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Abstract: The exigency of emotion recognition is pushing the envelope for meticulous strategies of
discerning actual emotions through the use of superior multimodal techniques. This work presents
a multimodal automatic emotion recognition (AER) framework capable of differentiating between
expressed emotions with high accuracy. The contribution involves implementing an ensemble-based
approach for the AER through the fusion of visible images and infrared (IR) images with speech.
The framework is implemented in two layers, where the first layer detects emotions using single
modalities while the second layer combines the modalities and classifies emotions. Convolutional
Neural Networks (CNN) have been used for feature extraction and classification. A hybrid fusion
approach comprising early (feature-level) and late (decision-level) fusion, was applied to combine
the features and the decisions at different stages. The output of the CNN trained with voice samples
of the RAVDESS database was combined with the image classifier’s output using decision-level
fusion to obtain the final decision. An accuracy of 86.36% and similar recall (0.86), precision (0.88),
and f-measure (0.87) scores were obtained. A comparison with contemporary work endorsed the
competitiveness of the framework with the rationale for exclusivity in attaining this accuracy in wild
backgrounds and light-invariant conditions.

Keywords: emotion recognition; multimodal; ensemble; visible images; infrared images; speech;
CNN; VIRI; SVM; feature-fusion; decision-fusion; RAVDESS; wild; light-invariant

1. Introduction

An emotional state of a person is the gauge of several manifestations being held in one’s mind. It is
an index to perceive the intentions and sentiment of a subject that assists in self-regulating tasks such as
monitoring, automatic feedback, therapies, marketing, automotive safety, and assessments. This field of
human–computer interaction (HCI), referred to as Affective Computing, assists in shifting the cognitive
load from humans to machines. HCI aims to manifest a human–human like interaction between
humans and machines. Interaction is more innate when the machine is aware of the user’s emotional
state. It becomes imperative when the machine’s decision table looks for responses depending
on the user’s mood. For example, an autonomous car might take a quiet, longer path when the
user’s emotions dispose of anger, and a congested road is more likely to aggravate that emotion.
An impeccable judgment requires a perfect discernment of emotions. Faces, speech, physiological
signals, gestures, and even eye gaze carry manifestation of the person’s emotional state. Several works
have leveraged these modalities to predict emotions with varied accuracy. A diverse set of mechanisms
and techniques have been discovered and applied at junctures to achieve higher accuracy. Paul Ekman,
a pioneer in setting the trend of identifying human emotions using Action Units (AU) [1–3], identified
the six basic emotions that portray the affective states of a person as happiness, anger, surprise, sadness,
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fear, and disgust [1]. Facial expression was the principal modality for emotion detection, and later a
diverse stack of modalities unfolded as corollary modalities.

While uni-modal emotion detection was still blossoming, HCI researchers disembarked on the
multimodal territory in the quest for a more accurate and natural way of interaction with machines.
The combination of modalities showed a promising perspective and was capable of extracting
concealed feelings from perceptible sources. Although assorted combinations of modalities were
explored, a survey of various techniques and databases described in the following sections implied the
need for a robust AER framework that works under natural conditions. Although the experiments
performed in labs boast high accuracy, many have not been proved to work in natural or in-the-wild
conditions. A few works conducted the in-the-wild experiments [4–6]. However, they were limited
by the apprehension of the role of "light" in the detection of emotions. A gloomy environment may
affect facial emotion recognition and sometimes even forbid accurate detection. Additionally, facial
expressions might not display the correct psychological state of a person if they do not concur with
each other. For example, an angry person might not always exhibit facial expressions for the same,
and the emotion could be easily confused with neutral or sad. These were some of the issues that
still need to be addressed. A framework with the capability of discerning emotions, even in-the-wild
conditions, was necessary. The work presented in this paper confronted those limitations with a novel
modality—the infrared images.

This paper presents an automatic emotion recognition (AER) framework using the fusion of
visible images and infrared images with speech. The work follows an ensemble-based approach by
exploiting the best services offered by different techniques. We adhered to certain baselines for the
development of the framework. A baseline was to avoid the overwhelming use of sensors to eliminate
any unwanted stress or anxiety induced due to monitoring. Further, facial expression was used as
the principal modality, while infrared images were used to counter the limitations posed in previous
approaches. In addition, the speech was used as a supporting modality to refine the classification
further. Feature level and decision level fusions were applied at different stages to devise a framework
for light-invariant AER in-the-wild conditions. The rest of the paper is organized as shown in Figure 1.

Figure 1. Research paper outline.

2. Related Work

Affective computing has been improved with time, and the exertion of multitudinous modalities
has underpinned the motion. Identification of emotions with multiple modalities has shown a tidy
enhancement over the AER systems with unaccompanied modalities. The fusion of different input
streams has also been fostered to strengthen the recognition process with the advent of multimodal
HCI. This section presents a discussion of related work based on these aspects.

2.1. Use of Speech, Visible, and Infrared Images

Facial expressions were one of the first modalities to indicate the emotional state of a person.
Facial Action Coding System (FACS) was first coined by Paul Ekman [1,3]. Facial expressions were
followed closely by speech for emotion detection, and several other relevant input types were contrived
for a high precision affect recognition. A wonted combination of modalities that forms a very natural blend
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is the speech and the facial expressions as this is the closest to human–human interaction [4,6–35]. Gestures
have been used together with facial and speech data to decipher affective state of a proband [36–42].

Infrared images have not been used for AER frequently. Wang et al. used IR images for emotion
recognition using Deep Boltzmann Machine (DBM) and reported an accuracy of 62.9% with the Natural
Visible and Infrared Facial Expression (NVIE) DB [43,44]. The authors reported an accuracy of 68.2%
after using additional unlabeled data from other databases to improve feature learning performance.
Elbarawy et al. made use of the Imaging, Robotics, and Intelligent Systems (IRIS) DB [45] for AER
using the Discrete Cosine Transform (DCT) with Local Entropy (LE) and Local Standard Deviation
(LSD) features [46]. In another work, K-Nearest Neighbor (kNN) and Support Vector Machines
(SVM) were combined to generate a recognition model of facial expressions in thermal images. The
highest accuracy of 90% was obtained using the LE features with kNN. Another instance of the use of
thermal images for AER involved the use of DBM to classify emotions with an accuracy of 51.3% [47].
In addition, Basu et al. used thermal facial images and employed the moment invariant, histogram
statistics, and multi-class SVM to achieve an accuracy of 87.50% [48]. A smart thermal system to detect
emotions using IR images was also developed with an accuracy of 89.89% [49]. Yoshitomi et al. [50]
and Kitazoe et al. [51] performed AER using visible, and thermal facial images; and speech to report an
accuracy of 85%. The fusion in this works was elementary and based on the maximum of the output of
the three modalities.

Databases form the propellant of the pattern recognition based AER. Any level of sophistication
in machine learning (ML) algorithms cannot undermine the merit of a comprehensive database.
A diverse set of databases has been developed, ranging from multimodal, bi-modal, and uni-modal
databases (used in various combinations with other databases) to assist with multimodal AER. Table 1
summarizes the available databases with their attributes.

Table 1. Multimodal emotional databases.

