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Abstract: Intelligent virtual agents (VAs) already support us in a variety of everyday tasks such as
setting up appointments, monitoring our fitness, and organizing messages. Adding a humanoid body
representation to these mostly voice-based VAs has enormous potential to enrich the human–agent
communication process but, at the same time, raises expectations regarding the agent’s social, spatial,
and intelligent behavior. Embodied VAs may be perceived as less human-like if they, for example,
do not return eye contact, or do not show a plausible collision behavior with the physical surroundings.
In this article, we introduce a new model that extends human-to-human interaction to interaction with
intelligent agents and covers different multi-modal and multi-sensory channels that are required to
create believable embodied VAs. Theoretical considerations of the different aspects of human–agent
interaction are complemented by implementation guidelines to support the practical development of
such agents. In this context, we particularly emphasize one aspect that is distinctive of embodied
agents, i.e., interaction with the physical world. Since previous studies indicated negative effects
of implausible physical behavior of VAs, we were interested in the initial responses of users when
interacting with a VA with virtual–physical capabilities for the first time. We conducted a pilot
study to collect subjective feedback regarding two forms of virtual–physical interactions. Both were
designed and implemented in preparation of the user study, and represent two different approaches
to virtual–physical manipulations: (i) displacement of a robotic object, and (ii) writing on a physical
sheet of paper with thermochromic ink. The qualitative results of the study indicate positive effects
of agents with virtual–physical capabilities in terms of their perceived realism as well as evoked
emotional responses of the users. We conclude with an outlook on possible future developments of
different aspects of human–agent interaction in general and the physical simulation in particular.

Keywords: virtual agents; physical interaction; artificial intelligence; mixed reality environments

1. Introduction

Though personal digital assistants have become widespread in the context of smart homes
as well as professional environments, most of the current implementations rely on audio output,
displayed text or simple graphics only. Augmented reality (AR) technology can add a new dimension
to existing agents by providing a humanoid 3D virtual body to complement the voice. Human-like AR
representations can enrich the communicative channels that convey the agent’s status and intentions to
humans with gestures and other forms of social behaviors. Moreover, they can be registered spatially
with their environment, which enables a more direct form of spatial interaction compared to voice-only
interaction [1]. Several research projects addressed the question of whether and how agent embodiment
affects the social interaction between virtual agents (VAs) and human communication partners.
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In our previous work, we conducted two studies that we performed in a historical exhibition
context to understand the importance of different humanoid representations of VAs [2,3]. We analyzed
the effectiveness of virtual museum guides with varying embodiment (embodied vs. disembodied)
with regard to several aspects, such as the user’s feeling of co-presence, spatial presence, engagement,
as well as the agent’s credibility. The results indicate benefits of embodied audio-visual representations
of VAs concerning all the before-mentioned metrics. These findings are in line with previous work
summarized in Section 2.1.

With the majority of related literature attributing positive qualities to embodied agents as well as
the rapid advancement of mixed reality (MR) technology, it seems reasonable to assume that users will
have increasing access to services that include embodied VAs in the future. However, the inclusion of
a body representation also poses new challenges to the interaction designers, in particular regarding
the spatial and social integration of VAs in the physical environment. Since embodied VAs can be
considered to be spatial, social entities, they should be subject to similar physical laws as well as
social standards as human communication partners. We are therefore interested in the multi-sensory
interaction between such agents and their real-world surroundings, including real interlocutors as
well as physical objects.

Social integration of VAs requires the fusion of multiple information sources, including sensory
cues, such as visual and auditory feedback, pre-existing knowledge, and information that is learned
over the course of the interaction with users. In Section 3, we introduce a model that integrates concepts
from the fields of computer vision, computer graphics, natural language processing, speech synthesis,
and artificial intelligence (AI).

In this context, a challenging but important feature for VAs is the physically correct simulation of
collisions between the agent and real-world-objects. Such a simulation requires complex actuators,
in particular, if the technology behind the interaction should be hidden from the user to create
an advanced illusion of plausible human-like agents. Consequently, only a few examples of
virtual–physical interactions have been investigated so far; examples are discussed in Section 2.2.
In the following, we term VAs with the capabilities to manipulate real-world objects as blended agents.
In Section 4, we will evaluate two forms of such manipulations, i.e., hitting a physical ball and writing
on a physical sheet of paper.

In this article, we contribute to the development of intelligent blended agents (IBAs) in the
following ways:

1. Construction of a formal model to describe the multi-modal as well as multi-sensory interaction
between IBAs and humans.

2. Formulation of guidelines to implement this model, exemplified on a suite of selected technologies.
3. Collection of subjective quantitative and qualitative user responses to investigate the ability of

IBAs to manipulate physical objects.

The findings of the last-mentioned user study were originally reported in a conference paper [4].
In the present article, we extend our previous work by embedding the aspect of physical simulation
into a comprehensive model of human–agent interaction.

2. Related Work

In the following, we will summarize previous research on the embodiment of VAs as well as
agents with virtual–physical capabilities and intelligent behavior.

2.1. Embodied Virtual Agents

A literature meta-review by Yee et al. [5] suggests that the inclusion of any visual representation
of a VA’s face leads to higher task performance measures. The presence of a virtual face seems to be
more important than its visual quality. Therefore, even a representation with low realism can provide
important social cues for human–agent interactions.
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In two previous studies, we could show benefits of virtual embodied guides over those
implemented just by voice in the context of museums [2,3]. Visitors of a simulated exhibition
reported a higher sense of spatial and social presence in the company of embodied VAs. Furthermore,
agent embodiment showed a significant effect on the perceived credibility of the VA, indicating that
embodied guides appeared to be more competent and trustworthy.

A human-subject study by Kim et al. [6] showed similar positive effects of agent embodiment
on the users’ sense of trust, social richness, and social presence. In addition, participants of the study
reported an increased confidence in the agent’s ability to influence the real world and to react to
real-world events, when the VA was embodied and showed natural social behaviors.

