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Abstract: Eliciting knowledge from domain experts can play an important role throughout the
machine learning process, from correctly specifying the task to evaluating model results. However,
knowledge elicitation is also fraught with challenges. In this work, we consider why and how machine
learning researchers elicit knowledge from experts in the model development process. We develop
a taxonomy to characterize elicitation approaches according to the elicitation goal, elicitation target,
elicitation process, and use of elicited knowledge. We analyze the elicitation trends observed in 28 papers
with this taxonomy and identify opportunities for adding rigor to these elicitation approaches. We
suggest future directions for research in elicitation for machine learning by highlighting avenues for
further exploration and drawing on what we can learn from elicitation research in other fields.
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1. Introduction

Machine learning (ML) technologies are integrated into a diverse swathe of data-
driven decision-making applications. Imbuing modeling with domain knowledge—
declarative, procedural, and conditional information that a person possesses related to
a particular domain—is a common goal. Expert opinion and judgment enter into the
practice of statistical inference and decision-making in myriad ways across many domains.
By obtaining and using expert knowledge, ML engineers or researchers can produce more
robust, accurate, and trustworthy models.

Conducting expert knowledge elicitation in a way that ensures the gained knowledge
will be useful can be challenging. ML engineers or researchers must target and associate
domain knowledge with particular steps in the model development pipeline; for example,
to guide problem specification, to inform feature engineering, and/or to aid with model
evaluation. They must build common ground, mutual understanding of the context and
targets of an interaction, with domain experts who may lack computational training.
The elicited knowledge must then be integrated into the model, whether as an informal
influence such as when domain experts’ characterization of a problem is used to guide
data curation, or as a more formalized influence such as when domain experts’ labels or
feedback are used directly to train or refine a model.

Despite growing research interest in the ways in which ML and AI systems interact
with human knowledge and beliefs, why and how researchers are eliciting knowledge from
domain experts in developing ML models has received little concerted attention. There are
reasons to believe that eliciting knowledge from experts in a domain may call for different
approaches and interfaces than one might use with non-experts such as crowdsourcing
workers. Having more experience with a domain can change the mental representations
one relies on [1] or ways in which one prefers to articulate their knowledge [2]. Fields
like judgment and decision making, in which eliciting (often probabilistic) prior beliefs
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is a topic of study, have provided evidence that how knowledge is elicited can affect the
usefulness of the information. Some evidence of the effects of elicitation approaches can
also be found in sub-areas of computer science that have focused mostly on non-experts
like crowdsourced labeling (e.g., [3]) and active learning (e.g., [4]). However, to date few
attempts have been made to characterize the space of decisions that ML researchers and
practitioners make in eliciting domain knowledge from experts, and elicitation itself is
rarely a topic in ML research.

One risk of a lack of awareness of elicitation practice is that many researchers are
devising methods in an ad-hoc way, which may lead to less reliable elicited knowledge.
As one scholar of expert elicitation for Bayesian applications has described, “[e]liciting
expert knowledge carefully, and as scientifically as possible, is not simply a matter of
sitting down with one or more experts and asking them to tell us what they think” [5].
Understanding the extent to which ML researchers and practitioners are anticipating and
addressing challenges to elicitation, from possible cognitive bias to the need to establish
common ground, to the value of using a systematic and reproducible elicitation method,
can help point future research toward improved processes.

Our work characterizes ways in which researchers elicit domain knowledge for use
in machine learning. Our goals in doing so are firstly to increase researchers’ awareness
of the variety of methods available, and secondly to foster discussion on where research
may benefit from taking a more systematic or thoughtful approach. We survey elicitation
practices used in 28 machine learning-themed research papers published between 1995
and 2020 [6–33].

Our first contribution is a taxonomy for characterizing domain expert knowledge elic-
itation approaches. At the highest level, our taxonomy distinguishes key considerations at
four levels of decisions comprising knowledge elicitation. The first category, elicitation goal,
captures the purpose of the elicitation by noting which part of the machine learning process
the knowledge is used for. Second, elicitation target categorizes the kind of information that
is elicited from the domain experts. Third, elicitation process examines the methodology of
the elicitation, including the elicitation medium, the form of the prompts and responses,
and the number of experts used. Lastly, use of elicited knowledge captures how the elicited
knowledge is processed and incorporated in the machine learning process.

Our second contribution is an analysis of 73 “elicitation paths” that comprise distinct
sets of choices related to eliciting knowledge across the 28 paper sample. We use these paths
to reflect on common choices that emerge from the co-occurrence of codes applied to the
research papers we surveyed. In particular, we analyze the different patterns that emerged
for the four elicitation goals: problem specification, feature engineering, model development,
and model evaluation.

Our final contribution is a set of recommendations based on the trends observed in
the elicitation paths and insights from other elicitation literature. We seek to motivate
an agenda for future research in elicitation for machine learning that includes increased
emphasis on transparency and traceability in the elicitation process, establishment of
common ground to support shared understanding between researchers and domain experts,
addressing cognitive bias, and validating elicited knowledge, among others.

