualization process.
As already stated in Section 2, the goal of this library is to bridge the present gap between
simulation software and visualization. Currently, in order to visualize simulations, one
must resort to separate programs such as Paraview. It is our goal to implement a library so
that simulation and visualization can be implemented and executed at the same time to
allow for a more optimized and efficient workflow, and eventually to allow for real-time
physical simulations that are interactive. As can be seen from Figure 1, the library will use
well-known and already tested simulation software such as OpenFOAM and OpenLB, take
the results thereof, and visualize them using different tools and devices.

3.1. Providing the Simulation Data

Creating simulation data and making them presentable can be very time-consuming
and computationally intensive. Students or teaching staff usually do not always have the
time and/or expertise to create these themselves. Furthermore, simulations can take up a
significant amount of memory. Consequently, this has a strong impact on the use of the
application for teaching. For this reason, the application OpenLBar allows the simulation
data intended for teaching to be loaded onto the smartphone via a cloud, as shown in
Figure 2. The data are provided by experts in the simulation field. Additionally, the user
also has the option to store the simulation data locally or temporarily in the cache so that
the storage space of the smartphone is not taken up by the transferred data. Figure 3a
shows that in the application, the simulations are selectable from a drop-down menu.
The available data update with changes on the cloud and do not need to be synchronized
manually. Figure 3b shows the user options after selecting the desired simulation.

Version September 2, 2022 submitted to Journal Not Specified 4 of 21

For this reason, this will be implemented at a later time . In the second solution, and108

thus the one pursued in this paper, ready-made simulations are provided externally.109

These are then to be displayed using different visualization techniques. To achieve this,110

a RES interface between web server and end device has been implemented. For the111

development of our visualization methods, we access the functionalities of Unity and112

AR Core. To show the use of OpenVisFlow, an application named OpenLBar was created113

with it. This is intended to allow students to interact with simulations of fluid flows and114

thereby gain a better understanding of the complex processes involved.115

3. Realization116

In this section, we first discuss the method for providing the simulation data. For117

this, we use a server as in [16] on which the data are stored ready for retrieval. What118

follows is the visualization of the CFD data on a QR code. Here, instead of the closed119

source extension Vuforia as in [16], the open-source variant Google ARCore is used. After120

that, the markerless geometry overlay is described. Since the making of 3D objects and121

the implementation of AR-Code can be a lengthy drawn-out process, we propose and122

implement a framework for an opensource library in order to simplify and streamline the123

visualization process. As already stated in Section 2, the goal of this library is to bridge124

the present gap between simulation software and visualization. Currently, in order to125

visualize simulations, one must resort to separate programs such as Paraview. It is our126

goal to implement a library so that simulation and visualization can be implemented127

and executed at the same time to allow for a more optimized and efficient workflow,128

and eventually to allow for real-time physical simulations that are interactive. As can129

be seen from Figure 1, the library will use well-known and already tested simulation130

software such as OpenFOAM and OpenLB, take the results thereof, and visualize them131

using diffent tools and devices.132

3.1. Providing the simulation data133

Database REST
Application
OpenLBar

Simulation data
corresponding JSON

HTTP Response

HTTP Request

.unity3D, JSON

GET

Figure 2. Schematic representation of the requests and dataflows used in OpenLBar using a REST
interface.

But creating simulation data and making it presentable can be very time-consuming134

and computationally intensive. Students or teaching staff usually do not always have135

the time and/or expertise to create these themselves. Furthermore, simulations can take136

up a significant amount of memory. Consequently, this has a strong impact on the use137

of the application for teaching. For this reason, the application OpenLBar allows the138

simulation data intended for teaching to be loaded onto the smartphone via a cloud as139

shown in Figure 2. The data is provided by experts in the simulation field. Additionally,140

the user also has the option to store the simulation data locally or temporarily in the141

Figure 2. Schematic representation of the requests and data flows used in OpenLBar using an
REST interface.

Multimodal Technol. Interact. 2022, 6, 81 5 of 21

(a) (b)

Figure 3. Selection of the simulation data to be displayed above the QR code seen in the background.
(a) Data selection options that can be viewed. (b) Data selection user prompt to decide how to handle
large files.

This functionality is realized through the WebApiDataManager of OpenVisFlow, which
can be seen in Figure 4. When connected to a correct REST interface on a server, it will
generate a list of accessible datasets which are then linked with a name through a dictionary,
so that they can be displayed in a more user-friendly way. Using this, the name loading
request can be started in three different ways. First, the dataset in question can be down-
loaded with the startFileToMemoryDownload function from the server onto the device, saving
it on the local drive for later use. With the startFileToCacheDownload function, OpenLBar
can download the datasets into the cache, so that the data will be deleted after they are no
longer used, so as to not fill up the device’s storage. Lastly, if a dataset has already been
saved to local storage, it can be loaded by using the loadFromFile function. After loading has
finished, the WebApiDataManager will initiate the transformation of the loaded simulation
data into Unity Game objects. This transformation will be covered more thoroughly in the
appropriate section.

WebApiDataManager

+url : string
+localPath : string
+options : Dictionary<string,string>
+isConnected : bool
+isDownloading : bool

+WebApiDataManager(url : string, localPath : string, downloadMarker() : string)
+getDownloadMarker() : string
+frameupdate() : void
+startFileToCacheDownload(key : string) : void
+startFileToMemoryDownload(key : string) : void
+loadFromFile(key : string) : void
+deleteFromDevice(key : string) : void

Figure 4. Class diagram of the WebApiDataManager with all essential functions and fields.

Multimodal Technol. Interact. 2022, 6, 81 6 of 21

3.2. Visualization of the Simulations

This section presents the visualization methods that are currently provided
by OpenVisFlow.