A literature review of early embodied VAs was presented by Dehn and van Mulken [7].
Their meta-analysis revealed some inconsistent findings regarding the effects of embodied VAs on
user experience. Although some of the analyzed empirical studies report benefits of embodied VAs,
others conclude that agent embodiment only showed little or even negative effects on the users’
responses. Dehn and van Mulken hypothesize that these different outcomes may be attributed to
varying degrees of the agent’s appearance, both in terms of visual fidelity and natural voice.

In this context, the results of related studies indicate negative effects of a mismatch between
visual and behavioral realism of embodied VAs on perceived co-presence [8] and perceived quality
of communication [9]. Therefore, the visual representation of anthropomorphic VAs may raise
expectations about their behavioral realism and should only be used if the system is able to meet these
expectations [10].

2.2. Blended Agents

Since embodied VAs represent spatial entities within their real-world environment, the question
arises whether, and if so, to what extent they also must follow the same physical laws.
Potential physicality conflicts include unnatural occlusions between the VA and physical objects,
as well as implausible physical-virtual collisions.

Negative implications of such conflicts on human–agent interactions were demonstrated by
Kim et al. [11,12]. In their studies, the participants observed a VA encountering a physical obstacle
such as a door or a chair. In different conditions, the VA either avoided collisions with the obstacle,
asked the participant to move it out of the way, or passed through the obstacle. Subjective responses
indicate that physical-virtual conflicts reduced the sense of co-presence, while proactive behavior
asking help from the users to avoid implausible conflicts increased the ratings of co-presence.

Instead of avoiding collisions between VAs and physical objects, another approach is to allow
VAs to actually interact with these objects, for example, to move them to a different location. In this
context, we introduced the concept of blended agents—VAs that are not only capable of influencing
their virtual surroundings but also of performing virtual–physical interactions [4].

The concept of virtual–physical interactions was first investigated by Lee et al. [13].
They implemented a tabletop game that can be played by a real human and a VA. Via an actuator
system underneath the surface of the table, the VA can move both virtual and physical tokens. In a
within-subjects study, the authors were able to show benefits of the VA moving a physical token
both regarding subjective and some behavioral measures. In this condition, participants reported
a higher sense of co-presence and physicality, as well as higher expectations regarding the virtual
human’s abilities.

Lee et al. [14] demonstrated that even subtle tactile footstep vibrations induced via the floor can
increase subjective estimates of co-presence in an AR environment.

Another example of VAs that can influence their physical environment was implemented by
Lee et al. [15]. Their custom-made Wobbly Table crosses the boundary between the physical and virtual
world. Although the physical half is standing in front of a projection screen, a virtual counterpart
is visually extended into the virtual environment with the VA. If the VA is leaning on the table,
a virtual–physical interaction occurs as both the virtual and the physical parts are slightly tilted.
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In Section 4, we present and evaluate two prototypes of virtual–physical interactions using robotic
actuators and thermochromic ink.

2.3. Intelligent Blended Agents

In previous work, actions of blended agents were either completely predetermined or controlled
by the experimenter to some extent, for example, by selecting the next dialog option or animation
sequence. In both ways, some level of intelligence of blended agents can be simulated. With the
rise of MR, machine learning (ML), and the Internet of things (IoT), blended agents can be further
improved with AI. By this means, the agent can react to its current physical context, such as the user’s
behavior—without intervention of a human controller.

Consumer devices with embedded intelligent voice-controlled agents, such as Amazon Alexa or
Apple’s Siri, allow customers an intuitive form of interaction with their smart home environments
and as a means to access information from the Internet [16]. By supplementing the intelligent agent
with a body representation as well as virtual–physical capabilities, the resulting IBA could interact
with its physical environment more naturally, using locomotion, gestures as well as other non-verbal
cues. Kim et al. [6] present a human-subject study, in which users asked either an IBA or a voice-only
agent to support them with certain tasks, such as turning off a light, checking the state of the lab,
or closing a door. In comparison to the disembodied voice-only agent, the IBA was able to walk to the
region of interest (i.e., the light switch, lab, or door) and perform gestures that reflect its current task.
The authors hypothesize that an IBA can communicate its status and intentions more intuitively due
to its body representation and intelligent social behavior. The results indicate that these factors indeed
increase perceived social presence, as well as the user’s confidence in the IBA’s awareness of the real
world and its ability to influence the physical environment.

Besides personal assistants that can visibly control connected smart home appliances, other forms
of IBAs may be useful in different scenarios. For example, an IBA in a visitor information center could
provide visitors with directions by drawing on a physical map. Also, an intelligent blended caregiver
could support patients with performing physical training exercises.

3. Implementation of Intelligent Blended Agents

As we intend to provide a virtual 3D body representation for VAs that are embedded into a
user’s daily life (e.g., smart assistants or audio guides), we focus on interactions between an IBA and
its real-world surroundings. This includes both real communication partners and physical objects.
However, the model can be easily extended to additional virtual entities.

Figure 1. Model to illustrate multi-modal (blue boxes) multi-sensory (green boxes) interaction between
a human and an IBA (adopted from Burdea and Coiffet [17]).
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We base our considerations on the model of multi-modal as well as multi-sensory interaction
in MR. This model describes interaction with a machine from a human’s perspective using multiple
input channels and output modalities. The machine processes the multi-modal (speech and haptic)
output of the user and operates different simulation subsystems to produce visual, auditory, and haptic
feedback. We adopt and modify this generalized model to describe human–agent interaction from the
perspective of an IBA (see Figure 1). For this purpose, we extend the output modalities of the user by a
third channel. This represents visual data an agent can collect and evaluate to gather more information
about the current state of its physical environment, including the user. For the smart integration of the
different user outputs and subsequent simulation of multi-sensory feedback, we introduce an AI core
(cf. Section 3.6). The AI core can receive additional inputs from external knowledge bases in the local
or global network.

In the following, each aspect of the model will be exemplified for our own implementation of an
IBA, called Louise (see Figure 2). Implementation details are provided, allowing for replication by AR
developers and researchers.

(a) (b)
Figure 2. Visual representation of (a) the agent’s face, and (b) the agent’s upper body.