2. Related Work
2.1. Understanding ML Practice

Our work contributes to a growing line of research that seeks to understand machine
learning practitioners’ needs and practices via qualitative analysis [6,34–36]. Closest to our
goals, several other studies have examined how data scientists and/or model developers
collaborate with domain experts. Mao et al. [37] comment on the importance of, and chal-
lenges faced in, establishing and maintaining common ground between data scientists
and biomedical scientists collaborating on data science projects, though did not focus on
applied ML per se. In another interview study, Hong et al. [38] interviewed machine
learning practitioners about model interpretability, finding that for many practitioners,
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the primary value of interpretability was that it enabled more efficient communication
between model developers and other stakeholders during model development and eval-
uation, many of which included domain experts. Other recent work examines needs of
medical experts using AI-based tools through interviewing, finding that clinicians often
desired basic global information about a model’s properties, such as known strengths and
limitations, over decision-specific information [39].

2.2. Knowledge Elicitation for Expert Decision Making

Studies of expertise reflect the characteristics, skills, and knowledge that distinguish
experts from novices and less experienced people in various domains [40]. Research in
cognitive and educational psychology has studied how gaining expertise in a domain can
lead to differences in the content and organization of a person’s knowledge [1,41,42]. As
expertise became a topic of study in psychology, parallel developments in computer science
in the late 1970s and early 1980s led to the study of expert systems in areas such as artificial
intelligence and cognitive science, where expert knowledge needed to be elicited to try to
replicate expert decision making processes [40]. Points of controversy concerning methods
to elicit domain knowledge, either for study or system development, include whether
experts can articulate the knowledge and methods that they use in complex situations to
other people [40].

A related area of research concerned with elicitation is sometimes called the “classical”
elicitation literature, which has generally been concerned with obtaining expert knowledge
to construct a prior distribution for Bayesian statistical analysis [2,43]. While the question of
whether the information one elicits from an expert is a perfect representation of their beliefs
is hard to definitively answer, researchers have evaluated methods using properties such as
how consistent responses are upon repeated queries as targets, or by providing a “ground-
truth” distribution to experts to see how well it can be elicited back (e.g., [44]). Many
established protocols for elicitation involve iterative collaboration between the statistician
developing the model and the expert, as well as aggregation of multiple experts’ beliefs
where possible. Our work takes a closer look at elicitation practice in applied ML research
for which some of the classical elicitation principles may hold, but may not be well-known
among researchers or practitioners.

Some prior research surveys knowledge acquisition techniques for expert systems.
In 2001, Wagner et al. [45] provided an overview of elicitation techniques including unstruc-
tured interviews, structured interviews, protocol analysis, psychological scaling, and card
sorting. In more recent work, Wagner [46] analyzed 311 case studies of expert systems,
finding that unstructured and structured interviews were by far the most common manual
knowledge acquisition techniques, and that, over time, researchers tended to provide
more detail about the elicitation process. Wagner noted, however, that a large number
of papers (80) provided very little information about the process, for example making
cursory references to talking to the domain expert only. In addition, Rahman et al. [47]
recently reviewed the literature in databases, HCI, and visualization to describe a taxonomy
for “amplifying domain expertise”, or optimizing domain experts’ interactions, through
tools that enable the experts to interact more meaningfully at all stages of the pipeline for
data-driven decision support. Our work is similar in spirit to these studies, but we focus
on expert knowledge acquisition in the context of ML model development over the simpler
rule-based approaches that dominate the expert systems literature, and we focus more on
methods than trends based on, for instance, application areas.

Research in crowdsourcing and various forms of human-in-the-loop machine learning,
such as active and interactive learning and machine teaching, have taken structured
approaches to eliciting knowledge and have commented on their effects and challenges.
Active and interactive machine learning are areas where human knowledge is used to
support data labeling and the specific task of model refinement through label corrections,
a combination of model development and evaluation. Though these areas may use non-
expert knowledge, some lessons from this research are informative for elicitation of domain
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knowledge more broadly. For example, in summarizing challenges and opportunities in
interactive machine learning, Amershi et al. [48] describe how active learning can lead to
users being overwhelmed by questions [49], how people can tend to give more positive
feedback which sometimes harms learning [50], and the value of providing contextual
information to support label quality [51]. Close to our goal of outlining a research agenda,
they motivate the need for richer interfaces both for eliciting input from humans and
presenting model output. Such interfaces can be used for tasks that go beyond labeling
to include relevant tasks such as feature creation, re-weighting features, adjusting cost
matrices, or otherwise modifying model parameters. Others have pointed to specific
threats in interactive ML related to the information a human provides, including that a
user’s input reinforces noise in the training data or statistics they see [52]. Recent works
have also surveyed research in human-in-the-loop machine learning [53,54]. Some of the
papers covered in our survey propose human-in-the-loop systems. In these cases, we are
specifically interested in how they elicit and use knowledge from domain experts for the
purpose of creating better machine learning models.

Crowdsourcing studies aimed at eliciting labels for training datasets from non-experts
have also shown how differences in how information is shown [3] or what sorts of inter-
ruptions a crowdworker experiences [55] can impact the quality of labels obtained. Others
have explored the value of incentivizing label and other data collection from non-experts
according to their usefulness for model development (e.g., [56]).

3. Materials and Methods

The goal of our analysis is to identify how ML researchers are making decisions about
domain knowledge elicitation. To do so, we collected a set of research papers published
between 1995 and 2020 that describe or motivate the elicitation of domain knowledge
for the development of machine learning models. We describe the scope of our analysis,
sample collection, and coding process.