Database Modalities

Multimodal Analysis of Human Nonverbal Behavior: Human Computer
Interfaces (MAHNOB-HCI) [52]

EEG, Face, Audio, Eye Gaze,
Body movements

Conveying Affectiveness in Leading-edge Living Adaptive Systems
(CALLAS) Expressivity Corpus [53,54]

Speech, Facial expressions,
Gestures

Emotion Face Body Gesture Voice and Physiological signals
(emoFBVP) [38]

Face, Speech, Body Gesture,
Physiological signals

Database for Emotion Analysis using Physiological Signals (DEAP) [55] EEG, Peripheral physiological
signals, Face

Remote Collaborative and Affective Interactions (RECOLA) [56] Speech, Face, ECG, EDA

EU Emotion Stimulus [57] Face, Speech, Body gestures,
Contextual social scenes

eNTERFACE’05 [58] Face and Speech

Ryerson Multimedia Lab (RML) [59] Face and speech

Geneva Multimodal Emotion Portrayal-Facial Expression Recognition
and Analysis (GEMEP-FERA 2011) [60,61] Face and Speech

Maja Pantic, Michel Valstar and Ioannis Patras (MMI) [38] Face

Surrey Audio-Visual Expressed Emotion (SAVEE) [38,62] Face and Speech

Audio Visual Emotion Challenge (AVEC) [63,64] Face and speech

Bahcesehir University Multilingual (BAUM-1) [65] Face and speech

Bahcesehir University Multilingual (BAUM-2) [66] Face and speech

HUman-MAchine Interaction Network on Emotion (HUMAINE) [67] Face, Speech, Gestures
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Table 1. Cont.

Database Modalities

Vera am Mittag German Audio-Visual Spontaneous Speech (VAM) [68] Face and speech

Sustained Emotionally colored Machine human Interaction using
Nonverbal Expression (SEMAINE) [69,70] Face and Speech

Sensitive Artificial Listener (SAL) [67,71] Face and Speech

The University of Southern California (USC) CreativeIT [72,73] Speech and Body movements

Japanese Female Facial Expressions (JAFFE) [74–76] Face

Cohn-Kanade (CK/CK+) [77,78] Face

Berlin [79] Speech

Acted Facial Expression in Wild (AFEW) [80] Face

Facial Expression Recognition (FER2013) [81,82] Face

Static Facial Expressions in the Wild (SFEW) [83] Face

National Taiwan University of Arts (NTUA) [73] Speech

Interactive Emotional dyadic Motion Capture (IEMOCAP) [84] Face, Speech, Body gestures,
Dialogue transcriptions

2.2. Emotion Identification

Emotion recognition involves finding patterns in the data and classify that data to the emotional
states. The methods of emotional identification are predominantly cleaved into two portions, the methods
of recognition and the methods of parameterization [85].

Pattern identification in the modalities serves as a primary source of AER by recognition. In [36],
authors used Naive Bayes classifier for developing an ensemble-based emotion recognition system and
used it to solve the problem of missing data at the fusion stage. Xu et al. used Hidden Markov Models
(HMM) and Artificial Neural networks (ANN) for AER utilizing facial expressions and voice [8].
Bahreini et al. used the WEKA tool to apply hybrid fusion methods for voice feature extraction,
classification, and collating the result of 79 available classifiers [7]. The Bayesian classifier has also been
used for emotion recognition through face, voice, and body gestures [37,39]. Deep Belief Networks
(DBN) have been very effective in deciphering the emotions and have been put to use in multiple
AER systems. Ranganathan et al. used DBN and Convolutional Deep Belief Networks (CDBN)
for unsupervised classification of 23 emotion classes [38]. DBNs and CNNs have also been used
with K-Means and Relational auto-encoders for detecting emotions in videos [4]. At the same time,
Kim et al. [14] applied four different DBN models using facial and audio data for four emotion classes
(angry, happy, neutral, and sad). Nguyen et al. [22] used 3D-CNNs cascaded with DBNs for modeling
spatio-temporal information and classifying five emotion categories using facial expressions and speech.
Zhang et al. [24] utilized DBNs in a hybrid deep model approach involving CNN and 3D-CNN. CNNs
have been pressed to service for work in different forms (3D-CNN, Deep CNNs (DCNN), Multi-function
CNN (MCNN)) and combinations to achieve high AER accuracy [11,12,17,22,32,40,82,86–93].

Another genre of emotion recognition methods uses facial structure, such as the shape of mouth,
eyes, nose, etc. Loomed up by the widespread use of patter-recognition methods, a substantial decline
in the application of this genre for AER has been seen in the recent past. Geometric-based methods
involve the standardization of the image data followed by the detection of the region containing face
and a decision function-based classification of the emotions by investigating and analyzing the facial
components. Facial Action Coding System (FACS) was devised to exploit the contraction of facial
muscles, which were termed as Action Units (AU) [1,3]. In [94], an AER model was deployed using
an extended Kohonen self-organizing map (KSOM). The model utilized a feature vector containing
feature points of facial regions such as lip, eyes, etc. Another geometric-based method where candid
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nodes were placed to track the facial regions of interest was presented in [95]. The work presented an
approach using facial AUs and a Candide model. Several other older works have utilized FAUs for
AER [96–99].

2.3. Data Fusion

An integration of different modalities to form a coherent combination of input is termed as
fusion [100]. Feature level and decision level form the two most widely used forms of fusion [101],
while the hybrid approach involves a mix of both. Here we briefly discuss works that used each of
these different types of fusion.

(a) Feature level fusion. (b) Decision level fusion

(c) Hybrid fusion
Figure 2. Data fusion techniques.

2.3.1. Feature Level

Feature level fusion, shown in Figure 2a, is also known as early fusion due to its anterior
application to the modalities. Data from facial expressions, voice, and body gestures were combined
at the feature level to achieve an accuracy of 78.3% [37,39]. Similarly, multimodal physiological
signals were combined to achieve an accuracy of 81.45% for SVM, 74.37% for MLP, 57.75% for kNN,
and 75.94% for Meta-multiclass (MMC) classifiers [102]. An ensemble approach was implemented
in [11], where a feature output of a CNN was fused with a feature output of a ResNet and fed to
a Long Short Term Memory (LSTM) network. In one of the studies, facial features were combined
with the EEG features using different feature level techniques such as Multiple feature concatenation
(MFC), Canonical Correlational Analysis (CCA), Kernel CCA (KCCA), and MKL [103]. In different
studies, modalities were combined using this method, e.g., pulse activity and ECG data [104]; face
and speech [18,19,23,26,33,90]; linguistic and acoustic cues [105]; audio and text [93,106–108]; audio,
video, and text [109,110]; facial texture, facial landmark action, and audio [32]; audio, video, and
physiological signals [111]; and speech from two different languages [73].

2.3.2. Decision Level

Decision level fusion or late fusion is usually applied after individual decisions have been taken,
as shown in Figure 2b. Such a framework was tested for AER to solve the problem of missing data at the
fusion stage [36]. Another work used an ANN for fusion of facial expressions and speech [8]. Using late
fusion, Kessous et al. evaluated bi-modal combinations of face, speech, and body gestures [37], while
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Alonso et al. [9] combined facial data and speech for human–robot interaction. Several other works
exploited this fusion method to combine different combinations of input modalities, e.g., face, speech,
and body gestures [39–41], aligned faces and non-aligned faces [5], face, audio, and physiological
signals [88], physiological signals [89], face and speech [13,15–17,22,26,27], face and EEG [103], finger
pulse activity and ECG data [104], face, speech, and language [112], direct person-independent
perspective and relative person-dependent perspectives [113], and facial texture, facial landmark action,
and audio [32].