3.1. Visual Simulation

The embodiment of IBAs requires applying various techniques from the field of computer graphics
to generate a 3D visual body representation. As discussed in Section 2.1, disparities between visual
and behavioral realism should be decreased as they can result in lower levels of co-presence and
social presence.

For a high degree of visual fidelity, we use a 3D scanned female head model that features a highly
detailed mesh, 4K PBR textures, and multiple facial expressions (Animatable Digital Double of Louise
by Eisko c©, www.eisko.com). The head model, with slightly adapted textures and rendered using
a screen-space subsurface scattering shader, is illustrated in Figure 2. To add vividness to Louise’s
face, its eyes are not moving randomly but are occasionally focusing on pre-defined points of interest,
such as the user or specific tracked objects. Furthermore, micro movements, i.e., saccades, as well
as blinking reflexes are performed. Lip movements that match Louise’s voice are created via the
Oculus Lip Sync plug-in in real time. Facial expressions representing different emotions are displayed
using the model’s blendshapes. As the blendshapes represent a variety of so-called action units,
i.e., movements of facial muscle groups, complex emotions can be constructed using the Facial Action
Coding System (FACS) [18]. For example, joy can be deconstructed into cheek raising and the lip
corner pulling.

The agent’s body was created and rigged using Adobe Fuse or Mixamo, respectively. Adobe Fuse
allows adjusting several body parameters, including the height, proportions, and clothing of the
agent. Based on the rigged 3D model, movement sequences can be either realized using retargeted

www.eisko.com
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keyframe animations or motion-captured material, although the latter usually creates more natural
results. For motion capturing, we use an 8-camera Qualisys Miqus M3 system and a full-body mocap
suit. All animation sequences are performed by a human actor, recorded and exported to the FBX file
format using the Qualisys Track Manager (QTM), and imported to Unity. Since there is an automated
mapping between QTM segments and Unity bones, animations can be applied directly to a humanoid
rig that was set up using the Unity animation system Mecanim. Differences in the proportions between
the captured actor and the rig can be solved using an additional inverse kinematics (IK) pass in Unity.
For example, the function Foot IK reduces feet sliding by slightly adjusting the skeleton pose in a way
that the agent’s feet hit the same spots on the ground as in the original animation of the actor.

3.2. Sound Simulation

The audio output of Louise is synthesized using the IBM Watson text-to-speech engine (https://
www.ibm.com/cloud/watson-text-to-speech). This service offers voice models with varying language,
gender, and tone. For Louise, we use the female American English voice LisaV3, which relies on
Deep Neural Networks that are pre-trained on human speech data [19]. If the regular pronunciation
rules of the specified language do not apply to a set of domain-specific words, a custom dictionary
can be created for these exceptional cases. In Unity, such a dictionary consists of key-value pairs,
i.e., a custom word and the corresponding pronunciation. The latter can be specified either as a
sounds-like translation (e.g., IEEE sounds like I triple E) or a phonetic translation (e.g., aI "trIp@l i).
To make use of the Watson text-to-speech API, the Unity application must be authenticated using a
unique API key. The service credentials, including this key as well as an endpoint URL for the selected
data center, can be accessed from the IBM cloud web interface after creating a new service instance
(https://cloud.ibm.com/resources). This procedure is identical for all Watson services that are used
for Louise and can be simplified by using the Watson SDK for Unity (https://github.com/watson-
developer-cloud/unity-sdk). After authentication, a JSON file containing the text to synthesize, as well
as optional values for the requested audio format, voice, and custom voice model, is sent to the Watson
text-to-speech service. By default, the audio is synthesized with a sampling rate of 20,050 Hz and is
streamed back to the Unity client as an array of bytes. Optionally, additional word timings can be
requested as an alternative to synchronize lip movements with the spoken text (in contrast, our current
solution solely relies on the audio data as described in the last section). Sending text to the IBM
cloud data center and receiving synthesized audio adds a delay that can depend on several factors
such as the client and server locations as well as available bandwidth. To reduce the delay, we store
generated audio files in a local cache for future use. The cache is limited to a user-defined size and
is managed according to the least recently used (LRU) policies. In Unity, received audio files can be
bound dynamically to an audio source that is registered in 3D space to match the current pose of
Louise. To improve the realism of sound propagation, we use the Unity MS HRTF spatializer plug-in,
which incorporates the binaural head-related transfer function.

3.3. Physical Simulation

One main purpose of simulating the somatosensory system is to create physically plausible
reactions to collisions between the embodied agent and entities in the real-world environment.
The approximation of virtual–physical collisions requires an accurate registration between real scene
objects and the agent. This could be realized based on spatial information that is collected through
(visual) tracking approaches, as discussed in Section 3.4. Results of object tracking can be directly fed
back to the agent’s animation system, for example, to implement grasping movements that target the
tracked physical object. In Unity, we use IK to naturally transform the joints of the IBA’s skeleton
based on the target poses of its hands, fingers, or feet. To not only align the agent’s body with objects,
but also to manipulate their physical properties, more complex actuators are necessary (as introduced
in Section 2.2).

https://www.ibm.com/cloud/watson-text-to-speech
https://www.ibm.com/cloud/watson-text-to-speech
https://cloud.ibm.com/resources
https://github.com/watson-developer-cloud/unity-sdk
https://github.com/watson-developer-cloud/unity-sdk
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For this purpose, we implemented two different setups that exemplify virtual–physical
interactions in the form of (i) movements of a physical ball, and (ii) persistent writing on a physical
sheet of paper. To address the former, we used an off-the-shelf robotic golf ball that moves along a
scripted path to simulate interaction with a virtual golf club (our custom JavaScript library for the
robotic ball can be found at https://github.com/augmentedrealist/spheromini.js). In other scenarios,
robotic devices could not only be used to represent manipulable physical entities but also to actuate
otherwise passive real-world objects. For the second form of virtual–physical interactions, we designed
a novel device that uses temperature variation to activate thermochromic ink on a sheet of paper. In the
current implementation of the thermal table as a proof of concept, all written text must be prepared
before the MR experience. Only when placed on the powered table, the prepared text turns invisible
until the polarity of the thermoelectric element is changed, and the sheet of paper is cooled down.
Synchronized with the animations of a blended agent, the illusion of a virtual human writing on a
physical piece of paper can be created. Further technical details for both the thermal table and the
robotic ball can be found in [4].