3.1. Scope

Our interest is in the explicit elicitation of domain expertise to improve ML models.
We include both papers where researchers apply ML to a particular domain and elicit
knowledge from experts and papers that present ML-related systems, tools, or algorithms
that involve expert elicitation. While many research articles on ML-advised decision mak-
ing may mention the importance of human knowledge, given potential differences between
how domain experts versus novices represent and articulate their knowledge, we focused
on research aimed at eliciting expertise that was implied to be held by certain groups of
professionals, and hence could not be easily obtained from the online or university student
recruitment pools.

We define explicit elicitation as elicitation of knowledge where the domain expert is
aware that they are providing input, and where the elicitation process is implied to occur as
part of the course of research described in the paper. This definition eliminates, for instance,
papers that describe using pre-existing domain knowledge, such as existing knowledge
bases, to develop or refine an ML model. It also excludes systems that rely on completely
implicit elicitation. Examples include systems with embedded learning components that
improve the system using the expert’s interactions but without the expert being aware of
any elicitation, as well as implicit use of domain knowledge that occurs when one of the
researchers tightly involved in the ML research is a domain expert. At least seven of the
papers included in our analysis had a domain expert listed as an author [7–13]. In such
cases we coded for any described elicitation, but our taxonomy does not cover implicit use
of domain knowledge that may have also affected these projects.

Finally, our interest in domain knowledge elicitation for the purpose of producing a
better ML model than would be possible without it precludes the inclusion of ML research
where experts are simply used to evaluate a system or pipeline, with no intention of using
the elicited knowledge to improve the system or pipeline that the paper presents. Likewise,
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research where domain experts use ML models without explicitly providing knowledge
for the development or improvement of the models does not meet our criteria.

3.2. Sample Collection

Our search for papers to include in our analysis began with Google Scholar searches
for combinations of terms such as “domain experts”, “elicitation”, “data science”, and “ma-
chine learning”. These searches returned a large number of papers, many of which were
not specific to machine learning, expert elicitation, or other constraints described above.
We added to our search-based samples papers that we obtained by following relevant
references cited by these works. The prevalence of ML-advised decision making in an
increasingly diverse set of domains led us to aim for a representative, but not necessarily
complete sample. We therefore next performed additional searches for domains that we
did not feel were adequately covered, such as in using ML for healthcare and for expert
labeling tasks. We also solicited papers on social media, requesting “ML/human in the
loop research papers that describe eliciting knowledge from domain experts”. Each of
these methods turned up a number of papers that met some, but not all of our criteria for
explicit elicitation of knowledge from domain experts. We report our analysis on 28 papers
that passed our criteria, collected over roughly six months of iterative search and coding.
We closely read approximately 50 total papers to determine their fit with our criteria,
since many papers talked about domain knowledge or elicitation but needed to be read to
determine whether or not they involved any actual elicitation of expert knowledge.

3.3. Content Analysis

Our goal in analyzing the papers was to learn about how eliciting knowledge from
domain experts is performed and incorporated into the machine learning process. We
made iterative qualitative coding passes through the papers, using standard open coding
procedures [57]. We started by pulling out relevant details about working with domain
experts for open coding and taking note of the main aspects to the elicitation approaches
that emerged. We sought a consistent set of dimensions that could be used to break down
and categorize a given elicitation methodology. Each time we added a new paper to our
sample that introduced a new method or goal of elicitation, we updated our taxonomy
and recoded prior papers as needed. Coding was led by the first author, but ambiguous
methods or otherwise difficult judgments were discussed by all three authors during
weekly meetings over the course of a roughly six-month period. We present the resulting
taxonomy in the next section.

Within each paper, we identified one or more “elicitation paths” that represented
unique combinations of the elicitation goal, intended target, elicitation process details,
and descriptions of how elicited knowledge was used in the ML pipeline. For example,
if a paper presents that the same elicited information was used for two different purposes,
then the uses would be listed as separate paths. Likewise, if the same methodology, such
as interviews, was used to elicit two different categories of information, then they would
be listed separately as well. In the 28 papers that we analyzed, we identified a total of
73 elicitation paths. The Supplementary Materials include a spreadsheet that contains the
list of analyzed papers, the taxonomy hierarchy, and the codings for all elicitation paths.

4. Elicitation Taxonomy

The top level of our taxonomy consists of four high level categories: elicitation goal,
elicitation target, elicitation process, and use of elicited knowledge. Each of these are further
divided into subcategories. After the name of each code, we list in parentheses the number
of times that code appeared and the percentage of paths that contain it. Figure 1 gives a
visual overview of the coding of the 73 elicitation paths according to the taxonomy. The
Supplementary Materials include the code to generate the visualizations in this work.
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Figure 1. This Sankey diagram shows the 73 elicitation paths coded according to our taxonomy. Each node represents one
low-level code in the taxonomy. The color of a node encodes the top-level category that the node belongs to. The horizontal
position of a node encodes the middle-level category that the node is under.