2.3.3. Hybrid Fusion

An integration of feature and decision level fusion in different combinations is termed as a hybrid
approach, as shown in Figure 2c. Bahreini et al. used a hybrid fusion approach for a real-time AER
using images and voice [7]. In another study, a hierarchical classification fusion framework was
developed that utilized a layer of feature level fusion that fed to decision level fusion [6]. Yin et al.
proposed a Multiple-fusion-layer based Ensemble classifier of Stacked Autoencoders (MESAE) for AER
using physiological signals such as GSR, EMG, EOG, EEG, and Blood Volume Pressure (BVP) [114].
Another 2-stage fusion network where the first stage employed two DCNNs and the second stage
integrated the output of these two DCNNs using a fusion network achieved an accuracy of 74.32%,
compared to 66.17% (audio) and 60.79% (face) [90]. An ensemble of CNN methods was proposed
by [91], where the output of the CNN was fused with a probability based-fusion. Tripathi et al. used
various deep-learning-based architectures (LSTM, CNN, fully connected MLP) to first get the best
individual detection (Speech: 55.65%, Text: 64.78%, Motion Capture: 51.11%) and then combined the
output using an ensemble-based architecture (Speech + Text: 68.40%, Speech + Text + Motion Capture:
71.04%) [115].

3. Proposed Framework

In this section, we discuss the datasets, their pre-processing, and the specifics of the
proposed methodology.

3.1. Datasets and Pre-Processing

3.1.1. VIRI Dataset

An exiguous number of IR emotional databases are available for use. However, most of them did
not serve the requirements of our framework. Consequently, we developed a facial image database
of visible and IR images, called VIRI database. This DB confronts the limitations of the existing IR
DBs and presents the spontaneous facial expressions in both visible and IR format in uncontrolled
wild backgrounds. The DB was created at The University of Toledo and is comprised of the consented
pictures from on-campus students. Five expressions have been captured—happy, sad, angry, surprised,
and neutral—and comprise 110 subjects (70 males and 40 females), resulting in 550 images in a
radiometric JPEG format. This format contains both visible and thermal data captured by the FLIR
ONE Pro thermal camera. After extracting visible and Multi-Spectral Dynamic Imaging (MSX) thermal
images, a total of 1100 images (550 visible and 550 IR images) were obtained. It is a varied DB in terms
of proband’s age (17–35 years) and ethnicity (White, African-American, and Asian). Images were taken
in three formats, visible, infrared, and MSX format and VIRI DB contains all the three formats.

Data Pre-processing and Image Augmentation: The resolution of each original extracted image
was 1440 × 1080 pixels, and some pre-processing was carried out to remove noise and discrepancies
from the images. The subjects were not ideally centered since the images were captured in the wild.
A batch process of crop and overexposure was executed on the images to bring the subjects to the
center and reduce the darkness in the pictures. Each image’s size was reduced to 227 × 227 pixels
to bring it to a size suitable for use in CNN training. Figure 3 shows a sample image set from
VIRI DB for all emotion classes. The DB is available for use upon request at the following URL:
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https://www.yazdan.us/research/repository. For training the CNN for AER by IR images and
visible images, the number of images required to achieve a respectable accuracy was not adequate.
To proliferate the images and to bring more heterogeneity, a series of image augmentation techniques
were applied to each image randomly. Approximately 2000 images of each emotion class were obtained
after applying a series of rotation, zoom, skew, distortion, shear, and reflection. The augmented data
were then used to train the CNN for AER. Table 2 also presents a brief comparison with related popular
datasets showing its superiority due to images captured in-the-wild.

Figure 3. Sample visible and IR image (VIRI) in Multi-Spectral Dynamic Imaging (MSX) and visible format.

Table 2. Comparison of the available IR DBs and VIRI. WBK: Wild Background, S/P: Spontaneous/Posed,
A: Available.

IR DB # Participants Emotions WBK S/P A

IRIS [45] 30 (28 M, 2 F) Surprise, Laugh, Anger No P Yes

NIST [116] 600 Smile, Frown, Surprise No P No

NVIE [44] 215 (157 M, 58 F) Happy, Sad, Surprise, Fear, Anger, Disgust, Neutral No S, P Yes

KTFE [117] 26 (16 M, 10 F) Happy, Sad, Surprise, Fear, Anger, Disgust, Neutral No S Yes

VIRI 110 (70 M, 40 F) Happy, Sad, Surprise, Anger, Neutral Yes S Yes

3.1.2. RAVDESS Dataset

Speech samples were already available in several databases. We selected The Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS), a nascent audio–visual emotional DB in North
American English [118]. Developed at the SMART Lab of Ryerson University, Canada, the DB consists
of validated emotional speech and songs. A total of 24 professional actors uttered in the North
American accent for lexically-matched recitations. The audio portion covers seven emotional states
(calm, happy, sad, angry, fearful, surprise, and disgust) and songs comprise of 5 emotions (calm, happy,
sad, angry, and fearful). The corpus contains 2452 audio recordings for two emotional levels (normal,
strong). Two hundred forty-seven individuals provided the assessment of the DB for the rating, and a
set of 72 people provided test-retest data. The DB is available for download under a creative commons
license. It should be noted that the images form this dataset were not used owing to the lack of
thermal/infrared images and their capturing in controlled environment while we required images
captured in-the-wild.

Data Pre-processing: The audio data consists of the recordings with a standard unique filename
that identifies the traits of the file. We selected 1886 samples that belonged to the 5 emotion
classes our work focused on. However, we faced a few issues during training and found that
pre-processing was unavoidable. The length of the files was not uniform and required a batch
process of trimming. This was also necessary to eradicate any issues that might arise during the
creation of audio spectrograms and the CNN training. Furthermore, during training, some of the

https://www.yazdan.us/research/repository
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files were identified as corrupt and were causing issues in accessing audio vectors. Those files were
identified and removed from the training corpus. Finally, the samples for all emotions lied in the range
of 370–380, totaling to 1876 (out of 2452). This balance among the samples for each emotion was also a
prerequisite to ensure proper training.

3.2. Two-Stage AER Framework

In the proposed method, ANN was employed for deep learning and ensemble-based classification
of the emotion. The model consists of two layers of detection. In the first layer, two CNNs were trained
using visible and infrared images individually. Transfer learning was incorporated to extract the
features of the images. A feature-level fusion at this stage was engaged, and the fused feature was then
fed to an SVM for classification. At the same layer, a third CNN was deployed to learn the emotions
from the speech by incorporating audio spectrograms for training the ANN. The SVM and the third
CNN (for speech) output was fed to a decision-level fusion in the second layer. The final classification
was obtained as the output of the second layer. The proposed model is depicted in Figure 4.

Visible Image 

Input

InfraRed Image 

Input

Speech Input

Pre-trained

CNN

Pre-trained

CNN

CNN
Audio 

Spectrograms

Feature 

extraction

Features

FeaturesFeature 

extraction

Feature level

fusion

Decision 1

Final

Decision

Decision 2

SVM

(Classification)

Fused

feature

Decision level

fusion

Figure 4. Proposed model for automatic emotion recognition (AER) using visible images, IR images,
and speech.