3.2.1. QR Code Tracking

Among other things, the application OpenLBar allows one to visualize simulations
above a QR code. As already mentioned, our application is based on Unity and the
open-source extension Google ARCore. For this particular case, it was decided to use the
functionality trigger image, which allows one to overlay objects and models over a given
image. To this end, we implemented a QRCodeVisualizer class dedicated to tracking and
managing trigger images, which, in our case, is a QR code. The corresponding class is
shown in Figure 5. In essence, the QRCodeVisualizer checks if a trigger image is visible in
every frame, and, if yes, if we have already instantiated a SimulationData on it. To save
resources, the QRCodeVisualizer checks conversely whether simulation data has been
instantiated on the trigger image and whether they are still visible. If this is the case,
the simulation data are deleted as they are no longer needed.

QRCodeVisualizer

+animationSpeed : float
+zoomOutMin : float
+zoomOutMax : float
+animate : bool
+foundImage : bool
-currentIndex : int
-nextIndex : int
+QRCodeVisualizer(animationSpeed : float, @object : Object, zoomOutMin : float,
zoomOutMax :float)
+frameupdate() : void
+changeObject(obj : Object) : void
-handleTrackables() : void
-addGameObject(image : AugmentedImage) :void
-addAnimationParameters(GameObject a) : void
-animateSimData() : void

Figure 5. Class diagram of the QRCodeVisualizer with an overview of the essential functions
and fields.

As mentioned above, we need some kind of update function that is called at every
frame and checks if the AR session is set up correctly as well as whether we are currently
actively tracking with the camera. If this is the case, the handleTrackables() method can
be called, where all tracked images are checked for visualizations. Depending on the
situation, addGameObject() or removeGameObject() is invoked. Another part of the frame
update function must be an update of all existing instantiated simulation data, where the
scale and position can be changed. As for placement, the visualizer simply places the 3D
object at a certain distance above the QR code, depending on its size, and scales the longest
side of the object to the length of one side of the QR code. Since the visualizer is responsible
for the scale of our object, it is here where we implement a zoom functionality with which
one can use two fingers to enlarge or size down the simulation data and obtain a better
view of certain areas of the simulation results. The zoomUpdate() method takes user input
and converts it into a linear scaling of the simulation data size, either up- or downsizing
it depending on the swipe direction. The setMaterial() method can be used to change the
point sizes of the point cloud that is used to visualize the simulation results, or its color
scheme, and the changeObject() method can be used to change the displayed 3D simulation
data to a different one so that one can view a different simulation. With this, we now have
a working AR visualization tool for displaying simulation results.

Multimodal Technol. Interact. 2022, 6, 81 7 of 21

3.2.2. Geometry Overlay

Visualizing simulations on a QR code is a handy method of viewing and interacting
with complex processes to obtain a better understanding of the visualized process. However,
in certain cases, it is advantageous to overlay the simulation results with an associated
geometry to better and more intuitively understand the mentioned process. One of the
biggest problems with this type of AR visualization is to figure out where to place the object,
how big it is supposed to be, and what rotation needs to be applied. Solid localization is
needed for an AR application to be useful and convincing. For the result to be fully utilized,
the visualized 3D data must be very close to the original in both position and scale. To
achieve this, the functionality feature tracking was used. As the name suggests, this is a
process in which distinguishable points are marked and tracked with the phone’s camera.
In this case, it was decided to use the built-in feature detection of Google’s AR-Core Library.
With it, OpenLBar is able to create a list of notable points in any room and track their
positions even when the camera is moving. The next step is to determine the position
and scale of our virtual object and fit it to the real object. We realize this by selecting two
known points on the object and using the distance between them to scale the virtual object
to the appropriate size. However, since we rely on feature detection to track points with
the camera, we need to use points that are salient enough for AR-Core to detect. To make
the selection process more consistent and user-friendly, we decided to use the edges of
our object. The contrast on the edges of the real object allows reliable feature detection
there. Thus, it is intuitively clear which points are to be used for scaling. For this edge
selection, we implemented a user interface that allows the user to drag a slider over the
correct location on the screen. When released, the system automatically finds the nearest
feature point.

This is achieved by casting a ray from the selected point on the screen and a ray along
the view of the camera, as shown in Figure 6. The distance of each feature point to the
thrown ray is then given by

d =
||(~p− ~O) · ~dir||
|| ~dir||

, (2)

with d representing the distance to the ray, ~p the location of the relevant feature point, ~O
the position of the camera, and ~dir the direction of the ray which can be derived from the
chosen screen point and the camera rotation. The feature point with the smallest distance to
our ray is then selected. However, this method of point selection has one major drawback.
Sometimes, this algorithm selects a point that is not at the same depth as the object because
a point in the background is closer to the ray, as shown in Figure 7. This leads to significant
errors in scaling and rotation. Therefore, this error must be taken into account, as shown in
Figure 8.

Figure 6. A ray cast from the camera through a field of trackable feature points. The red point is the
one chosen by the algorithm, since its distance from the ray is the smallest.

Multimodal Technol. Interact. 2022, 6, 81 8 of 21

Figure 7. Visualization of how the algorithm can choose the wrong feature point, leading to large
discrepancies in depth and subsequently scaling and positioning.

To achieve this, we can consider the object as a plane perpendicular to the camera’s
line of sight and draw a line from the selected point to this plane. The intersection of these
two is given by

~Pa = (~P2 − ~O) ·
~P1 ·~n

(~P2 − ~O) ·~n
(3)

where ~Pa is the depth-adjusted feature point, ~P2 is the feature point to be adjusted, ~P1 is
the closest feature point to the camera, ~O is the camera position, and~n is the normal of the
plane and the camera view direction.

Figure 8. Visualization of how the algorithm accounts for depth discrepancies and chooses a better
suited point for the scaling and positioning of the virtual object.