4.1. Elicitation Goal

Elicitation goal describes different ways that knowledge from domain experts is implied
to be useful in the model building process. The ML and related literature demonstrates at
least four areas where incorporating expert knowledge can be useful. The first is problem
specification (23/73, 32% paths), which includes defining the task the model should solve,
understanding the domain experts’ current practices for the task, identifying metrics to use
for evaluation, and gathering training and testing data. Second is feature engineering (16/73,
22%), which includes elicitation of feature level information used to determine what the
inputs (i.e., features) to the model should be. Feature engineering concerns the format of the
data instances that are input to the model. Third is model development (28/73, 38%), the most
common goal of elicitation in our sample, which includes defining the model structure
and parameters. We separate feature engineering from model development based on a
common distinction in machine learning terminology between features as inputs to a model
and model parameters representing configuration variables or hyperparameters internal
to the model, as well as choices related to a model’s structure. The distinction between
the two can be subtle. For example, while in many cases, eliciting feature information
falls under feature engineering, if that information affects internal model parameters or
configuration, eliciting feature information can be better described as targeting model
development. Fourth is model evaluation (6/73, 8%), which includes assessing the model’s
performance and validating its results for the purpose of improving the model.

4.2. Elicitation Target

Elicitation target refers to what form of knowledge the elicitation is intended to ob-
tain from the domain experts. Background knowledge and processes (12/73, 16%) includes
information about the domain, the task at hand, the needs of the domain experts, and their
workflows. Labeling functions (4/73, 5%) are user-specified functions that capture the logic
used to decide which label should be assigned to an instance, such as if–then rules or
heuristics. Labels (8/73, 11%) are assignments of classifications to individual instances.
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Label explanations (2/73, 3%) are comments provided by the expert discussing their rea-
soning for choosing a particular label for a given instance. Data instances (7/73, 10%) are
specific data samples or data points elicited from the domain experts, such as such as edge
cases or other examples of cases of interest. Probability distributions (2/73, 3%) include prior
distributions for a Bayesian network or probabilistic labels. Feature explanations (4/73, 5%)
are definitions for features, such as what a feature means and how it is derived. Feature
relationships (14/73, 19%) outline how features are connected to each other, such as causal
relationships or hierarchical relationships. Feature relevance (10/73, 14%) indicates labels
of whether or not a feature is important for the task, or lists of features that are or are not
deemed important. Feature transformations (1/73, 1%) are functions chosen by the domain
expert to pre-process features used by the model. Feature weights (1/73, 1%) are elicited
values that indicate the magnitude of feature impacts on the outcome. Feature direction
(1/73, 1%) notes whether a feature has a positive, negative, or no effect on the outcome.
Equivalent sample size (1/73, 1%), as defined by Heckerman et al. [14], is the size of a dataset
that someone starting from ignorance would need to see in order to be as confident in
their prediction as the domain expert. Model constraints (2/73, 3%) are limits on values that
variables can take or on how they can behave, such as monotonicity constraints. Model
selection (2/73, 3%) refers to a domain expert’s choice of a specific trained model from
a series of alternatives. Results feedback (2/73, 3%) covers the domain expert assessing
the output of a model, such as working with the domain expert to iteratively refine the
model’s classification threshold and validate the model’s output [11] or receiving feedback
from domain experts that model behavior does not match their expectation in a specific
situation [15].

4.3. Elicitation Process

Elicitation process characterizes how knowledge is elicited from the domain experts.
If we view elicitation as a “conversation” between the domain expert(s) and the ML
researcher or ML system, then we can ask about the medium that the conversation occurs
through, who it is between, how it is structured, and how common ground is ensured.
First, we look at the elicitation medium, which captures how this conversation takes place
and what the domain experts use to communicate their knowledge. Next, we consider the
context that the domain expert receives during elicitation. Effective conversation requires
establishing common ground [58], so we consider the extent to which the information given
to the domain expert about the model or the eliciter’s goals is described. Following this,
we cover the number of domain experts that knowledge is elicited from. We also categorize
how structured the prompts that the domain experts receive are and how constrained their
responses are, as well as whether or not the responses are validated and how unreliable
responses are handled.

The medium of elicitation describes the type of communication channel through which
the information is obtained. Custom app (28/73, 38%) refers to a computer application made
specifically for the given task. Writing (4/73, 5%) covers written communication, such as
with pen and paper or writing in a text editor or other application, for example. Meetings
or interviews (12/73, 16%) includes verbal communication through in-person and remote
meetings, interviews, and workshops. Shadowing (3/73, 4%) occurs when the researcher is
observing the domain expert perform their work. In a think-aloud (2/73, 3%), the domain
expert shares their thought process while performing a task or using a tool. If a path does
not describe how the elicitation is meant to be performed, then it falls under the unknown
(24/73, 33%) category.

We categorize approaches to providing context to domain experts into cases where the
elicitation is performed through a custom app under UI described (20/73, 27%) or UI not
described (8/73, 11%), depending on whether or not the user interface of the application’s
elicitation component for the path is shown or detailed in the paper. In the case where the
elicitation medium was unknown, then the context is categorized as not stated (24/73, 33%).
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If the elicitation is known to not be done through a computer application, then its context
falls under not applicable (21/73, 29%).

Next, we consider the prompts that the domain expert receives and the responses that
they give during elicitation. There are well-defined prompts (43/73, 59%) if the process is
described in a way that implies that the expert is responding to clearly specified questions
or tasks. For example, we surmise that a structured interview or labeling task will have
well-defined prompts, whereas an elicitation process described as a casual meeting or as
an open-ended conversation would have prompts that are not well-defined (30/73, 41%).
Related to the degree of systematicity in the prompts, the response format is constrained
(47/73, 64%) if the domain expert is restricted in the information that they can provide or
the actions that they can perform. These constraints could include having the expert choose
from a pre-defined set of choices or restricting the responses to a particular format, such as
requiring a number. For example, the domain expert being limited to providing if–then
rules would be constrained, but free-form responses, such as from a meeting, would be
unconstrained (26/73, 36%).