3.2.1. Stage Ia: AER with Visible and IR Images

Transfer learning is the process of applying a muscle of a pretrained deep learning network by
altering some of its layers and fine-tuning it to learn a new function. This process is considerate as
it tolerates the absence of a large amount of training data and is capable of training a network with
even small datasets. Compared to training from scratch, the process is generally expeditious and
superior to networks trained from scratch for the same amount of training data. A typical transfer
learning process by CNN for image classification involves the following steps:

• Choose a pre-trained network.
• Replace the final layers to adapt to the new dataset.
• Tweak the values of hyperparameters to achieve higher accuracy and train.

For this work, a pre-trained CNN, the AlexNet, was used to perform transfer learning over the
VIRI DB. AlexNet has been trained for more than a million images (called the ImageNet database [119])
and can classify them into 1000 categories. It is a 25-layer deep CNN that comprises of a diverse set
of layers for specific operations. For image classification, a mandatory image input layer provides
an input image to CNN after data normalization. The original 1440 × 1080 pixel images in the database
were down-sampled to 227 × 227 to feed to the input layer due to the image size accepted by AlexNet.
There is a convolutional layer that smears sliding convolutional filters to the input from the image
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input layer and produces a feature map as the output. There are multiple Rectified Linear Unit (ReLU)
layers in the CNN. AlexNet was modified for the classification of emotions by replacing the last three
layers with new layers that were appointed to learn from the new database. Five new layers (2 fully
connected, one activation, one softmax, and one classification layer) were added as the final layers of
the network, which resulted in a 27-layer CNN. The features generated at the last fully connected layer
(3rd last layer of the CNN) were extracted and used for the feature level fusion.

We also employed pooling layers whose primary function is to down-sample the input to reduce
the size that helps decrease the computations performed in subsequent layers and reduce over-fitting.
Several dropouts, fully connected, and channel normalization layers were also used. The final layers
include a softmax (that applies the softmax function) and a classification layer that gives the class
probability of the input. It is the output unit activation function after the last fully connected layer.

Neutral Happy AngrySad Surprised

Figure 5. Audio waveforms and their spectrograms for the five basic emotions.

A feature level fusion technique, based on Canonical Correlation Analysis (CCA) [120,121],
has been applied to combine the features extracted from the two CNNs in the first layer of the
framework. The CCA is a multivariate statistical analysis method for the mutual association between
two arbitrary vectors. The fused feature vector is more discriminative than any of the individual
input vectors. We used the summation method to combine the transformed feature vectors. The fused
features from the two CNNs were fed to an SVM classifier for intermediate classification of AER.
Fundamentally, it maps the data as points in space in a manner that the categories they belong to reside
as far away from each other as possible. Hence, when it encounters a new data, it maps the data in the
same space and gives predictions of the category it belongs to by finding which side of the boundary it
was mapped. The SVM classified the fused vector for producing image classification (visible and IR
images) for AER.

3.2.2. Stage Ib: AER with Speech

Speech-based emotion recognition was the second major component of the AER framework
developed in this work. As shown in Figure 4, emotion recognition through speech was carried out by
training a CNN with the spectrograms of the speech data. A spectrogram may be defined as a plot of
the spectrum of frequencies of a signal with time. Usually represented as a heat map, spectrograms
are a visual representation of the speech signal, while the variation in brightness or colors depicts
the intensities. Representation of speech waveforms with their spectrograms is shown in Figure 5.
A separate 24-layer CNN was put to service for training the speech emotion recognition portion.
The speech and songs from RAVDESS DB were used to train this CNN for detecting the emotional
content with background noise and silences for effectively incorporating their inevitable presence
during the testing and validation. CNN performed the classification for the speech signals, and this
formed the decision to be fed in the final decision level fusion besides the image classification decision.
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3.2.3. Stage II: Decision Level Fusion

As a culmination of this work, the classifications from speech and images were combined using
a decision level fusion at the second stage of the framework. A late fusion technique termed as
weighted decision templates (WDT) [122] was applied to integrate the decisions emanating from
SVM (for images) and the CNN (for speech) as shown in Figure 4. The decision template (DT) fusion
algorithm computes the DTs per category by taking an average of the decisions for the training samples
belonging to each class by every classifier. The WDT is an improvement over the conventional DT
as it assigns weights to each classifier based on its performance and output. A more reliable classifier
(higher accuracy) is weighted more and contributes significantly to making a decision. We used the
fusion rule of the weighted sum to evaluate the final probability of a result after fusion belonging to a
specific emotion.

4. Results

The framework was trained over the VIRI and RAVDESS datasets. The results were combined
using a feature level fusion and a decision level fusion at different stages to achieve adequate accuracy.
This section provides an overview of the results at every stage of the framework and compares
individual and fused input modalities’ accuracy. The framework accuracy augmented with each
layer of an integrated modality, and the trend is illustrated in the results obtained. The results are
presented in the form of confusion matrices and the well-known measures derived from the matrices,
i.e., accuracy, precision, recall, and F1-measure.

4.1. Visible Images Only

The first layer of the framework was meant for solitary identification of emotions. The CNN
for visible images was able to identify emotions with an overall accuracy of 71.19%. The confusion
matrix for the AER with visible images, as shown in Figure 6i, indicates that the accuracy of individual
emotions ranges between 32.92% (sad)–92.32% (angry). The treemap for the detected emotional
category’s proportional distribution is presented in Figure 7i. The emotions were correctly classified
with low confusion with other emotions if the area of the detected emotion is more compared to the
other emotional categories in a treemap. It can be observed that the pronounced emotions such as
angry and surprise were detected without much uncertainty. Emotions that were more likely to be
confused with other emotions showed a lower proportion in terms of area in the treemap, e.g., sad
emotion was heavily confused with angry, neutral, and surprise emotions when only visible images
were used. The recall for the AER by visible images was 0.71, with the precision and f-measure being
0.78 and 0.75, respectively.

4.2. IR Images Only

The overall accuracy achieved from the second CNN using IR images was 77.34%. The confusion
matrix for the AER with infrared images is shown in Figure 6ii, which shows that the accuracy
for individual emotions varied between 63.15–94.99%. Clearly, this range is better than what was
achieved with visible images; however, the worst performed for this type of data was still the sad
expression. Although sad emotion was mostly confused with neutral emotion, it was expected due to
similarities in the facial expressions of these emotions. The proportional distribution of the detected
emotions is depicted in the treemaps shown in Figure 7ii. The IR images were able to identify happy
emotion with the least confusion. The recall for the AER using the IR images was 0.77, while the
precision and f-measures were both 0.78.
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4.3. Fusion of IR and Visible Images

A feature level fusion of the visible and infrared images produced an improvement over the
individual image types. This was observed in the accuracy of the SVM classifier, which was recorded
to be 82.26%. The confusion matrix for the fused images is depicted in Figure 6iii. Proportional
distribution of the detected emotions after fusion is shown in Figure 7iii. Except for the surprise
emotion, all other emotions exhibit improved accuracy compared to the use of the individual type of
images. The improved recall, precision, and f-measures for the fused images were obtained as 0.82,
0.85, and 0.83, respectively.
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4.4. Speech Only

Speech recognition was the final unit of the first layer of the framework. It was a supporting
modality for the facial expressions, but a solitary mention of the metrics for the AER by speech alone
is also presented. CNN for speech signals was able to classify emotions in speech with an accuracy
of 73.28%. The confusion matrix for the speech is shown in Figure 8ii. A proportional distribution
treemap for the AER by speech for all emotional classes has been shown in Figure 9ii. The area
distribution in the treemap for the speech signals indicate a clear detection of angry and surprise
emotions while the remaining three-faced confusion during classification. The recall was found to be
0.73, while both precision and f-measures were found to be 0.72.
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4.5. Fusion of IR Images, Visible Images, and Speech

The second layer of the AER framework, which fused the results obtained with images and speech,
was able to achieve a noteworthy improvement over the individual or fused (visible and IR) results.
The confusion matrix of the emotional classification for the proposed AER framework is shown in
Figure 8iii. The treemap in Figure 9iii depicts the accuracy of the AER framework while displaying
the ambiguity the framework faces while classifying the emotions. The largest area for the correctly
classified emotion conveys the superiority of the ensemble-based framework over the individual
modalities. An accuracy of 86.36% was achieved for this step. A recall of 0.86, a precision of 0.88,
and the F-measure of 0.87 was achieved. It is noteworthy that the accuracy achieved lied between
79.41–100.0%.