The intersection point can now be used as our depth-corrected point to place and scale
the virtual object. This results in a much smaller error. We always use the point closest to
the camera. The reason for taking this approach is that it is unlikely that the user will have
many significant contrasts between himself and the object being viewed. This makes it
much more likely that it is the point that is placed on the object. The placement and scaling
itself can be performed by calculating the scale factor, which is given by

scaleFactor =
modelLength
realLength

, (4)

Multimodal Technol. Interact. 2022, 6, 81 9 of 21

and we can position it in the middle of the two selected feature points. For objects with a
wide base, we are still left with a significant depth error because placement is at the front
end of the object; however, since we know how wide the base of the object is, we can move
the z-axis back by half the length to compensate for this.

The GeometryOverlapVisualizer implements this functionality using points in worlds’
space as anchors, which are set with the placeAnchor() method. Figure 9 shows all functions
that are relevant in order to use the GeometryOverlapVisualizer.

GeometryOverlapVisualizer

+animate : bool
+pointsOfInterest : List<GameObject>
+trackPOI : bool
+GeometryOverlapVisualizer(poiModel : GameObject, plyScale : float
+placeAnchor(p1 : Vecotr3, p2 : Vector3) : void
+changeObject(obj : Object) : void

Figure 9. Class diagram of the GeometryOverlapVisualizer with all relevant functions and fields.

Figure 10a,b show the results using a real decanter and the CAD counterpart.

(a) (b)

Figure 10. Example of geometry overlay on a decanter centrifuge. (a) Decanter preplacement with
visible feature point tracking. (b) Decanter overlaid over real decanter centrifuge.

3.2.3. Animation

The simulation software OpenLB, which is mainly used for the creation of the simula-
tions, outputs the simulation results as a collection of files of the type Visualization Toolkit
(vtk). Each of these files represents a time step of the simulation in question and contains
all data in regards to the calculated fields. Using programs such as Paraview, these data
can then be converted into different 3D data types, such as the binary GL transmission
file format (GLB) or the polygon file format (PLY). On the one hand, the GLB file format
could be used. Due to the possibility to save rotations and translations with the 3D file,
this is a widely used file format in the AR/VR scene. However, it is not suitable for our

Multimodal Technol. Interact. 2022, 6, 81 10 of 21

purposes because the particle motion of simulations can be very complex. This makes it
very costly to store our simulations in a GLB file. For this reason, we decided to convert the
data of each time step into a PLY 3D model. In this file format, the 3D data are built up from
polygons. They are stored in a list with vertices, triangles, and edges. In this way, we obtain
the state of each time step as a 3D file, which can then be shown one after another, creating
an effect similar to a stop-motion animation. Figure 11 shows this with the example of a
simulation of particles from a decanter. The first time step is shown in Figure 11a and the
last is shown in Figure 11b.

(a) First time step (b) Last time step

Figure 11. Results of a particle simulation in a decanter centrifuge, visualized using a polygon file
fomat: (a) shows the first time step and (b) the last time step of the simulation. With each time step,
the particles migrate further.

In order to achieve the aforementioned effect, a child object named simulation data,
with all of the .ply meshes attached as children, is added to our main object. We can then
circle through the meshes, activating the next and deactivating the current mesh in order to
achieve a fluid animation. Since the method of animation is specific to the case, and we
want the library OpenVisFlow to be as expandable as possible, the implementation for the
animation falls into the case-specific visualizers, in this case, the GeometryOverlapVisual-
izer and the QRCodeVisualizer. In this way, it is possible to take advantage of different file
formats and animation methods using different visualizers.

As seen in Figure 12, the animation is controlled using the public float animationspeed
and automatically set up for new simulation data, using the addAnimationParameters method,
when the changeObject() function is called. The animation is then started with the animateS-
imData() method, using a background thread, so that it does not become frame-dependent
when loading sequences and other calculation-intensive operations are launched.

QRCodeVisualizer

+animationSpeed : float
+animate : bool
-animationIndex : int
-previous : int
-nextFrame : float
+QRCodeVisualizer(animationSpeed : float, @object : Object, zoomOutMin : float,
zoomOutMax :float)
+frameupdate() : void
-addDependencies(obj : GameObject) : void
-addAnimationParameters(GameObject a) : void
-animateSimData() : void

Figure 12. Class diagram of the QRCodeVisualizer with all relevant fields and functions
regarding animations.

3.2.4. User Interactions

User interactions are very important to give users a better experience and to make
them have more fun exploring. They also help them better understand the results of the
simulations. By its very nature, augmented reality provides the ability to view the sim-
ulation results from different angles; however, from our perspective, the benefits of AR

Multimodal Technol. Interact. 2022, 6, 81 11 of 21

can be better utilized if additional engaging features are implemented. As already men-
tioned in Section 3.2.3, we offer users the possibility to control the speed of the simulations
themselves. Thus, for example, the user is able to slow down the simulations in order to
look at and understand parts of them in more detail. Furthermore, we implemented a
zoom function so that the user can scale simulations as desired, making it possible to focus
in on specific areas to deepen one’s understanding of the processes at work. To give our
application a bit more specificity, we also decided to implement a color legend to make
it easier for users to actually use these images to figure out how fast the fluids move at
which point in their object. Figure 13 shows the zoom function and color legend using the
visualization of a cooling truck and a bee.

Finally, we wanted to further improve the ability to view virtual data on a real object.
To this end, we implemented a way of visualizing only parts of the object. Basically, one
can control which parts of the simulation will be shown and which parts will just show
the outside wall of the object, giving one the options of seeing cross-section shots and
isolating areas for inspection which otherwise would not have been visible behind layers of
simulation data. This works by inputting what we call a cutting plane. If a point is on the
visible side of it we display it; if it is on the other side we set its alpha to zero, in essence
making it invisible. The results of this can be seen in Figure 14. Future versions may include
more differentiated methods of defining the visible areas. At the moment, the cross sections
are made visible with shaders written by Abdullah Aldandarawy out of the Cross Section
Shader add-on from the Unity Asset Store.