We consider the number of experts that researchers or the system elicits information
from, either single (26/73, 36%), multiple (36/73, 49%), or unclear (11/73, 15%). If a path is
evaluated with a user study involving multiple experts and the responses from the experts
are used and analyzed individually, then it is classified as single.

We also consider if there is any validation on the information provided by the domain
expert. A response is validated (18/73, 25%) if it is checked for correctness in some way, even
weakly, such as by using multiple domain experts and having an explicit strategy to handle
disagreements, for example through majority vote or having them jointly reach a consensus.
If there is no mention of checking the information provided by the domain expert, then we
categorize the responses as unvalidated (55/73, 75%). In addition, we consider if unreliable
responses are explicitly accounted for (17/73, 23%) or not accounted for (56/73, 77%) in using
the information from the expert. For example, a learning algorithm may factor in the
probability that the expert is incorrect. Accounting for unreliable responses is distinct
from validating responses, as validation is an attempt to check the correctness of elicited
information before it is used, whereas accounting for unreliable responses tends to occur
in the procedure to integrate the expert’s information into the model. For example, one
approach might have one expert verify the information that was elicited from another
expert and then assume that the information is correct for the rest of the process. Another
approach might elicit from a single expert, not validate the responses, and then explicitly
account for that information being possibly incorrect when using it.

4.4. Use of Elicited Knowledge

We first look at whether manual pre-processing or analysis is needed on the elicited
information before it is used. Pre-processing is not needed when the elicited information
is directly used, such as when it is a direct input to the model or another algorithm.
In other cases, pre-processing or analysis is needed before using the information, such as
using grounded theory to analyze interviews and observations [11], formalizing expert
knowledge into if–then rules [16] or flowcharts [17], and standardizing feature definitions
obtained from different sources [12]. We therefore categorize pre-processing as being not
needed (53/73, 73%), described (7/73, 10%), and not described (13/73, 18%). If there is not
a way to directly use the elicited information and there is no detail given about how the
elicited information was processed or analyzed, then we categorize it as not described.

Finally, we classify the use of the information as either well-defined (50/73, 68%) or not
well-defined (23/73, 32%). We consider elicited information to have a well defined use if
there is a predetermined, unambiguous, or algorithmic way to incorporate it in the machine
learning process. For example, eliciting labels, monotonicity constraints, or whether or
not there should be an edge between two nodes of a Bayesian network can all have clear
and well-defined uses. This is in contrast to the experts’ background knowledge, current
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process, and general feedback on model results, which might be less directly actionable
and pose more degrees of freedom from the researcher in how they use them.

Figure 2 visualizes counts of the number of elicitation paths for each code described
above, separated by the path’s goal.

Figure 2. These bar charts show the number of times each low-level code in our taxonomy appeared in the elicitation paths,
broken down by the elicitation goal.

5. Results

We describe observed differences in elicitation paths based on their goals, and point
to gaps and opportunities for knowledge elicitation in ML that emerge from our analysis.

5.1. Characterizing Elicitation Paths

By analyzing how the taxonomy codes co-occur in the elicitation paths, we can identify
common elicitation trends. We describe observations from separating the paths according
to their elicitation goal.

5.1.1. Problem Specification

Problem specification accounted for 23 out of the 73 total paths (32%), which are visu-
alized in Figure 3. These paths were mostly split between eliciting background knowledge
and processes (9/23, 39%) and eliciting labels (8/23, 35%). Feature explanations and labeling
functions each appeared a single time and data instances and label explanations appeared
twice, all for the preparation and collection of training and testing data.
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Figure 3. This Sankey diagram shows the 23 elicitation paths for problem specification.

Background knowledge and processes were most commonly elicited via meetings or inter-
views (4/9, 44%), followed by shadowing (2/9, 22%), unknown (2/9, 22%), and think-alouds
(1/9, 11%). In all cases, the prompts were not-well defined, the response formats were uncon-
strained, and unreliable responses were not accounted for. In the majority of paths, responses
were unvalidated (7/9, 78%) and multiple experts were used (8/9, 89%). Two paths described
how the elicited knowledge was pre-processed or analyzed before it was used.

The media for eliciting labels were custom app (5/8, 63%) or unknown (3/8, 38%).
Two of the custom apps that elicited labels also elicited label explanations, in which experts
justified and discussed their labels in order to reach a consensus label [13,18]. Other
forms of label validation in order to resolve disagreements between experts included
using majority vote [9,13] or consulting a more senior expert [10]. A few paths that
elicited labels did not explicitly aggregate the results of multiple experts to detect and
resolve disagreements [11,15,16,18]. In all paths that elicited labels, the response format
is constrained, manual pre-processing is not needed before using the labels, and their use
is well-defined.

5.1.2. Feature Engineering

Feature engineering appeared in 16 out of 73 paths (22%) geared towards determining
feature inputs to a model. These paths are shown in Figure 4. Feature relevance (6/16,
38%) was the most frequent elicitation target, followed by feature explanations occurring
three times, data instances (used to identify which features were important to capture),
feature relationships, and background knowledge and processes appearing twice, and feature
transformations showing up once. Meetings or interviews (6/16, 38%) and custom apps (5/16,
31%) were the most common media. The majority of paths had well-defined prompts (11/16,
69%) and elicited knowledge from multiple experts (11/16, 69%). Unreliable responses were
not accounted for by any of the paths, and most of the uses of the elicited knowledge were not
well-defined (10/16, 63%), suggesting the researchers’ discretion was used to determine how
much weight to place on the experts’ advice about features. The 16 paths appeared across
7 papers, with 4 papers eliciting multiple types of information for feature engineering.
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Figure 4. This Sankey diagram shows the 16 elicitation paths for feature engineering.