Table 3. Comparison of the AER metrics by different modalities (Visible: V, Infrared: IR, Speech: S).

Modality Accuracy Recall Precision F-Measure

V 71.19% 0.71 0.78 0.75
IR 77.34% 0.77 0.78 0.78
V+IR 82.26% 0.82 0.85 0.83
S 73.28% 0.73 0.72 0.72
V+IR+S 86.36% 0.86 0.88 0.87

4.6. Discussion

The metrics for the individual modalities and subsequent fusion of those modalities are presented
in Table 3. Certain emotions are harder to comprehend and pose difficulty in recognition, e.g.,
differentiating between emotions such as sad and neutral is challenging, attributing to similarities
in their facial expressions. Minute changes in the facial regions when exhibiting these emotions can
also be a rationale for such ambiguity. This is evident from the low classification accuracy with both
image type, i.e., visible and infrared. The sad emotion was muddled with angry and neutral emotions
because the facial regions such as the shape of mouth do not alter significantly. Overall, the low
proportion of the detected emotion in the treemap (Figure 7i,ii) for these emotions show a lesser area
as compared to other emotions. However, they still outperform individual modalities or fused results
of both types of images.

Contrarily, loud emotions such as surprise, angry, and happy posed less ambiguity in their
detection. This is again evident from the treemaps of visible and IR images in Figure 7i,ii. A contrasting
observation of this fact is the lower area of facial region engaged by the emotion happy for detection in
the visible images. A wide-eyed expression generally accounts for the angry and surprised emotions.
This is evident from the treemap of visible images (Figure 7i) where, to some extent, both of these
expressions were confused with each other. Another trait for a loud emotional expression is the
opening of the mouth in amazement or for laughing in joy. This can be seen as a source of confusion
while detecting emotion happy with surprise.

The temperature of facial regions turned out to be a rescuer, as expected. The intricacies of the
emotional detection for subtle emotions were handled well by IR images. The fusion of the visible and
IR images provided better detection accuracy for these emotions. The increase in the area of anticipated
emotion for all the emotional categories in the treemap (Figure 7iii) elucidates this information. All five
expressions, happy, angry, sad, neutral, and surprise were detected with justifiable accuracy by the
mere fusion of IR and visible images. However, a clashing observation for this trend is observed in
case of sad emotion where it was confused with the affective state of neutral and angry due to the
reasons mentioned above.

The speech was harnessed to further tackle this ambiguity by clarifying the confusion between
facially similar expressions. The tone and pitch of the speech govern the shape of the audio spectrograms,
and these spectrograms were able to identify emotions based on their trend in a CNN. The speech was
also used alone for AER and did a decent job of classification with an accuracy of 73.28%. This was
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quite similar to the ones achieved by visible or IR images alone but less than their fusion. In the speech,
when expressing an angry or surprised emotion, the pitch is generally high, and these emotions are
less ambiguous to identify. This is evident from treemap in Figure 9ii where emotions surprise and
angry do cover majority of the area for their perceived emotions. The affective states of sad and neutral
were not very sharp in classification because of their similarity with other emotional classes while
exhibiting them. Emotion happy also showed a slight confusion with angry because of the evident
similarity of being loud while exhibiting these emotions.

Table 4. Comparison of state-of-the-art in multimodal AER with the proposed work.

Research Modalities Dataset LI W Accuracy

Kahou et al. [4] Face, Speech AFEW No Yes 47.67%

Kim et al. [5] Aligned and Non-aligned faces FER-2013 No Yes 73.73%

Sun et al. [6] Face, Speech AFEW, FERA-2013,
CK No Yes 47.17%

Tzirakis et al. [11] Face, Speech RECOLA No No Arousal: 0.714,
Valence: 0.612

Noroozi et al. [17] Face, Speech eNTERFACE’05 No No 99.52%

Hossain et al. [16] Face, Speech eNTERFACE’05,
Berlin No No 83.06%

Zhang et al. [90] Face, Speech RML No No 74.32%

Nguyen et al. [22] Face, Speech eNTERFACE’05 No No 89.39%

Fu et al. [23] Face, Speech eNTERFACE’05 No No 80.1%

Ranganathan
et al. [38]

Face, Speech, Body gestures,
Physiological Signals

emoFBVP, CK,
DEAP,
MAHNOB-HCI

No No 97.3% (CK)

Sun et al. [88] Face, Speech, Phys. signals RECOLA No No Arousal: 0.683,
Valence: 0.642

Yoon et al. [106] Speech, Text IEMOCAP No No 71.8%

Lee et al. [108] Speech, Text CMU-MOSI No No 88.89%

Majumder
et al. [109] Face, Speech, Text CMU-MOSI,

IEMOCAP No No CMU-MOSI -
80.0%

Hazarika
et al. [110] Face, Speech, Text IEMOCAP No No 77.6%

Yoshitomi et al. [50] Visible and Thermal face,
Speech - Yes No 85%

Kitazoe et al. [51] Visible and Thermal face,
Speech - Yes No 85%

Our work Visible and Thermal face,
Speech VIRI Yes Yes 86.36%

Legend: LI: Light-invariant, W: Wild.

Finally, the fusion of speech with the images provided a high accuracy framework that distinguished
emotions with higher credibility. The fusion of images with speech removed the ambiguity where the
other modality suitably removed a confusion in two emotions. The treemap in the Figure 9iii shows a
clear classification for all the emotions with the surprise emotion being classified with surety and sad
emotion being the least accurate emotion to be classified. The fusion of images and speech was able to
achieve an accuracy of 86.36%. The Table 4 presents a comparison of the presented method with the
recent multimodal emotional detection works.
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5. Conclusions and Future Work

This work presents a novel multimodal approach for facial emotion detection by the fusion
of visible and IR images with speech. A framework based on the ensemble approach of emotion
detection using pattern detection methods is presented. A novel database comprising of visible and
corresponding IR images was created to tackle the inevitable light invariant conditions. The fusion of
visible and infrared images classified emotions depicted with an accuracy of 82.26%. Speech samples
from the RAVDESS multimodal dataset resulted in detection accuracy of 73.28%. The decisions from the
images and speech were fused using decision templates (a decision level fusion technique) to achieve
an overall accuracy of 86.36%. A comparison of the accuracy with the recent work in multimodal
emotion detection proves the framework’s superiority. The framework is able to detect emotions with
a comparable accuracy with most of the contemporary work. The rationale for its exclusivity is its
attainment of this accuracy in the wild background and light invariant conditions. The framework
could be further perfected in various ways. For example, using the images and voice samples from
the same subjects and using other modalities such as physiological signals might further enhance the
framework for detecting the emotional intensity and subtle expressions.
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35. Avots, E.; Sapiński, T.; Bachmann, M.; Kamińska, D. Audiovisual emotion recognition in wild. Mach. Vis. Appl.
2018, 30, 975–985 [CrossRef]

36. Wagner, J.; Andre, E.; Lingenfelser, F.; Kim, J. Exploring fusion methods for multimodal emotion recognition
with missing data. IEEE Trans. Affect. Comput. 2011, 2, 206–218. [CrossRef]

37. Kessous, L.; Castellano, G.; Caridakis, G. Multimodal emotion recognition in speech-based interaction using
facial expression, body gesture and acoustic analysis. J. Multimodal User Interfaces 2010, 3, 33–48. [CrossRef]

38. Ranganathan, H.; Chakraborty, S.; Panchanathan, S. Multimodal emotion recognition using deep learning
architectures. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision
(WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–9.