(a) (b) (c)

(d) (e) (f)

Figure 13. Here, you can see the simulations on the QR code with different zoom. Figure 13a–c shows
this on the basis of the cooling truck and Figure 13d–f on the basis of the OlBee. (a) Cooling truck
zoomed out. (b) Cooling truck medium zoom. (c) Cooling truck zoomed in. (d) OLBee zoomed out.
(e) OLBee medium zoom. (f) OLBee zoomed in.

Multimodal Technol. Interact. 2022, 6, 81 12 of 21

(a) (b) (c)

Figure 14. Implementation of the CuttingPlane UI by Abdullah Aldandarawy from the Cross Section
Shader add-on from the Unity Asset Store. (a) CuttingPlane frontal orientation. (b) CuttingPlane
rotated sideways. (c) CuttingPlane rotated over all axes.

3.3. Open-Source Library

Unity is a powerful tool for developing games and AR/VR applications. We see a
great potential for teaching, but also for industry to visualize complex processes. This
motivated us to start developing a modular open-source library that allows users to quickly,
easily, and efficiently develop AR/VR applications for complex processes such as fluid flow.
As this paper is also the start of the library, it currently only contains the functionality to
create the application OpenLBar presented here. Further functionalities, such as an interface
between Unity and the simulation software, such as openLB, will be added soon. In the
following sections, the already existing classes and methods of the library are explained.
Furthermore, we show how the application OpenLBar can be easily reproduced with
its help.

3.3.1. Library Overview

As previously stated, the main goal of this library is to simplify the development
process of visualization tools. The library is structured around a main workflow, as can be
seen in Figure 15. This consists of three different parts: the DataManager, the Transformer,
and the Visualizer. In OpenVisFlow, the DataManager, as its name implies, implements
the acquisition and management of incoming data. It is supposed to act as a bridge
between our data source and our application to obtain the right data at the right time.
The goal is to keep the main workflow as simple and expandable as possible, so the
classes DataManager, Transformer, and Visualizer were implemented as abstract, requiring
only a few key features and leaving everything except the essentials to a case-by-case
implementation of an inherited class. As cases can also vary in the data types required,
the implementation of templates was unavoidable; both the Transformer and the Visualizer
are dependent on a certain input type of data, which is why both of them are templated
to their respective input data type T. In our example we only implemented a single data
manager, the WebAPIDataManager, for both cases. The WebAPIDataManager allows
the sending of web requests and the subsequent saving and/or loading data as binary
files. Next in line is the Transformer, which takes the provided data and transforms
them into a form needed by the visualization side. In the example, we implemented a

Multimodal Technol. Interact. 2022, 6, 81 13 of 21

ByteToAssetTransformer, which takes in a byte array and generates a Unity GameObject
from it, which can then be used by the Visualizers. As the name suggests, the Visualizers
implement the visualization side of the program. In it is the code for animation, placement,
and rotation of the Objects in the World. In our example case, we use two different
Visualizers, depending on the case. The QRCodeVisualizer enables Visualization above a
Triggerimage, in our case, a QRCode. Whenever a Triggerimage is found it will place the
GameObject the Transformer supplied right above it. It also implements scaling between a
min and max value as well as a public variable for animation speed. For the other case, we
implemeted the GeometryOverlapVisualizer, which allows one to overlay an Object in the
real World with a virtual twin, by supplying two of the edge points of the object. As of now,
the library will only work with Unity as we use Unity GameObjects and AR-Core to realize
the AR-visualization. We hope to expand this to Android Studio and other development
tools in the future.

As seen in Figure 15, to make OpenVisFlow work, a program needs a class pulling
all ties together. This case file needs to hold references to DataManager, Transformer,
and Visualizer, and is responsible for controlling all the different aspects of our app through
a UI. It also needs to implement some sort of frame update function and call the frameUpdate
method of the Visualizer and the DataManager to properly function. The following section
will contain more details about the aforementioned classes.

DataManager Transformer<T> Visualizer<T>

WebApiDataManager ByteToAssetTransformer

QRCodeVisualizer

GeometryOverlapVisualizer

QRCodeApp

GeometryOverlapApp

Figure 15. Overview of the classes that are currently implemented in the library and how they relate
to each other. The red classes are the case classes implementing the library and managing the UI.

3.3.2. DataManager

As stated above, the DataManager’s main objective is the acquisition and/or man-
agement of simulation data. Since these data can be obtained in a variety of different
ways and file formats, the DataManagers give the users an easy gateway into the library.
Figure 16 shows the WebApiDataManager with all of its functions and how it implements
the standard DataManager.

The WebApiManager is supposed to acquire a list of available simulation data from
our web server, which it can then download and manage on the local drive of the device.
To achieve this, the WebApiManager has two main parts, the first being the populateOp-
tions() function. In it, we check the REST-API and catalog all the available options and
compare them to the found data on our device. These options can then be accessed and
displayed in whatever way the developer sees fit. Secondly, it gives the developer the
option to use these options to initiate a download or local load routine and the following
transforming and displaying of said data.

Multimodal Technol. Interact. 2022, 6, 81 14 of 21
Version September 2, 2022 submitted to Journal Not Specified 14 of 21

DataManager

frameUpdateActions :
List<Action>
+frameUpdate() : void

WebApiDataManager

+url : string
+localPath : string
+options : Dictionary<string,string>
+isConnected : bool = false
+isDownloading : bool = false
-dataHasChanged : bool = false
-data : byte[]
-transformer : Transformer<byte[]>
-downloadMarker : string

+WebApiDataManager(url
: string, localPath : string,
t:Transformer<byte[]>,downloadMarker : string)
+getDownloadMarker() : string
-listenForDataUpdate() : void
-updateConnectionStatus() : void
-checkConnection() : void
-populateOptions() : void
-parseName(s : string) : string
+frameupdate() : void
+startLoadingRequest(name : string,
downloadToFile : bool) : void
+startFileToCacheDownload(key : string) : void
-doneDownloading(data : byte[]) : void
+startFiletoMemoryDownload(key : string) : void
+loadFromFile(key : string) : void
+deleteFromDevice(key : string) : void

Figure 16. Class diagram of the WebApiDataManager with all the functions und fields and its
connection to its Parentclass.