Besides the simulation of collisions between the IBA and physical objects, other somatosensory
functions could be integrated using additional sensors and actuators. For example, Kim et al. [20] used
a wind sensor to detect airflow from a real fan and to adjust the agent’s behavior accordingly.

3.4. Computer Vision

Non-verbal cues, such as facial expressions, gestures, or eye contact, are crucial in human-to-human
communication. Therefore, they should also be incorporated into human–agent interactions to make
them as natural as possible. By leveraging computer vision algorithms, at least some of those
cues can be recognized and interpreted based on plain RGB camera input. For Louise, we focus
on the identification of users based on their facial features as well as the extraction of their eye
positions to make eye contact. Although there is a Watson visual recognition API that could be
used for both tasks, it is not optimized for the distinction of faces and therefore, may result in
a lower accuracy than a dedicated library. This is because, in general, all faces are similar to
respect to certain features, such as the presence of eyes, a nose, and a mouth, as well as rough
proportions. Custom approaches, such as FaceNet [21], use a deep convolutional network to compute
a feature vector per image that can be directly used to compute face similarities between two
images. We set up a dedicated Python server that runs a Tensorflow implementation of FaceNet
(https://github.com/davidsandberg/facenet). In preparation of the face recognition, an initial training
procedure was performed. We first collected five images for each user that should be known to Louise
(the best results are achieved when they are captured within the same environment as for the final
application). The images are aligned using a multi-task cascaded convolutional neural network
(MTCNN). In this step, faces within the images are detected, cropped, and scaled to an image size
of 160 × 160 pixels with the result that eyes and the mouth appear at similar positions in all images.
For each aligned image, a 128-dimensional feature vector, a so-called embedding, is computed using
a pre-trained model (Model 20180402-114759, which has been trained on the VGGFace2 dataset).
Based on these embeddings, we built a classifier using a scikit-learn implementation of support
vector machines [22]. The alignment step and the construction of a classifier took 27.888 and 14.458 s,
respectively, when performed on an Intel Core i7-7660U processor without GPU acceleration. After the
initial training procedure, the Python server can receive and classify frames of a video stream that are
sent by the Unity client via HTTP POST requests. In Unity, a WebCam Texture is used to display the live
camera feed. For requesting a face classification, the current texture content is encoded into PNG format
and sent to the Python server as a byte array. The server’s response includes whether a face was detected
and, if so, the associated user with a confidence measure. If the confidence measure is below a threshold,
it is assumed that none of the users in the database were identified. For our prototype, we pre-trained
20 users; however, the classifier could also be updated with new training data while the Unity application
is running.

 https://github.com/augmentedrealist/spheromini.js
https://github.com/davidsandberg/facenet
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An even more accurate approximation of human vision could incorporate additional depth
sensors to infer spatial relationships within the physical surroundings. We use two approaches: (i) an
optical tracking system (5 OptiTrack Prime 13W cameras) to gather 6 DOF data of tracked objects
or users, and (ii) a system of depth cameras (3 Microsoft Kinect v2) if a full 3D point cloud of the
scene is necessary. The captured depth data can be used to adjust the agent’s behavior, for example,
by avoiding a user’s motion path, making eye contact, or grasping an object. Furthermore, if the depth
of different body parts of the user is known, the user’s skeletal pose can be derived. By this means,
the agent can react to gestures of the user.

3.5. Speech Recognition

To add another layer of awareness to Louise, we are recording the user’s voice and transfer it
to the IBM Watson speech-to-text service (https://www.ibm.com/cloud/watson-speech-to-text) for
further processing. The Watson service is based on deep neural networks and allows the transcription
of speech input in various languages [23]. It incorporates knowledge of the structure and grammar
of a selected language, combined with an acoustic model that describes the composition of voice
signals. If the agent is expected to handle specific vocabulary, for example, in the context of a computer
science application, a domain-specific language model that augments the existing base model can be
trained. Training requires a set of individual words or a domain-specific text from which the system
can extract unknown terms. For the former, a pronunciation must be added manually along with each
word. In contrast, the system can identify words from their context when provided within full training
sentences, and therefore, no pronunciation is needed in this case.

To make sure that the agent does not react to its own voice, speech recognition is paused as long
as the agent is talking. After the audio input was processed, a JSON message is sent to the Unity
application, including the final transcript with a confidence measure. The transcribed speech can then
be further processed, as presented in the following section.

3.6. Core AI

The planning and execution of Louise’s actions, including speech output, movements, and facial
expressions, require a fusion of different sources of information. These can include multiple sensory
channels (visual, auditory, and somatosensory), a pre-populated database with basic knowledge of the
agent, an artificial memory that is dynamically updated, as well as external sources (e.g., a calendar or
weather app). All collected information is integrated using the IBM Watson Assistant (https://www.
ibm.com/cloud/watson-assistant). Key component of the assistant is a dialog skill that must be trained
before it is used for real-time human–agent interaction. Training data is collected for three subsystems:
intents, entities, and the dialog tree. An intent is an objective a user might pursue, interpreted from the
text input the assistant gets. To recognize user intents without depending on the specific phrasing,
sample utterances are provided to the system that reflect possible text inputs representing the same
intent. Entities can provide additional context to an intent. For example, a general room reservation
intent could be specified by adding entity values for the requesting user, the room to be reserved,
as well as a date. As for intents, examples can be provided by the developer to allow for automated
recognition of an entity within the text input. The dialog tree integrates all provided information to
decide on the agent’s output. It constitutes the initial knowledge base of the agent since all possible
reactions to a specific input within a current context are pre-defined. Although the Watson Assistant
was developed to carry on conversations with users depending on recognized utterances, it can
be extended to non-textual input by receiving additional information from Unity. The exchange
of messages between Unity and Watson is based on JSON files. A JSON request sent by the Unity
client can contain a user’s utterance that was transcribed by the speech recognition system as well
as custom variables. The latter can represent other sensory inputs (e.g., the visually identified user),
data recalled from the agent’s memory (e.g., the last time a user was seen), and information retrieved
from external sources (e.g., calendar events on a specific date). Custom variables can be stored in