39. Caridakis, G.; Castellano, G.; Kessous, L.; Raouzaiou, A.; Malatesta, L.; Asteriadis, S.; Karpouzis, K.
Multimodal emotion recognition from expressive faces, body gestures and speech. In Artificial Intelligence
and Innovations 2007: From Theory to Applications; Springer: Boston, MA, USA 2007; Volume 247, pp. 375–388.

40. Ghayoumi, M.; Bansal, A.K. Multimodal architecture for emotion in robots using deep learning.
In Proceedings of the Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016;
pp. 901–907.

41. Ghayoumi, M.; Thafar, M.; Bansal, A.K. Towards Formal Multimodal Analysis of Emotions for Affective
Computing. In Proceedings of the 22nd International Conference on Distributed Multimedia Systems,
Salerno, Italy, 25–26 November 2016; pp. 48–54.

42. Filntisis, P.P.; Efthymiou, N.; Koutras, P.; Potamianos, G.; Maragos, P. Fusing Body Posture with Facial
Expressions for Joint Recognition of Affect in Child-Robot Interaction. arXiv 2019, arXiv:1901.01805.

43. Wang, S.; He, M.; Gao, Z.; He, S.; Ji, Q. Emotion recognition from thermal infrared images using deep
Boltzmann machine. Front. Comput. Sci. 2014, 8, 609–618. [CrossRef]

44. Wang, S.; Liu, Z.; Lv, S.; Lv, Y.; Wu, G.; Peng, P.; Chen, F.; Wang, X. A natural visible and infrared
facial expression database for expression recognition and emotion inference. IEEE Trans. Multimed. 2010,
12, 682–691. [CrossRef]

45. Abidi, B. Dataset 02: IRIS Thermal/Visible Face Database. DOE University Research Program in Robotics
under grant DOE-DE-FG02-86NE37968. Available: http://vcipl-okstate.org/pbvs/bench/ (accessed on
6 August 2020).

46. Elbarawy, Y.M.; El-Sayed, R.S.; Ghali, N.I. Local Entropy and Standard Deviation for Facial Expressions
Recognition in Thermal Imaging. Bull. Electr. Eng. Inform. 2018, 7, 580–586.

47. He, S.; Wang, S.; Lan, W.; Fu, H.; Ji, Q. Facial expression recognition using deep Boltzmann machine
from thermal infrared images. In Proceedings of the 2013 Humaine Association Conference on Affective
Computing and Intelligent Interaction (ACII), Geneva, Switzerland, 2–5 September 2013; pp. 239–244.

48. Basu, A.; Routray, A.; Shit, S.; Deb, A.K. Human emotion recognition from facial thermal image based on
fused statistical feature and multi-class SVM. In Proceedings of the 2015 Annual IEEE India Conference
(INDICON), New Delhi, India, 17–20 December 2015; pp. 1–5.

49. Cruz-Albarran, I.A.; Benitez-Rangel, J.P.; Osornio-Rios, R.A.; Morales-Hernandez, L.A. Human emotions
detection based on a smart-thermal system of thermographic images. Infrared Phys. Technol. 2017, 81, 250–261.
[CrossRef]

50. Yoshitomi, Y.; Kim, S.I.; Kawano, T.; Kilazoe, T. Effect of sensor fusion for recognition of emotional states
using voice, face image and thermal image of face. In Proceedings of the 9th IEEE International Workshop
on Robot and Human Interactive Communication, RO-MAN 2000, Osaka, Japan, 27–29 September 2000;
pp. 178–183.

51. Kitazoe, T.; Kim, S.I.; Yoshitomi, Y.; Ikeda, T. Recognition of emotional states using voice, face image and
thermal image of face. In Proceedings of the Sixth International Conference on Spoken Language Processing,
Beijing, China, 16–20 October 2000.

http://dx.doi.org/10.1016/j.neucom.2018.03.068
http://dx.doi.org/10.1007/s00138-018-0960-9
http://dx.doi.org/10.1109/T-AFFC.2011.12
http://dx.doi.org/10.1007/s12193-009-0025-5
http://dx.doi.org/10.1007/s11704-014-3295-3
http://dx.doi.org/10.1109/TMM.2010.2060716
http://vcipl-okstate.org/pbvs/bench/
http://dx.doi.org/10.1016/j.infrared.2017.01.002


Multimodal Technol. Interact. 2020, 4, 46 18 of 21

52. Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A multimodal database for affect recognition and implicit
tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [CrossRef]

53. Caridakis, G.; Wagner, J.; Raouzaiou, A.; Curto, Z.; Andre, E.; Karpouzis, K. A multimodal corpus for gesture
expressivity analysis. In Multimodal Corpora: Advances in Capturing, Coding and Analyzing Multimodality;
LREC: Valletta, Malta, 17–23 May, 2010. pp. 80–85

54. Caridakis, G.; Wagner, J.; Raouzaiou, A.; Lingenfelser, F.; Karpouzis, K.; Andre, E. A cross-cultural,
multimodal, affective corpus for gesture expressivity analysis. J. Multimodal User Interfaces 2013, 7, 121–134.
[CrossRef]

55. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap:
A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31.
[CrossRef]

56. Ringeval, F.; Sonderegger, A.; Sauer, J.; Lalanne, D. Introducing the RECOLA multimodal corpus of remote
collaborative and affective interactions. In Proceedings of the 2013 10th IEEE International Conference and
Workshops on Automatic Face and Gesture Recognition (FG), Shanghai, China, 22–26 April 2013; pp. 1–8.

57. O’Reilly, H.; Pigat, D.; Fridenson, S.; Berggren, S.; Tal, S.; Golan, O.; Bölte, S.; Baron-Cohen, S.; Lundqvist,
D. The EU-emotion stimulus set: a validation study. Behav. Res. Methods 2016, 48, 567–576. [CrossRef]
[PubMed]

58. Martin, O.; Kotsia, I.; Macq, B.; Pitas, I. The eNTERFACE’05 audio-visual emotion database. In Proceedings
of the 22nd International Conference on Data Engineering Workshops, Atlanta, GA, USA, 3–7 April 2006;
p. 8.