3.3.3. Transformer369

Next, we will take a look at the Transformer class. It is meant as a bridge between370

Visualizer and DataManager where we can take what-ever data is supplied from the371

DataManager and convert it into whatever form the Visualizer needs. We decided to372

make an extra Transformer class in order to make it easier to write and add in ones own373

Transformers and to keep a cleaner structure for better overview. In the case below, we374

read a byte array from a REST website API and need to convert it into a Unity object in375

order to visualize it using AR-Core. To this end, the Transformer was implemented as376

an abstract class templated to the datatype it needs to receive from the DataManager.377

The child then implements both the templated datatype as well as the transformData378

function which can then be called in the DataManager to start the transformation routine.379

This makes it easier for developers to see which Transformers already exist. At the same380

time, it is easier to work with a vast variety of different data types. The functions and381

fields of the transformer as well as its connection to its parent can be seen in Figure 17.382

How the Transformer interacts and relates to the rest of the library can be seen in383

Figure 15.384

3.3.4. Visualizer385

As the name suggests, the Visualizer serves to implement visualization of the data.386

Since the visualization methods vary widely, the Visualizer needs to be unrestricted387

by default so the only important decision to make is what datatype to use for your388

visualization and template the child class to it. We only implemented two examples to389

visualize 3D-models in AR using AR-Core, the class diagrams of which can be seen in390

Figure 18. In this case we use the Unity object type as our basis for visualization. In the391

Figure 16. Class diagram of the WebApiDataManager with all the functions and fields and its
connection to its parent class.

3.3.3. Transformer

Next, we take a look at the Transformer class. It is intended as a bridge between
the Visualizer and DataManager, where we can take whatever data are supplied from the
DataManager and convert them into whatever form the Visualizer needs. We decided to
make an extra Transformer class in order to make it easier to write and add in one’s own
Transformers and to keep a cleaner structure for a better overview. In the case below, we
read a byte array from an REST website API, and need to convert it into a Unity object
in order to visualize it using AR-Core. To this end, the Transformer was implemented
as an abstract class templated to the data type it needs to receive from the DataManager.
The child then implements both the templated data type as well as the transformData
function which can then be called in the DataManager to start the transformation routine.
This makes it easier for developers to see which Transformers already exist. At the same
time, it is easier to work with a vast variety of different data types. The functions and fields
of the transformer, as well as its connection to its parent, can be seen in Figure 17. How the
Transformer interacts and relates to the rest of the library can be seen in Figure 15.

Transformer<T>

+transformData(T data) :
void

ByteToAssetTransformer

-visulaizer : Visualizer<Object>
-loadedBundle : AssetBundle
+ByteToAssetTransformer(visualizer : Visual-
izer<Object>) : void
+transformData(data : byte[]) : void

Figure 17. Class diagram of the ByteToAssetTransformer with all the functions and fields, and its
connection to its parent class.

Multimodal Technol. Interact. 2022, 6, 81 15 of 21

3.3.4. Visualizer

As the name suggests, the Visualizer serves to implement visualization of the data.
Since the visualization methods vary widely, the Visualizer needs to be unrestricted by
default so the only important decision to make is what data type to use for your visualiza-
tion and template the child class to it. We only implemented two examples to visualize 3D
models in AR using AR-Core, the class diagrams of which can be seen in Figure 18. In this
case, we use the Unity object type as our basis for visualization. In the future, we want to
implement a variety of different visualization options using VR, AR, and other technologies.

Version September 2, 2022 submitted to Journal Not Specified 15 of 21

Transformer<T>

+transformData(T data) :
void

ByteToAssetTransformer

-visulaizer : Visualizer<Object>
-loadedBundle : AssetBundle
+ByteToAssetTransformer(visualizer
: Visualizer<Object>) : void
+transformData(data : byte[]) : void

Figure 17. Class diagram of the ByteToAssetTransformer with all the functions and fields and its
connection to its parent class.

future, we want to implement a variety of different visualization options using VR, AR,392

and other technologies.393

Visualizer<T>
frameUpdateActions :
List<Action>
+frameUpdate() : void
+changeObject(T obj) :
void

GeometryOverlapVisualizer

QRCodeVisualizer

Figure 18. Class diagram of the GeometryOverlapVisualizer with all essential functions and fields
and its connection to its parent class.

4. Results394

In this section, the appearance and fluidity of the resulting animations are discussed.395

Furthermore, an evaluation with students has been performed to determine student’s396

opinion concerning OpenLBar and AR/VR simulations. Finally, we look at the stability397

of the QR tracking as well as the accuracy of the manual geometry overlay.398

4.1. Quantitative results399

In this section, the OpenLBar application created with OpenVisFlow is tested for400

its suitability with the help of evaluation forms. The evaluation was conducted with401

13 master students. Most of the respondents were studying chemical and process402

engineering. The rest of the respondents have studied either mathematics or computer403

science. The evaluation forms consist of three sets of questions. The first set is primarily404

about the handling of the app. Since a practical application must be easy to use, the405

installation process and the occurrence of errors or circumstances are mainly queried406

here. In addition, the first set also asks to what extent the application appeals to the407

user. In the second set of the survey, sense and usefulness are examined. For this408

purpose, the respondents were asked to indicate, for example, to what extent they see409

OpenLBar as a useful supplement to the lectures. In addition, they were asked whether410

the understanding of engineering problems, especially in the field of fluid dynamics,411

is simplified by the application. In the third set, exercise tasks were to be examined.412

For this purpose, the subjects were asked to evaluate the extent to which the exercises413

provided them with new insights into fluid mechanics. Below, the evaluation of the414

question sets is discussed.415

Figure 18. Class diagram of the GeometryOverlapVisualizer with all essential functions and fields,
and its connection to its parent class.