https://www.ibm.com/cloud/watson-speech-to-text
https://www.ibm.com/cloud/watson-assistant
https://www.ibm.com/cloud/watson-assistant
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Watson context variables for later use. For an incoming message, all child nodes of the current dialog
node are sequentially processed until the condition of one of them evaluates to true. Conditions can
consider the message itself, regarding the occurrence of a specific intent, entity, or entity value, as well
as the stored context. When a dialog node is triggered, the Watson assistant returns the associated
JSON response to the Unity application. The response can include any recognized intents or entities,
each with a confidence score, a text output as well as self-defined variables. Examples of the latter
include an associated emotion, a matching animation, or a description of additional media files.
All JSON responses within the Watson Assistant dialog tree are fully customizable. Therefore, it is
the developers’ responsibility to maintain the consistency between different modalities, for example,
by specifying matching verbal and behavioral output for a specific dialog node. After received by
the Unity client, the JSON response is interpreted, and further actions in the subsystems of visual,
sound, and physical simulation are initiated. Overall, the core AI’s task is to match multi-modal inputs
provided by the Unity application to multi-sensory responses of the IBA, while incorporating the
agent’s current state of knowledge. Figure 3 shows an exemplified interaction with audio and gesture
input as well as audio, gesture, and physical output. The illustrated scenario is further detailed in the
following section.

(a) (b)
Figure 3. (a) Exemplified multi-modal multi-sensory interaction between a human and an IBA,
and (b) corresponding representation within the IBM Watson Assistant dialog tree. The symbols
# and $ are denoting intents and context variables, respectively.

4. User Study: Virtual–Physical Manipulations

For implementing the model of human–agent interaction that is presented in the previous
section, we can mostly draw on existing services such as IBM Watson and FaceNet. The aspect
of physical simulation, however, is still an active subject of investigation since only a few practical
solutions for virtual–physical manipulations in MR environments are available. We proposed two
systems to implement different forms of virtual–physical interactions—one similar to previously
tested techniques and one that features a novel approach. In this section, we present a comparative
study that we conducted to collect subjective responses of users. For this purpose, we designed an
experimental environment that naturally embeds both implementations, as described in detail in the
following subsections.

4.1. Hypothesis

Throughout the following sections, we focus on two different forms of virtual–physical
interactions, i.e., manipulations of (i) an object’s location, and (ii) an object’s material properties.
Based on these two approaches, we formulate the following hypothesis:
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Hypothesis 1 (H1). Virtual–physical interactions improve the user experience in terms of social and spatial
presence, ecological validity, perceived anthropomorphism of the blended agent, and engagement.

Hypothesis 2 (H2). Virtual–physical interactions related to the surface material of an object have a stronger
positive impact on the aforementioned metrics than those related to the object’s position.

Hypothesis 3 (H3). Chemical changes of an object’s surface material can be hidden from the user, while mechanical
manipulations of the object’s location are more explicable.

Hypothesis 4 (H4). Manipulations of the object’s location are observed by the users directly, while manipulations of
the object’s surface material are not observed before the end of the MR experience.

(H3) and (H4) are assumed to have a direct effect on (H2). This is because the illusion of an
interaction between the blended agent and the physical object might be supported if users are not
capable of finding an obvious explanation for an effect. Furthermore, persistent changes of an object’s
surface material are observable even after the MR experience and, therefore, could change the perceived
realism of the VA in retrospect.

4.2. Materials

The MR environment for the user study was inspired by a minigolf course, with a VA acting as
the opposing player. For the two forms of virtual–physical manipulations, we used a robotic golf ball
and a thermal table, as summarized in Section 3.3 and described in detail in [4]. The course with a
length of 2.9 m and a width of 1.05 m was set up within a four-sided CAVE, which featured a size of
4.2× 3.13× 2.36 m. Two heavy ropes marked the edges of the course, and pieces of artificial turf served
as obstacles. The hole was marked with a slightly raised ring. Three Optoma EH320USTi short throw
projectors were used to display virtual content at the CAVE walls. Two additional Optoma GT1080(e)
projectors augmented the floor as well as the thermal table. Each projector provided a resolution
of 1920 × 1080 at a refresh rate of 120 Hz. To experience the view-dependent stereoscopic content,
users had to wear shutter glasses with passive markers that were tracked by a five-camera OptiTrack
system. Furthermore, the voice of the VAs was presented to participants via wireless noise-cancelling
headphones. Another purpose of the headphones was to block ambient noise that was created by the
thermal table’s internal fan. In contrast, sounds caused by the friction between the golf ball and the
floor were still audible. All the actions of the participants were monitored by the experimenter using
a camera at the ceiling of the CAVE. By this means, the experimenter was able to trigger particular
reactions of the blended agent from a neighboring room, without being visible to the participants.
The CAVE setup was chosen since current AR headsets only feature a small field of view, and virtual
objects are cut off at the edges of the display area.

For the VA, we used the rigged model as described in Section 3.1, with adapted clothing, hairstyle,
and makeup. As retargeted keyframe animations were described as stiff and artificial in a pre-study,
we decided to replace them with motion-captured animation sequences that were performed by a
female actor. A path of the robotic golf ball was programmed accordingly to match the animations
of the blended agent. The agent’s voice was provided by a native speaker and spatialized in Unity,
as described in Section 3.2. Besides the voice, no additional sound effects such as footsteps were
simulated in the current experiment. To better control for extraneous influences and increase the
repeatability of the user study, we used a wizard of oz approach to time reactions of the agent and to
select correct dialog options. By this means, we could ensure the same sequence of events for study
participants who were experiencing different conditions. In a real application, this could be replaced
by the modules that are described in Sections 3.4–3.6.
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4.3. Methods

For the user study, we followed a between-subjects design with two independent variables and
two levels each. The resulting four conditions, all in relation to the VA’s interactions, are:

• (Bv Hv) Virtual golf ball and virtual handwriting.
• (Bv Hr) Virtual golf ball and real handwriting.
• (Br Hv) Real golf ball and virtual handwriting.
• (Br Hr) Real golf ball and real handwriting.