59. Wang, Y.; Guan, L. Recognizing human emotional state from audiovisual signals. IEEE Trans. Multimed.
2008, 10, 936–946. [CrossRef]

60. Valstar, M.F.; Jiang, B.; Mehu, M.; Pantic, M.; Scherer, K. The first facial expression recognition and
analysis challenge. In Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture
Recognition and Workshops (FG 2011), Santa Barbara, CA, USA, 21–25 March 2011; pp. 921–926.

61. Bänziger, T.; Scherer, K.R. Introducing the geneva multimodal emotion portrayal (gemep) corpus. In Blueprint
for Affective Computing: A sourcebook; Oxford University Press: Oxford, UK, 2010; pp. 271–294.

62. Haq, S.; Jackson, P.J. Multimodal emotion recognition. In Machine Audition: Principles, Algorithms and Systems;
University of Surrey: Guildford, UK, 2010; pp. 398–423.

63. Valstar, M.; Schuller, B.; Smith, K.; Eyben, F.; Jiang, B.; Bilakhia, S.; Schnieder, S.; Cowie, R.; Pantic, M. AVEC
2013: The continuous audio/visual emotion and depression recognition challenge. In Proceedings of the
3rd ACM International Workshop on Audio/Visual Emotion Challenge, Barcelona, Spain, 21 October 2013;
ACM: New York, NY, USA, 2013; pp. 3–10.

64. Valstar, M.; Schuller, B.; Smith, K.; Almaev, T.; Eyben, F.; Krajewski, J.; Cowie, R.; Pantic, M. Avec 2014: 3d
dimensional affect and depression recognition challenge. In Proceedings of the 4th International Workshop
on Audio/Visual Emotion Challenge, Orlando, FL, USA, 3–7 November 2014; pp. 1–8. [CrossRef]

65. Zhalehpour, S.; Onder, O.; Akhtar, Z.; Erdem, C.E. BAUM-1: A Spontaneous Audio-Visual Face Database of
Affective and Mental States. IEEE Trans. Affect. Comput. 2017, 8, 300–313. [CrossRef]

66. Erdem, C.E.; Turan, C.; Aydin, Z. BAUM-2: A multilingual audio-visual affective face database.
Multimed. Tools Appl. 2015, 74, 7429–7459. [CrossRef]

67. Douglas-Cowie, E.; Cowie, R.; Sneddon, I.; Cox, C.; Lowry, O.; Mcrorie, M.; Martin, J.C.; Devillers, L.;
Abrilian, S.; Batliner, A.; others. The HUMAINE database: Addressing the collection and annotation
of naturalistic and induced emotional data. In Affective Computing and Intelligent Interaction; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 488–500.

68. Grimm, M.; Kroschel, K.; Narayanan, S. The Vera am Mittag German audio-visual emotional speech database.
In Proceedings of the 2008 IEEE International Conference on Multimedia and Expo, Hannover, Germany,
23 June–26 April 2008; pp. 865–868.

69. McKeown, G.; Valstar, M.; Cowie, R.; Pantic, M.; Schroder, M. The semaine database: Annotated
multimodal records of emotionally colored conversations between a person and a limited agent. IEEE Trans.
Affect. Comput. 2012, 3, 5–17. [CrossRef]

70. McKeown, G.; Valstar, M.F.; Cowie, R.; Pantic, M. The SEMAINE corpus of emotionally coloured character
interactions. In Proceedings of the 2010 IEEE International Conference on Multimedia and Expo (ICME),
Suntec City, Singapore, 19–23 July 2010; pp. 1079–1084.

http://dx.doi.org/10.1109/T-AFFC.2011.25
http://dx.doi.org/10.1007/s12193-012-0112-x
http://dx.doi.org/10.1109/T-AFFC.2011.15
http://dx.doi.org/10.3758/s13428-015-0601-4
http://www.ncbi.nlm.nih.gov/pubmed/26424443
http://dx.doi.org/10.1109/TMM.2008.927665
http://dx.doi.org/10.1145/2512530.2512533
http://dx.doi.org/10.1109/TAFFC.2016.2553038
http://dx.doi.org/10.1007/s11042-014-1986-2
http://dx.doi.org/10.1109/T-AFFC.2011.20


Multimodal Technol. Interact. 2020, 4, 46 19 of 21

71. Gunes, H.; Pantic, M. Dimensional emotion prediction from spontaneous head gestures for interaction
with sensitive artificial listeners. In Intelligent Virtual Agents; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 371–377.

72. Metallinou, A.; Yang, Z.; Lee, C.c.; Busso, C.; Carnicke, S.; Narayanan, S. The USC CreativeIT database
of multimodal dyadic interactions: From speech and full body motion capture to continuous emotional
annotations. Lang. Resour. Eval. 2016, 50, 497–521. [CrossRef]

73. Chang, C.M.; Lee, C.C. Fusion of multiple emotion perspectives: Improving affect recognition through
integrating cross-lingual emotion information. In Proceedings of the 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 5820–5824.

74. Dailey, M.N.; Joyce, C.; Lyons, M.J.; Kamachi, M.; Ishi, H.; Gyoba, J.; Cottrell, G.W. Evidence and
a computational explanation of cultural differences in facial expression recognition. Emotion 2010, 10, 874.
[CrossRef]

75. Lyons, M.; Akamatsu, S.; Kamachi, M.; Gyoba, J. Coding facial expressions with gabor wavelets.
In Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition,
Nara, Japan, 14–16 April 1998; pp. 200–205.

76. Lyons, M.J.; Budynek, J.; Akamatsu, S. Automatic classification of single facial images. IEEE Trans. Pattern
Anal. Mach. Intell. 1999, 21, 1357–1362. [CrossRef]

77. Kanade, T.; Cohn, J.F.; Tian, Y. Comprehensive database for facial expression analysis. In Proceedings of
the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, France,
28–30 March 2000; pp. 46–53.

78. Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended cohn-kanade dataset
(ck+): A complete dataset for action unit and emotion-specified expression. In Proceedings of the 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
San Francisco, CA, USA, 13–18 June 2010; pp. 94–101.

79. Burkhardt, F.; Paeschke, A.; Rolfes, M.; Sendlmeier, W.F.; Weiss, B. A database of german emotional speech.
In Proceedings of the Interspeech, Lisbon, Portugal, 4–8 September 2005; Volume 5; pp. 1517–1520.

80. Dhall, A.; Goecke, R.; Lucey, S.; Gedeon, T. Collecting large, richly annotated facial-expression databases
from movies. IEEE Multimed. 2012, 1, 34–41. [CrossRef]

81. Goodfellow, I.J.; Erhan, D.; Carrier, P.L.; Courville, A.; Mirza, M.; Hamner, B.; Cukierski, W.; Tang, Y.;
Thaler, D.; Lee, D.H.; et al. Challenges in representation learning: A report on three machine learning
contests. In Proceedings of the International Conference on Neural Information Processing, Daegu, Korea,
3–7 November 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–124.

82. Ng, H.W.; Nguyen, V.D.; Vonikakis, V.; Winkler, S. Deep learning for emotion recognition on small datasets
using transfer learning. In Proceedings of the 2015 ACM on International Conference on Multimodal
Interaction, Seattle, WA, USA, 3–13 November 2015; ACM: New York, NY, USA, 2015; pp. 443–449.