5.1.3. Model Development

Model development (28/73, 38%) was the most common elicitation goal. These paths are
visualized in Figure 5. The highest frequency elicitation target for these paths was feature
relationships (11/28, 39%), followed by feature relevance (4/28, 14%). In contrast to these
elicitation targets as they appear under feature engineering, in model development the rela-
tionships or relevance statements directly affect model parameter estimates or other aspects
of model structure. For example, one of the more common forms of feature relationships
was eliciting the existence of edges in a Bayesian network, with some paths querying the
expert about the existence of specific edges between pairs of variables [19,20] and others
asking for information about all edges in the network [14,21,22]. Other forms of feature
relationships include if pairs of features have the same or different directional impact on
the outcome variable [23] and the relationships between words, topics, and documents in
topic modeling [24,25].

Many of these paths were focused on the algorithmic aspects of how to use the
elicited knowledge in the model. Often the elicited knowledge was a direct input to
an algorithm. Given this, we see that in nearly all paths the responses are constrained,
manual pre-processing or analysis is not needed, and the use of knowledge is well-defined.
The one path with unconstrained responses and a need for pre-processing comes from
Lee et al. [16], where domain experts were interviewed for feature-based knowledge of how
to classify instances, which was then formalized into if–then rules for a rule-based model.
The emphasis on the algorithmic uses of elicited knowledge in these paths may have come
at the expense of attention paid to the human-centered aspects of how the knowledge is
elicited. For example, the elicitation medium is unknown (15/28, 54%) for a majority of
the paths.

These paths also stand out in that eliciting knowledge from a single expert was much
more common than eliciting knowledge from multiple experts. This contrasts with the
groups for problem specification and feature engineering, which were dominated by paths
eliciting from multiple experts. In addition, these paths have unreliable responses accounted
for (15/28, 54%) at the highest rate. The model development paths represent all but two of the
appearances of this code across all paths. This is often done by modeling the probability of
the elicited knowledge being incorrect or modeling the expert’s uncertainty [7,14,19–22,26].
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Figure 5. This Sankey diagram shows the 28 elicitation paths for model development.

5.1.4. Model Evaluation

Model evaluation (6/73, 8%) was the least common elicitation goal. These six paths
are shown in Figure 6. We observed two occurrences each of model selection and results
feedback and a single occurrence of feature relationships and data instances as the elicitation
target. A custom app was the most common medium and two out of those three had their UI
described. The majority of paths had prompts that were not well-defined (4/6, 67%). The use
of the elicited knowledge was an even mix of well-defined (3/6, 50%) and not-well defined
(3/6, 50%).

Figure 6. This Sankey diagram shows the 6 elicitation paths for model evaluation.
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5.2. Gaps and Opportunities

Our analysis led us to observe several ways in which researchers are not necessarily
treating elicitation as systematically or scientifically as they might. We list these below
as opportunities for enhancing practice. Where relevant, we draw on principles from
knowledge elicitation research outside of the machine learning literature, including the
well developed area of expert prior elicitation for uncertain quantities [2,5,43,59]. While
eliciting probability distributions only represented 2/73 elicitation paths in our work, eliciting
information about uncertain phenomena that experts have extensive real world experience
with makes the lessons of this literature applicable in many cases.

5.2.1. Transparency and Traceability

A total of 24/73 (33%) of elicitation paths had an unknown medium, meaning they
did not contain information on how the knowledge is elicited. An amount of 8 out
of the 28 paths that used custom apps did not describe the user interface for elicitation.
In addition, meetings or interviews appeared in 12/73 paths (16%), but only 5 had well-
defined prompts. Such a lack of detail highlights what may be a tendency to overlook the
importance of carefully designing the elicitation process to ensure valid results. Clear
documentation of elicitation practices is a principle in much of the expert elicitation
literature outside machine learning due to its ability to provide both traceability (making it
possible for those engaged in model development to more easily identify sources of various
information that has been used in model building, for example, for debugging purposes)
and transparency. Particular elicitation protocols have been developed and evaluated, such
as the SHELF [60,61], Cooke [62], and Delphi [63] protocols, and provide more systematic
and careful approaches to expert knowledge elicitation than many of the paths that we
have covered in this work. For example, the SHELF protocol uses predefined templates to
guide the elicitation’s correct execution and to document the process, adding transparency
and traceability [5,59]. Bowles et al. [13] was the only paper in our survey that explicitly
mentioned using one such protocol by name. In their case, they used Delphi to resolve
labeling disagreements among multiple experts.

There are also potential benefits to documenting the elicitation process and the use of
the elicited knowledge so that the domain experts can see how the information that they
provide is used, potentially leading to greater trust and opportunities for them to correct
misinterpretations. The importance of transparency when using domain knowledge for
ML has also been noted in Mao et al.’s interview study [37] and Rahman et al.’s survey,
which states that the “critical and subjective nature of these [medical] decisions necessitates
transparency, both from the algorithm as well as domain experts”. For elicitation paths
that used meetings or interviews, the workshop-based elicitation methodology proposed
by Seymoens et al. [17] stands out in this regard, given its systematic and documented
approach. Three of five paths that used meetings or interviews with well-defined prompts came
from Seymoens et al. [17] and the other two from Hu et al. [27], who provided the list of
questions asked during their interviews.