The random assignment of conditions was counterbalanced among participants. Before a new
participant arrived, the golf course was prepared according to the selected condition. In the conditions
(Bv Hr) and (Br Hr), the thermal table was turned on, and a sheet of paper prepared with invisible
ink was placed on its top. In preparation for the conditions (Br Hv) and (Br Hr), a NodeJS server was
started, which connected Unity to the robotic ball. Since the robotic ball is not able to provide a
global orientation value, its initial rotation had to be determined by hand. A manual correction was
performed until the ball moved perfectly along a test track. Afterward, the ball was positioned at its
starting slot along with three other physical golf balls.

Before they entered the previously described minigolf course, participants had to fill in a consent
form as well as a pre-questionnaire to provide demographic information. Afterward, each participant
was guided to the CAVE, and the procedure, as well as general minigolf rules, were explained. In this
introductory phase, participants were able to examine the golf course as well as the scorecard with their
naked eye. Also, the preparation of the scorecard with a table was executed in sight of the participants
to make sure that they realize it was empty when they entered the room. After all questions were
resolved, the participant had to wear shutter glasses, and the experimenter started with the first round.

In total, four rounds of play were performed: (1) The experimenter playing with a physical ball,
(2) the participant playing with a physical ball, (3) the (blended) agent playing with a virtual/robotic
ball, and (4) the participant playing with a physical ball. After rounds (1) and (2), the experimenter
and participant filled in one blank of the scorecard each. Afterward, participants were introduced to
the VA by the experimenter. They were given noise-cancelling headphones, and the experimenter left
the room. The VA then started a conversation with the participant and putted either a virtual or a
robotic ball into the hole, according to the selected condition (see Figure 4b). After finishing round (3),
the VA walked to the scorecard and asked the participant where to fill in her score, as illustrated in
Figure 4a. The animation was only resumed by the experimenter if the participant was close to the
table. This artificial pause should ensure that all participants witnessed the handwriting of the VA
and, therefore, do not make false assumptions about how and when the VA’s score was added to the
scorecard. If the participant was in sight of the thermal table, the VA virtually wrote a pre-defined
score of 4 in the dedicated blank space. The scenario is illustrated in Figure 3a with a possible Watson
implementation in Figure 3b (though, a wizard of oz approach was used in the experiment as motivated
in Section 4.2). The VA then challenged the participant to bet her score in round (4). During this second
round of the participant, all hits were counted by the experimenter using the live camera view. In the
conditions (Bv Hr) and (Br Hr), when the participant was close to the hole, the temperature of the
thermal table was switched from high to low, and the thermochromic ink below the projected score
became visible. At the same moment, the projected score was faded out with the result that the
participant could only see the physically written score when he returned to the table.

After round (4) was finished, and the participant filled in the last blank of the table, the VA started
a final evaluation of the match. Based on the number of strokes that were digitally logged by the
experimenter, the VA announced the winner of the game. Finally, the VA said goodbye and suggested
to the participant to take the scorecard as a souvenir. The user left the CAVE and was asked to fill in a
series of questionnaires. Overall, the study took around 20 to 25 min to complete.
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(a) (b)
Figure 4. Photos showing the experimental setup, with (a) the thermal table, and (b) the minigolf
course with a robotic ball.

4.4. Participants

We invited 40 participants to our study, 27 male and 13 female (aged from 18 to 41, M = 25.35).
36 of them were students or staff members of the local department of informatics, while 4 stated to
pursue a non-technical profession. According to the pre-questionnaire, 7 participants took part in a
study involving MR for the first time. None of the 40 participants reported any visual impairments
that could affect the results of our experiment.

4.5. Results

During the user study, we collected both quantitative and qualitative subjective data that can give
some indication of how different virtual–physical interactions affect a MR experience. The results are
presented in the following section.

4.5.1. Quantitative Analysis

Each experiment session was concluded with five questionnaires that addressed different aspects
of the experience:

• Social presence (=Social Presence Questionnaire by Bailenson et al. [24])
• Spatial presence (=subscale of the Temple Presence Inventory [25])
• Ecological validity (=subscale of the ITC Sense of Presence Inventory [26])
• Perceived anthropomorphism (=subscale of the Godspeed questionnaire [27])
• Engagement (=top-loading items of the engagement subscale of the ITC Sense of Presence

Inventory [26])

Results were measured on 7/5-point Likert scales, as noted in the head of Table 1. For each
participant, average scores were formed according to the computation models that are suggested
in the original papers. We analyzed the data using multiple two-way ANOVAs, but could not find
any significant main or interaction effects. The mean values, as well as standard deviations for all
conditions and each dependent variable, are also summarized in Table 1. Additional analyses of
demographic factors, such as gender, age, and experience with MR studies, did not indicate any
moderate or strong correlations with the dependent variables.
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Table 1. Mean scores and standard deviations for each of the 4 conditions and 5 dependent variables.

Social Spatial Ecological Anthropo- Engagement
Presence Presence Validity Morphism

(1–7) (1–7) (1–5) (1–5) (1–5)

Golf ball Writing M SD M SD M SD M SD M SD

virtual virtual 4.74 1.139 4.600 0.824 3.840 0.506 3.620 0.745 4.567 0.522

virtual real 4.20 1.178 4.643 0.678 3.520 0.738 3.320 0.694 4.233 0.545

real virtual 4.80 0.660 4.671 1.048 3.720 0.634 3.320 0.655 4.500 0.503

real real 4.16 0.970 4.586 0.995 3.700 0.620 3.260 0.795 4.467 0.477

4.5.2. Qualitative Analysis

In addition to the mentioned Likert scales, we were also asking participants some open-ended
questions about experienced or expected effects of blended agents, depending on the tested condition:

(Br) “How did the agent’s interaction with a real golf ball affect your experience?”
(Bv) “Imagine the agent interacting with a real golf ball instead of a virtual one. How would this

interaction have affected your experience?”
(Hr) “How did the agent’s persistent handwriting affect your experience?”
(Hv) “How would your experience have been changed, when the handwritten score of the agent

would be still visible on the paper?”