4. Results

In this section, the appearance and fluidity of the resulting animations are discussed.
Furthermore, an evaluation with students was performed to determine students’ opinions
concerning OpenLBar and AR/VR simulations. Finally, we look at the stability of the QR
tracking as well as the accuracy of the manual geometry overlay.

4.1. Quantitative Results

In this section, the OpenLBar application created with OpenVisFlow is tested for its
suitability with the help of evaluation forms. The evaluation was conducted with 13 mas-
ter’s students. Most of the respondents were studying chemical and process engineering.
The rest of the respondents studied either mathematics or computer science. The evaluation
forms consisted of three sets of questions. The first set is primarily about the handling of
the app. Since a practical application must be easy to use, and the installation process and
the occurrence of errors or circumstances are mainly queried here. In addition, the first
set also asks to what extent the application appeals to the user. In the second set of the
survey, sense and usefulness are examined. For this purpose, the respondents were asked
to indicate, for example, to what extent they see OpenLBar as a useful supplement to the
lectures. In addition, they were asked whether the understanding of engineering problems,
especially in the field of fluid dynamics, is simplified by the application. In the third set,
exercise tasks were to be examined. For this purpose, the subjects were asked to evaluate
the extent to which the exercises provided them with new insights into fluid mechanics.
Below, the evaluation of the question sets is discussed.

4.1.1. First Set of Questions

Figure 19 shows a diagram of the evaluated questions on usability. As can be seen,
the OpenLBar application is an easy-to-use application in the eyes of the students. It is
positive to see here that, overall, there is very strong agreement among the respondents.
In addition, it is evident from the survey that OpenLBar is easy to understand by the
majority, but a certain proportion of respondents encountered comprehension problems.
Regarding the question as to whether the application had errors, a similar picture emerges:

Multimodal Technol. Interact. 2022, 6, 81 16 of 21

The majority of the students were of the opinion that no errors occurred; however, a large
number of them expressed having encountered problems. The answer as to whether the
installation process ran smoothly was answered positively or neutrally by most of the
respondents in the positive sense, whereby the neutral attitude made up for the largest
share of the results. The last question in the first block, as to whether the design of the
application was intuitive and appealing, was answered relatively diffusely. It should be
noted that there is a small tendency toward agreement, which is why we assume a positive
tendency. Overall, the usability seems to be good, and the application is very easy to
understand due to its design and simplicity, while there is still room for improvement in
the occurrence of errors.

Figure 19. First set of questions regarding the usability of OpenLBar.

4.1.2. Second Set of Questions

The questions from the second block are used to evaluate the usefulness of the OpenL-
Bar app. The data obtained are shown in Figure 20.

Figure 20. Second set of questions regarding the purpose of OpenLBar.

Multimodal Technol. Interact. 2022, 6, 81 17 of 21

The majority of the students were of the opinion that OpenLBar should be included
in the lecture course. It is noticeable that no student was negative toward this statement.
At the same time, the neutral stance makes up for the majority of the survey results for
the first question. Likewise, a majority of respondents believe that the application is a
useful addition to the lecture. Here, too, it is positively noticeable that there are no negative
evaluations and there is a strong tendency toward strong agreement. The third question,
i.e., as to whether the application does not provide a useful function, was answered quite
diffusely. However, it should be noted that the question was deliberately negated in order to
stimulate active thinking. Despite the change in question type, it is positively noticeable that
the majority of students think that OpenLBar has useful functions. In addition, responses
to the question about simplifying the understanding of fluid-named concepts were diffuse
as well. Although there is a tendency to agree here as well, it should be noted that there
are also many neutral attitudes. One person even completely agrees with this statement.
Finally, the last question evaluates the usefulness for solving engineering problems. Most
of the students cannot imagine using OpenLBar to solve certain problems. For solving
engineering-specific problems, as shown below, students primarily want customizable
controllers and parameters. However, they assign high utility to the functionality of the
application. Overall, students rate the application’s usefulness as positive. It is noteworthy
that some students would like AR applications to be included in academic courses.

4.1.3. Third Set of Questions

On the evaluation sheet, the students were given tasks to be answered using the
application. The first task asked where the air conditioner was located in the cooling truck.
The second task asked what conclusion could be drawn about the flow rate of the bee.
Afterwards, questions were asked regarding the completion of the tasks. Figure 21 shows
the data obtained.

Figure 21. Third set of questions regarding the applicability questions.

Multimodal Technol. Interact. 2022, 6, 81 18 of 21

As explained above, the scope of the problems is exactly two examples: on the one
hand, the ”cooling truck”, and on the other hand, the ”olbee”. The first question on these
tasks aims at gaining knowledge and should clarify whether the students gained new
insights into fluid dynamic concepts by working out and solving the case studies. Here, it
can be seen that, overall, there is a neutral to negative attitude toward the question. Next,
the second question evaluates to what extent general AR applications are a good tool or
aid for problem-solving. Here, it is positively noticeable that, in addition to the general
tendency to agree, a small group of two people even agree very much. Lastly, the students
are of the opinion that the questions were not too easy, with the note that the majority have
a neutral attitude. Overall, we can conclude that the application can be useful for solving
such tasks.

4.1.4. Free-Response Questions

In the last questionnaire block, students were offered free text blocks to express
comments, additions, and other remarks. This was aimed at obtaining more accurate
feedback. The question of whether the students encountered difficulties in general was
answered by saying that there are still some bugs that need to be fixed. Furthermore,
suggestions for improvement were also made. The next question asked was whether
AR/VR applications should be integrated into teaching. The overall response was very
positive about including modern technologies in teaching. The answers to the question
of whether OpenLBar should be used in other lectures were also positive. At last, they
were asked the question of what additions to the application would be desirable. Here,
it is noticeable that the students would like to adapt the application more according to
their needs.