5.2.2. Systematic Use of Elicited Knowledge

There were 20 paths where the elicited knowledge could not be directly used and
therefore manual pre-processing or analysis was needed before incorporating the knowl-
edge in the machine learning pipeline. Of these paths, 7 described the manual processing or
analysis that was performed, such as how the information was coded, formalized, or stan-
dardized, for example. This is opposed to 13 of these paths where it was not described.
In addition, in 23 out of 73 paths, the use of the elicited knowledge was not well-defined,
meaning that there was a not a clear, unambiguous way to use the knowledge provided by
the expert. In some cases, this may be necessary, such as with feature engineering, where
the ML researcher may need some degrees of freedom in order to translate the information
provided by the domain expert into concrete features. However, situations where the
elicited knowledge cannot be used without some processing, the pre-processing or analysis
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is not described, and the use is not well-defined can pose risks to the reproducibility of the
methods used, which may directly affect the impact of the research.

5.2.3. Motivating What Is Elicited

While we did not code specifically for how researchers motivated why they elicited
the information they did from experts, we note that there is an opportunity for researchers
to more deeply discuss the choice of what to elicit based on user psychology. In the classic
prior elicitation literature, significant research attention has been paid to understanding
how people best relate to the phenomena or concept that is the topic of elicitation, such as
probabilities of events. For example, one way that this has manifested is in prioritization of
frequency-based framings of probability in elicitation, to better align with people’s seeming
proclivity for reasoning using frequency over continuous representations of probability
(e.g., [44,64]).

Machine learning researchers may also find it useful to consult the psychological
literature on human causal inference, which attempts to model how people seem to perceive
causality in events [65–67] and which produces empirical findings that are relevant to
several of the common forms of elicitation observed in our analysis. For example, empirical
research on the extent to which a model of causal support [66] captures idiosyncrasies
of human causal inference suggests that people may find it more natural to distinguish
which features have some causal effect than to estimate the strength of those effects. Such
findings have direct implications for elicitation of relevant expert mental models for applied
machine learning.

5.2.4. Establishing Context and Common Ground

Not all papers mentioned how exactly domain experts were introduced to the ML
engineers’ or researchers’ goals, value judgments, or background perspectives on the
models they were building. However, several recent qualitative studies suggest that these
types of high level information about a model may be particular helpful to domain experts
who will be end-users [38,39].

Graphical elicitation, in which visualization interfaces are used for elicitation, may
be another fruitful way to help establish context as an expert provides their knowledge.
Visualization interfaces that both capture new information from an expert, such as labels
or interesting instances, and provide context, could help make elicitation more system-
atic. In other areas where elicitation is relevant, such as Bayesian models of cognition
for graphical inference, graphical elicitation interfaces have been found to be useful for
reducing abstraction in the elicitation process, such as when eliciting priors or beliefs about
parameters [23,68,69]. Visualization interfaces might simultaneously be used to visualize
back to an expert alternative representations of the elicited knowledge for validation.

Finally, related to providing context, some recent interactive machine learning research
argues that, when experts are shown labeled data used for training or validation during
elicitation, the knowledge that is elicited from them can be redundant in ways that hamper
model performance [52]. This possibility is largely not mentioned by papers in our sample
that explicitly described giving domain experts access to training data, but as elicitation
interfaces become a more focal aspect of applied machine learning research, this risk may
be important for researchers to account for.

5.2.5. Cognitive Bias

Of the 28 papers we analyzed in our survey, 5 of them mentioned the possibility of
the experts exhibiting cognitive biases, and 4 of them explicitly attempted to mitigate bias
when eliciting knowledge. The broader elicitation literature including prior elicitation and
elicitation of beliefs or judgments in the judgment and decision making literature provides
evidence of how researchers can obtain higher quality knowledge if they anticipate cogni-
tive biases that the experts have and seek to minimize them during elicitation. For example,
O’Hagan [5] notes that experts tend to be overconfident and are susceptible to the effects
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of anchoring and availability heuristics. Of the four works in our survey that explicitly
mitigated cognitive biases, two of them [13,18] presented labeling tools that anonymized
labeler identities during discussions of disagreements. Yang et al. [6] conceptualized an
interactive machine learning tool that first has the user select instances to use as test cases,
guiding them away from a biased test set. Cano et al. [20] noted that eliciting expert
knowledge about specific uncertain edges in a Bayesian network is preferable to having the
expert provide their knowledge on edges up front because in that case the “expert could
be biased towards providing the ‘easiest’ or clearest knowledge”, which is likely already
apparent in the data and easy for the model to learn. These examples are encouraging,
but are exceptions among the papers that we analyzed.

5.2.6. Validation of Elicited Information

Only about one quarter of the paths (18/73) used some form of validation procedure
on the elicited information to increase confidence in its correctness. Given that articulating
one’s knowledge is often challenging for experts even given well-designed elicitation
processes, the relative lack of attempts to validate experts’ knowledge (e.g., through
presenting it back to them for discussion and confirmation, aggregating it with other
experts’ responses, ensuring that it was consistent upon repeated elicitation, etc.) presents
an important area for improvement.