We directed similar questions at participants assigned to the virtual and the real conditions as we
were interested in the users’ perception of individual potentialities of both virtual and blended agents.
By this means, we also aimed to investigate whether expectations for virtual–physical interactions
and the reality diverge to some extent. To extract comparable data, we assigned utterances to
seven different categories using an open coding strategy. The first three categories denote opinions
regarding the perceived realism of blended agents in comparison to VAs without virtual–physical
capabilities. Another four categories cover different dimensions of emotional responses. If a single
response of a participant included multiple utterances within the same category (e.g., “fascinating and
memorable”), they were still counted only once. As each scenario (Br, Bv, Hr, and Hv) was experienced
by 20 participants, 20 is the maximum value in each category. The resulting frequency distribution is
illustrated in Table 2.

Table 2. Categorization of the users’ utterances in open-ended questions related to the user experience.

Sub-Category Example
Count Count

Br Bv Hr Hv

R
ea

lis
m More realistic ‘It made me feel like I am playing against a real human.’ 6 10 7 5

Less realistic ‘It looked a little unrealistic how the golf club was hitting the ball.’ 2 1 0 0

No difference ‘I don’t think that it would have changed much.’ 2 4 3 4

Em
ot

io
ns

Disconcertment ‘Would’ve probably felt more weird.’ 3 5 2 3

Confusion ‘Initially there was a bit of confusion whether it is the real ball.’ 4 2 3 2

Surprise ‘It was a fun surprise to see the actual ball be moved.’ 7 0 6 3

Enjoyment ‘It made the experience more fascinating and memorable.’ 11 3 11 7

In addition to the categorized utterances, four participants acknowledged the increased fairness
when both the user and the blended agent must play with a physical golf ball. Regarding the scorecard,
four of the participants with a (Hv) condition reported their initial surprise when the projected score



Multimodal Technol. Interact. 2020, 4, 85 14 of 18

disappeared. One participant even admitted feeling disappointed as he could not take the completed
scorecard as a souvenir. In general, three participants mentioned that a scorecard with physically
written text feels more like a trophy.

We were also interested in whether reactions to the persistent handwriting were different for
users assigned to a (Br) or (Bv) condition. Experiencing a blended agent that is interacting with a
real golf ball might have raised the expectations regarding the agent’s capabilities. However, no such
interaction effect could be found as both user groups showed similar, mainly positive, responses to the
persistent handwriting.

Finally, we asked participants of the (Br) or (Hr) conditions about the used mechanism to test
our hypothesis (H3). For the physical golf ball, 8 of the participants stated that they figured out the
mechanism or at least got an idea of how it worked. Surprisingly, only one of the ideas was correct
while most participants suspected a magnetic track behind the ball movement. In contrast, none of the
(Hr) participants perceived the mechanism behind persistent handwriting as obvious. Due to a lack of
explanations, two participants were convinced that another person entered the room to replace the
virtual score, while another two felt uncertain about the fact whether the scorecard was empty at the
beginning of the study.

4.5.3. Observational Data

In addition to feedback obtained through the questionnaires, we also made some observations
regarding the participants’ behavior, both during the study and directly afterward.

When the agent was approaching the scorecard to fill in the blank, six of the participants (five of
Hr and one of Hv) used their own pen to write down the agent’s score in her stead.

After the MR experience but before completing the post-questionnaires, all participants of the
conditions (Br Hv), (Bv Hr), and (Br Hr) were asked whether they noticed the physicality of the golf ball
and handwriting, respectively. 16 participants who experienced a Br condition realized that the ball was
real during the experiment, while 4 reported having doubts whether the ball was real or not. In contrast,
only 7 participants of the Hr conditions noticed that the handwritten score was still persistent after they
left the MR environment. These results support our initial hypothesis (H4) regarding the observability
of both forms of virtual–physical interactions. It was surprising, though, as we expected that users
will realize the persistent handwriting at the latest when they leave the MR environment.

After completion of the entire experiment, 20% of participants with one of the Hv conditions took
their scorecard home. In the Hr conditions featuring persistent handwriting, 40% of participants kept
their scorecard.

4.6. Discussion

Against our hypotheses (H1) and (H2), no significant effects of physical simulation on several
social and spatial metrics could be found in the collected data. These statistical results can be interpreted
in different ways. Two possible implications might be that (i) there actually are no differences between
VAs without virtual–physical capabilities and blended agents, and (ii) some users react positively to
blended agents while others show negative reactions, compensating one another. In contradiction to
both approaches to an explanation are the qualitative comments that were collected at the end of the
study. Most participants reported a positive influence of both virtual–physical interactions in terms of
perceived realism and/or user experience. The question arises why the quantitative ratings do not
reflect these subjective impressions. In the following, we discuss several potential influencing factors
and rate their respective impact.

4.6.1. Limited Expectations of VAs

Starting point of the following discussion is the basic question “Do users expect VAs to have
physical capabilities?”. The fact that the majority of participants did not notice the persistent
handwriting at all and showed emotional responses of surprise and confusion when they were
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made aware of it is indicative of rather low expectations of the VA. Therefore, users assigned to a
virtual condition most likely compared the displayed VA to their mental model of agents, without a
negative impact of missing physical capabilities. This model may be shaped either by previous
first-hand experiences with VAs or depictions of such agents in the media, including movies and
books. This impression is supported by the qualitative feedback as users of the virtual condition felt
positive about the realistic body movements, the natural voice, and individual reactions of the VA.
Therefore, the reported effects found in previous within-subjects studies might be only due to the
direct comparison between agents.