4.2. Qualitative Results

In Figure 22, two example simulations are visualized. Figure 22a–d show a cooling
truck, and Figure 22e–h show the simulation of a bee from different angles. It can be seen
that the simulations do not have any noticeable flaws at first glance. Furthermore, with the
help of the color legend, one can roughly identify the velocities of the flows. In the case of
cooling trucks, for example, the velocities are fastest at the exit from the air-conditioning
unit mounted on the ceiling of the cargo hold. It can also be seen that the flows slow down
over time and approach a constant speed. In the case of the bee, it can be observed that the
velocities are zero at the apex of the wings and fastest just beyond. Figure 23 shows the
geometry overlay function of a decanter simulation on a real decanter centrifuge. It can be
seen that the simulation covers the real object well and all parts of the simulation are still
well recognizable.

4.3. Stability

QR code tracking and placing simulations usually do not show any stability problems.
However, when viewing the marker at an angle, the position of the object to be placed
may not fit exactly. This can be seen, for example, in Figure 22b. If this is ignored,
the application is stable in QR mode. On the other hand, the stability of the geometry
overlay highly depends on the lighting conditions. The worse the light, the fewer reference
points that are detected which enable the geometry overlay. In addition, after placing the
simulation, strong camera movements can cause the simulation to shift and no longer cover
the real geometry.

Multimodal Technol. Interact. 2022, 6, 81 19 of 21

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 22. Viewing the results on the QR code from different angles. Figure 22a–d show this using
the cooling truck and Figure 22e–h using the bee. (a) Cooling truck top down view. (b) Cooling truck
back side view. (c) Cooling truck left side view. (d) Cooling truck right side view. (e) OLBee top
down view. (f) OLBee back side view. (g) OLBee left side view. (h) OLBee right side view.

(a) (b) (c)

Figure 23. Results of geometry overlay using a decanter centrifuge as an example. (a) Decanter
front uncut. (b) Cooling truck front cut. (c) Cooling truck top cut.

5. Discussion

The results presented in Section 4 show that the OpenLBar application is able to visu-
alize simulation data in a sophisticated way for the eye and allows the user to interact with
it. This includes, on the one hand, the ability to view the simulations from different angles,
given by AR by default. Not to be neglected, however, is the zoom function for looking at

Multimodal Technol. Interact. 2022, 6, 81 20 of 21

parts of the simulation more closely, the cutting plane for removing 3D data that are in the
way, and the color legend that allows the user to develop an understanding of the velocities
of the moving flows of the simulation. In our opinion, this application is good for the user
to obtain insight into complex processes, which are usually not visible. In universities
and schools, often only the theory of some topics is taught in class, as visualization is
sometimes only feasible with difficulty. Thus, this is an especially useful tool for education
to provide students with a representation of theory in the form of simulations. We also see
the potential benefit for engineers to see the simulations from a new perspective, as well as
a tool to bring the simulations and possible problems closer to the customer. However, AR
visualization is not without problems. While it provides one with an easy-to-use intuitive
way of viewing simulation data, it is not as well suited to actually work with. Whilst
generating graphs, rendering videos, and such functions could all be implemented, they
would all come with a significant drawback in usability, since the phone’s touchscreen
surface is not the best tool for fine-tuning such selections. Furthermore, AR visualization
is dependent on how stable the AR side of the application works. If the tracking does
not work properly, the scene will shake and turn in unnatural ways, making proper AR
visualization impossible. These problems were solved with the OpenVisFlow library, as it
includes a stable AR implementation and provides an interface for ready-made simulations.
Thus, the data to be used can be processed externally with powerful tools such as Paraview
or Blender.

With this paper, the framework of this vizualization library was implemented and with
this, the created application shows a stable and reliable method of visualization.The eval-
uations in Section 4 show that there is a demand for applications which allow users to
interact with CFD simulations in AR; however, they also stated that they want customizable
simulations. This cannot be achieved with pre-compiled simulations. Therefore, the main
goal of this library is to implement visualization tools, including real time visualization.
To achieve this, the next step in the development of this library is the implementation of
cluster-oriented tools to visualize simulations just in time.

Author Contributions: Conceptualization, D.T. and M.J.K.; methodology, D.T.; software, D.T. and
T.W.; validation, D.T., T.W. and M.J.K.; formal analysis, D.T.; investigation, D.T. and M.J.K.; resources,
M.J.K.; data curation, D.T.; writing—original draft preparation, D.T.; writing—review and editing,
D.T., T.W., Ö.F.Ö. and M.J.K.; visualization, D.T. and T.W.; evaluation, D.T. and Ö.F.Ö.; supervision,
M.J.K.; project administration, M.J.K.; funding acquisition, M.J.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by The Ministry of Science, Research and the Arts of the State of
Baden-Württemberg, grant number 34-7811.553-4/5, and by the Lattice Boltzmann Research Group.

Institutional Review Board Statement: Ethical review and approval were waived for this study, as it
is a visualization-based application that only trains the understanding of complex fluid flow.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thabet, S.; Thabit, T.H. CFD simulation of the air flow around a car model (Ahmed body). Int. J. Sci. Res. Publ. 2018, 8, 517–525.

[CrossRef]
2. Fujii, K. Progress and future prospects of CFD in aerospace—Wind tunnel and beyond. Prog. Aerosp. Sci. 2005, 41, 455–470.