Where we did see validation, it often occurred through aggregation of responses from
multiple experts. One relatively simple way for machine learning researchers to obtain
more reliable and accurate knowledge from domain experts is by defaulting to multiple
expert elicitation practices wherever possible. When multiple experts are used, there should
be a procedure to aggregate that knowledge into a single answer. O’Hagan [5] explains
that this can be achieved through behavioral aggregation by having the experts reach a
consensus, which is the approach used in the SHELF protocol, or through mathematical
aggregation that uses a pooling rule to combine expert answers, which is the approach
used in the Cooke protocol. Even in situations where a probability distribution is not being
elicited, there should be a planned way to integrate knowledge from multiple experts.
Seymoens et al. [17] and Schaekermann et al. [18] provide two examples of behavioral
aggregation, while Bowles et al. [13] and Ashdown et al. [9] give examples of using majority
vote as a simple pooling rule. Seymoens et al. also addressed social dynamics that can arise
during behavioral aggregation, as O’Hagan recommends, by checking if the participants
felt that they were able to share their concerns.

Confirming elicited information between multiple experts is not the only way that
the knowledge can be validated, however. O’Hagan recommends presenting the experts’
answers to them in different ways in order to get them to think about the prompts from mul-
tiple angles, which allows the experts to conduct basic sanity checks on their answers [59].
For example, when eliciting the median value of a probability distribution, one way to
encourage the experts to check their answer is to have them consider that, if they were to
be given a prize if they guessed if the true value is above or below their stated median,
then they should be indifferent to either option [5].

6. Future Work and Limitations

Our work is novel in its focus on how elicitation of domain expertise is practiced in
applied ML settings. One obvious opportunity for future research is in systematizing and
evaluating elicitation approaches. Our literature searches focused on elicitation in machine
learning turned up little research attempting to establish how well a particular elicitation
method worked. While it is difficult to judge the validity of elicited knowledge given
that the target is typically based in the mental model of the expert, elicitation research
outside of machine learning points to various possibilities, including endowing knowledge
to test methods for eliciting it back, presenting simulations or implications of elicited
knowledge to see how much an expert confirms when asked to consider it more deeply,
and using repeated elicitation to confirm consistent responses from a method. There are also
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opportunities to expand on past research in experts systems [46] by comparing, for example,
the association of different methods with the impact of the work.

One interesting finding of our analysis is the extent to which the same form of in-
formation, like labels, or instances, or rules, could be elicited for very different purposes
representing different points in the model pipeline. Given how little rich description of how
context and common ground were provided, a researcher might easily see these elicitation
attempts as more or less synonymous, assuming that prompts or interfaces for eliciting
instances, for example, for one goal like problem specification can be applied equally well
to other uses. How a domain expert understands the rationale for the elicitation, and how
context on the modeling is provided, are however critical details that require sensitivity to
the specific targets and pipeline if the elicited knowledge is to be reflective of the experts’
actual mental model. One important area for future work is to better typologize different
approaches to eliciting and using common formats like instances or feature relationships,
distinguishing between what may otherwise be overlooked nuances in their use, since
these appear often in the literature in applied ML as well as topics like ML interpretabil-
ity, but can play very different roles in a modeling pipeline. Future research could also
strengthen the connections between the empirical literature on human reasoning about
causation and elicitation approaches to deepen motivation to elicit particular information
over other information.

Future work could also survey additional papers in a similar vein to our analysis.
Our sample is not a complete assessment of the elicitation practice in applied ML, due to
the challenges of ensuring comprehensiveness given differences in the domains in which
applied ML research is published and language used to describe elicitation, knowledge,
and other concepts. As such, we encourage more observational research on how expert
knowledge is being elicited and used for machine learning. There is a need for more
research to identify and address the unique elicitation challenges for machine learning and
to understand what lessons can be transferred from more traditional elicitation domains.
This is particularly true for elicitation for deep learning, which we feel is underdeveloped
compared to understanding elicitation for Bayesian or linear models. For example, 5 of the
28 papers that we coded mentioned using neural networks models, which is not wholly
representative, given the diversity of model architectures, input types, and tasks that we
see in modern deep learning. In addition, while we have included papers focusing on a
variety of domains, such as medicine, energy systems, and water networks, there are likely
many more instances of domain-specific applications of machine learning in domains that
we did not consider.

A further limitation of our work is that it only analyzes explicit elicitation of domain
knowledge. Our taxonomy does not cover implicit uses of domain knowledge, such as by
domain experts that are a part of the research team and are tightly involved throughout the
machine learning process. To better understand the dynamics of how expert knowledge is
shared and used in these inter-disciplinary teams, more work along the lines of Mao et al.’s
interview study [37] is needed.

7. Conclusions

Eliciting expert knowledge is a standard part of many machine learning workflows.
We characterized the ways in which machine learning researchers elicit expert knowledge
by developing a taxonomy that categorizes an elicitation approach according to the elici-
tation goal, elicitation target, elicitation process, and the use of elicited knowledge. Our survey
coded 73 elicitation paths found across 28 papers and analyzed the trends that emerged
in these paths when comparing the paths where elicitation was performed for problem
specification, feature engineering, model development, and model evaluation. We identified gaps
in these paths and motivated an increased focus on transparent, traceable, and systematic
elicitation in applied machine learning.
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