4.6.2. Low Granularity of Used Scales

Three of the questionnaires used 5-point Likert scales as we complied with the standards.
As current VAs are still far from being indistinguishable from real humans, only a few users will rate
items that are related to the human likeness with a maximum value of 5. Therefore, only one of the
remaining options refers to a positive response. A higher scale granularity that allows participants
to rate their experience more precisely might reveal significant differences between the conditions.
That these differences are expected to be rather small was already indicated by the results of a similar
study with a within-subjects design [13]. For the ratings of engagement, an additional ceiling effect can
be observed as mean scores are already close to the maximum for conditions without blended agents.

4.6.3. Limited Importance of the Physical Reactions

Although both the golf ball and the scorecard were designed to be an integral part of the interaction
between the participants and the MR environment, they might have been less meaningful than other
interactions with physical objects. For example, if a blended agent moves a real chair towards the user
to take a seat, this physical manipulation has an impact on the subsequent actions while the physical
golf ball could only be observed without any direct contact. In another example, a blended agent could
mark a location on a physical map to direct the user to a place. In contrast, the scorecard was only
given as a souvenir without any future purpose. More meaningful interactions might have increased
the perceived value of the physical (persistent) manipulations.

4.6.4. Distrust of the Experimental Environment

An observation that might have influenced the results without being the sole reason was that
some participants conjectured that somebody entered the room and replaced the virtual score by a
physical one when the participant was distracted by the golf match. Even the fact that the experimenter
was neither in the CAVE nor the directly neighboring room could convince them of the contrary.
Two other participants mentioned that they were sure that the sheet of paper was empty at first but
were skeptical about this in retrospect as they would not know how this could have been done.

4.7. Limitations

Both the interactions with the robotic ball and the thermal table are proof of concepts with
some limitations.

As the robotic ball has no global tracking capabilities, its position and orientation must be
determined manually. A computer vision algorithm could be used to compute the current position of
the ball and to match the subsequent actions of the blended agent. Such a tracking algorithm could
also compensate for the limited precision of the robotic ball. In the current implementation, the ball
ends up in slightly varying places. Although the blended agent always putted the ball into the hole,
the golf club and the ball movements were not always perfectly in sync; an observation that was also
shared by some of the participants. Another limitation is related to the ball physics. As any motorized
objects need an acceleration phase to be set in motion, the initial impulse imparted to the golf ball by
hitting it with a golf club cannot be simulated completely.
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The current implementation of the thermal table also requires some preparations to create a
convincing illusion of a blended agent. First, the ink can only be made visible at once. Therefore,
the handwritten text must be prepared before the MR experience. For the same reason, the writing
path must be simulated virtually before it is replaced by the physical writing. To solve both problems,
coated paper could be used. In this case, the thermal mechanism must be changed from a heating
plate to a heated metal tip as used for soldering irons. Furthermore, as the used thermochromic ink is
visible at room temperature, it always must be placed on top of the thermal table at the beginning of a
MR experience. By using a dye with different characteristics users could bring a sheet of paper to the
MR environment, which might further increase the believability of the blended agent.

5. Conclusions

In this article, we introduced a model for the interaction between humans and intelligent blended
agents (IBAs). Such agents are characterized by their capabilities to (i) receive multi-modal feedback
from one or more users, (ii) process this input data using various AI approaches and with respect to
prior knowledge, and (iii) generate plausible multi-sensory outputs, i.e., behavior that can be perceived
by users based on their visual, auditory, and haptic channels. In particular, the generation of haptic
output is challenging, as it requires IBAs to manipulate their real-world surroundings.

In the second part of the article, we provide insights into this emerging field of research by
presenting a user study, which compares two forms of such virtual–physical interactions (moving a
physical golf ball and writing on a physical sheet of paper). Although a statistical analysis of subjective
data obtained through several questionnaires did not yield any significant differences between
agents with and without physical capabilities, user responses still indicate benefits of the former.
Users described their interaction with blended agents as an “amazing, very surprising and immersive
experience”, a “fascinating magic trick”, or the sensation of “being inside the Holodeck”. The agent’s
physical manipulations “made the agent appear more present”, and created a “more enjoyable” and
“more memorable” MR experience. Despite little divergences between the natural and simulated
behavior of a physical golf ball, most participants appreciated the virtual–physical interaction.
Some participants also mentioned effects on their behavior inside the MR environment, as they
“felt the urge to respond” to the blended agent or avoided any collisions.

In a future study, we plan to address the aspects that were identified in the discussion,
including the consideration of more meaningful virtual–physical interactions as well as the usage of
questionnaire scales with a higher granularity together with objective feedback. Since the observed
emotional responses of participants could be primarily attributed to the novelty effect, we are
particularly interested in changes in user behavior when interacting with blended agents. By this
means, more valuable indications for the long-term use of VAs could be inferred.

Regarding the introduced model of human-agent interaction, each component can be extended
by using advanced processing or simulation techniques. Our Unity framework for embodied IBAs is
structured in a modular way, with the result that individual functions can be easily modified or even
replaced. Although we based multiple modules such as the speech recognition and generation as well
as the AI dialog system on IBM Watson services, other vendors such as Google Cloud offer APIs with
similar functionality. Since dependencies between the Unity modules are well defined, they can be
individually exchanged according to the developer’s needs and preferences.

The core AI, which is implemented as a capsuled module itself, can also be extended, for example,
to incorporate additional internal or external data sources. In the current prototype, reactions of our
IBA Louise are generated with respect to different input channels and a knowledge base that represents
her cognitive intelligence. Since a major purpose of IBAs is to interact socially with human users,
a useful extension of this model is to also include aspects of artificial emotional intelligence. Louise can
already show complex facial expressions; however, she is not capable of recognizing emotional states
of the user so far. This could be realized by adding functionality to the image and speech processing
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modules (e.g., by using the Watson tone analyzer). Endowing Louise with an artificial empathy
towards human communication partners is one of the future research directions we plan to pursue.
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