[CrossRef]
3. Lamba, M.; Rawat, M.; Jacob, M.; Arya, M.; Rawat. M.J.; Chauhan, V.; Panchal, M. Impact of Teaching Time on Attention and

Concentration. J. Nurs. Healthc. Res. 2014, 3, 1–4. [CrossRef]
4. Noghabaei, M.; Heydarian, A.; Balali, V.; Han, K. Trend Analysis on Adoption of Virtual and Augmented Reality in the

Architecture, Engineering, and Construction Industry. Data 2020, 5, 26. [CrossRef]
5. Hussain, R.; Lalande, A.; Guigou, C.; Bozorg-Grayeli, A. Contribution of Augmented Reality to Minimally Invasive Computer-

Assisted Cranial Base Surgery. IEEE J. Biomed. Health Inform. 2020, 24, 2093–2106.

http://doi.org/10.29322/IJSRP.8.7.2018.p7979
http://dx.doi.org/10.1016/j.paerosci.2005.09.001
http://dx.doi.org/10.9790/1959-03410104
http://dx.doi.org/10.3390/data5010026

Multimodal Technol. Interact. 2022, 6, 81 21 of 21

[CrossRef] [PubMed]
6. Iatsyshyn, A.V.; Kovach, V.O.; Romanenko, Y.O.; Deinega, I.I.; Iatsyshyn, A.V.; Popov, O.O.; Kutsan, Y.G.; Artemchuk, V.O.; Burov,

O.Y.; Lytvynova, S.H. Application of Augmented Reality Technologies for Preparation of Specialists of New Technological Era.
2019. Available online: https://www.researchgate.net/publication/339944436_Application_of_augmented_reality_technologies_
for_preparation_of_specialists_of_new_technological_era (accessed on 1 June 2022).

7. Schutera, S.; Schnierle, M.; Wu, M.; Pertzel, T.; Seybold, J.; Bauer, P.; Teutscher, D.; Raedle, M.; Heß-Mohr, N.; Röck, S.; et al.
On the Potential of Augmented Reality for Mathematics Teaching with the Application cleARmaths. Educ. Sci. 2021, 11, 368.
[CrossRef]

8. Dalim, C.S.C.; Dey, A.; Piumsomboon, T.; Billinghurst, M.; Sunar, S. TeachAR: An interactive augmented reality tool for teaching
basic English to non-native children. In Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR-Adjunct), IEEE, Merida, Mexico, 19–23 September 2016; pp. 82–86.

9. Thomas, R.G.; William John, N.; Delieu, J.M. Augmented reality for anatomical education. J. Vis. Commun. Med. 2010, 33, 6–15.
[CrossRef] [PubMed]

10. Lin, J.R.; Cao, J.; Zhang, J.P.; Treeck, C.; Frisch, J. Visualization of Indoor Thermal Environment on Mobile Devices based on
Augmented Reality and Computational Fluid Dynamics. Autom. Constr. 2019, 103, 26–40. [CrossRef]

11. Zhu, Y.; Fukuda, T.; Yabuki, N. Integrating Animated Computational Fluid Dynamics into Mixed Reality for Building-Renovation
Design. Technologies 2019, 8, 4. [CrossRef]

12. Kim, M.; Yi, S.; Jung, D.; Park, S.; Seo, D. Augmented-Reality Visualization of Aerodynamics Simulation in Sustainable Cloud
Computing. Sustainability 2018, 10, 1362. [CrossRef]

13. Sanderasagran, A.; Aziz, A. Real-Time Computational Fluid Dynamics Flow Response Visualisation and Interaction Application
Based on Augmented Reality. J. Inf. Commun. Technol. 2020, 19, 559–581. [CrossRef]

14. Fukuda, T.; Yokoi, K.; Yabuki, N.; Motamedi, A. An Indoor Thermal Environment Design System for Renovation Using
Augmented Reality. J. Comput. Des. Eng. 2018, 6, 179–188. [CrossRef]

15. Ham, Y.; Golparvar-Fard, M. EPAR: Energy Performance Augmented Reality models for identification of building energy
performance deviations between actual measurements and simulation results. Energy Build. 2013, 63, 15–28. [CrossRef]

16. Solmaz, S.; Van Gerven, T. Automated integration of extract-based CFD results with AR/VR in engineering education for
practitioners. Multimed. Tools Appl. 2021, 81, 14869–14891. [CrossRef]

17. Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method; Springer International
Publishing: Berlin/Heidelberg, Germany, 2017; Volume 10, pp. 4–15.

18. Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal
Conduction and Diffusion in Gases; Cambridge University Press: Cambridge, UK, 1990.

http://dx.doi.org/10.1109/JBHI.2019.2954003
http://www.ncbi.nlm.nih.gov/pubmed/31751255
https://www.researchgate.net/publication/339944436_Application_of_augmented_reality_technologies_for_preparation_of_specialists_of_new_technological_era
https://www.researchgate.net/publication/339944436_Application_of_augmented_reality_technologies_for_preparation_of_specialists_of_new_technological_era
http://dx.doi.org/10.3390/educsci11080368
http://dx.doi.org/10.3109/17453050903557359
http://www.ncbi.nlm.nih.gov/pubmed/20297908
http://dx.doi.org/10.1016/j.autcon.2019.02.007
http://dx.doi.org/10.3390/technologies8010004
http://dx.doi.org/10.3390/su10051362
http://dx.doi.org/10.32890/jict2020.19.4.5
http://dx.doi.org/10.1016/j.jcde.2018.05.007
http://dx.doi.org/10.1016/j.enbuild.2013.02.054
http://dx.doi.org/10.1007/s11042-021-10621-9

	Introduction
	Concept
	Realization
	Providing the Simulation Data
	Visualization of the Simulations
	QR Code Tracking
	Geometry Overlay
	Animation
	User Interactions

	Open-Source Library
	Library Overview
	DataManager
	Transformer
	Visualizer

	Results
	Quantitative Results
	First Set of Questions
	Second Set of Questions
	Third Set of Questions
	Free-Response Questions

	Qualitative Results
	Stability

	Discussion
	References