83. Dhall, A.; Goecke, R.; Sebe, N.; Gedeon, T. Emotion recognition in the wild. In Journal on Multimodal User
Interfaces; Springer Nature: Cham, Switzerland, 2016; Volume 10, pp. 95–97. [CrossRef]

84. Busso, C.; Bulut, M.; Lee, C.C.; Kazemzadeh, A.; Mower, E.; Kim, S.; Chang, J.N.; Lee, S.; Narayanan,
S.S. IEMOCAP: Interactive emotional dyadic motion capture database. Lang. Resour. Eval. 2008, 42, 335.
[CrossRef]

85. Mehta, D.; Siddiqui, M.F.H.; Javaid, A.Y. Facial Emotion Recognition: A Survey and Real-World User
Experiences in Mixed Reality. Sensors 2018, 18, 416.

86. Gao, Y.; Hendricks, L.A.; Kuchenbecker, K.J.; Darrell, T. Deep learning for tactile understanding from visual
and haptic data. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation
(ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 536–543.

87. Pramerdorfer, C.; Kampel, M. Facial Expression Recognition using Convolutional Neural Networks: State of
the Art. arXiv 2016, arXiv:1612.02903.

88. Sun, B.; Cao, S.; Li, L.; He, J.; Yu, L. Exploring multimodal visual features for continuous affect recognition.
In Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, Amsterdam,
The Netherlands, 12–16 October 2016; ACM: New York, NY, USA, 2016; pp. 83–88.

89. Keren, G.; Kirschstein, T.; Marchi, E.; Ringeval, F.; Schuller, B. End-to-end learning for dimensional emotion
recognition from physiological signals. In Proceedings of the 2017 IEEE International Conference on
Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 985–990.

http://dx.doi.org/10.1007/s10579-015-9300-0
http://dx.doi.org/10.1037/a0020019
http://dx.doi.org/10.1109/34.817413
http://dx.doi.org/10.1109/MMUL.2012.26
http://dx.doi.org/10.1007/s12193-016-0213-z
http://dx.doi.org/10.1007/s10579-008-9076-6


Multimodal Technol. Interact. 2020, 4, 46 20 of 21

90. Zhang, S.; Zhang, S.; Huang, T.; Gao, W. Multimodal Deep Convolutional Neural Network for Audio-Visual
Emotion Recognition. In Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval,
New York, NY, USA, 6–9 June 2016; ACM: New York, NY, USA, 2016; pp. 281–284.

91. Wen, G.; Hou, Z.; Li, H.; Li, D.; Jiang, L.; Xun, E. Ensemble of Deep Neural Networks with Probability-Based
Fusion for Facial Expression Recognition. Cogn. Comput. 2017, 9, 597–610. [CrossRef]

92. Cho, J.; Pappagari, R.; Kulkarni, P.; Villalba, J.; Carmiel, Y.; Dehak, N. Deep neural networks for emotion
recognition combining audio and transcripts. In Proceedings of the Interspeech 2018, Hyderabad, India,
2–6 September 2018; pp. 247–251.

93. Gu, Y.; Chen, S.; Marsic, I. Deep Multimodal Learning for Emotion Recognition in Spoken Language.
arXiv 2018, arXiv:1802.08332.

94. Majumder, A.; Behera, L.; Subramanian, V.K. Emotion recognition from geometric facial features using
self-organizing map. Pattern Recognit. 2014, 47, 1282–1293. [CrossRef]

95. Kotsia, I.; Pitas, I. Facial expression recognition in image sequences using geometric deformation features
and support vector machines. IEEE Trans. Image Process. 2007, 16, 172–187. [CrossRef]

96. Tian, Y.I.; Kanade, T.; Cohn, J.F. Recognizing action units for facial expression analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 2001, 23, 97–115. [CrossRef]

97. Lien, J.J.; Kanade, T.; Cohn, J.F.; Li, C.C. Automated facial expression recognition based on FACS action units.
In Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition,
Nara, Japan, 14–16 April 1998; pp. 390–395.

98. Tian, Y.l.; Kanade, T.; Cohn, J.F. Evaluation of Gabor-wavelet-based facial action unit recognition in image
sequences of increasing complexity. In Proceedings of the Fifth IEEE International Conference on Automatic
Face Gesture Recognition, Washington, DC, USA, 21 May 2002; pp. 229–234.

99. Lien, J.J.J.; Kanade, T.; Cohn, J.F.; Li, C.C. Detection, tracking, and classification of action units in facial
expression. Robot. Auton. Syst. 2000, 31, 131–146. [CrossRef]

100. Siddiqui, M.F.H.; Javaid, A.Y.; Carvalho, J.D. A Genetic Algorithm Based Approach for Data Fusion at
Grammar Level. In Proceedings of the 2017 International Conference on Computational Science and
Computational Intelligence (CSCI), Las Vegas, NV, USA, 14–16 December 2017; pp. 286–291.

101. Atrey, P.K.; Hossain, M.A.; El Saddik, A.; Kankanhalli, M.S. Multimodal fusion for multimedia analysis:
A survey. Multimed. Syst. 2010, 16, 345–379. [CrossRef]

102. Verma, G.K.; Tiwary, U.S. Multimodal fusion framework: A multiresolution approach for emotion
classification and recognition from physiological signals. NeuroImage 2014, 102, 162–172. [CrossRef]

103. Huang, X.; Kortelainen, J.; Zhao, G.; Li, X.; Moilanen, A.; Seppänen, T.; Pietikäinen, M. Multi-modal emotion
analysis from facial expressions and electroencephalogram. Comput. Vis. Image Underst. 2016, 147, 114–124.
[CrossRef]

104. Goshvarpour, A.; Abbasi, A.; Goshvarpour, A. Fusion of heart rate variability and pulse rate variability for
emotion recognition using lagged poincare plots. Australas Phys. Eng. Sci. Med. 2017, 40, 617–629. [CrossRef]
[PubMed]

105. Gievska, S.; Koroveshovski, K.; Tagasovska, N. Bimodal feature-based fusion for real-time emotion
recognition in a mobile context. In Proceedings of the 2015 International Conference on Affective Computing
and Intelligent Interaction (ACII), Xi’an, China, 21–24 September 2015; pp. 401–407.

106. Yoon, S.; Byun, S.; Jung, K. Multimodal Speech Emotion Recognition Using Audio and Text.
arXiv 2018, arXiv:1810.04635.

107. Hazarika, D.; Gorantla, S.; Poria, S.; Zimmermann, R. Self-attentive feature-level fusion for multimodal
emotion detection. In Proceedings of the 2018 IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR), Miami, FL, USA, 10–12 April 2018; pp. 196–201.

108. Lee, C.W.; Song, K.Y.; Jeong, J.; Choi, W.Y. Convolutional Attention Networks for Multimodal Emotion
Recognition from Speech and Text Data. arXiv 2018, arXiv:1805.06606.

109. Majumder, N.; Hazarika, D.; Gelbukh, A.; Cambria, E.; Poria, S. Multimodal sentiment analysis using
hierarchical fusion with context modeling. Knowl.-Based Syst. 2018, 161, 124–133. [CrossRef]

110. Hazarika, D.; Poria, S.; Zadeh, A.; Cambria, E.; Morency, L.P.; Zimmermann, R. Conversational Memory
Network for Emotion Recognition in Dyadic Dialogue Videos. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
New Orleans, LA, USA, 1–6 June 2018; (Long Papers); Volume 1, pp. 2122–2132.

http://dx.doi.org/10.1007/s12559-017-9472-6
http://dx.doi.org/10.1016/j.patcog.2013.10.010
http://dx.doi.org/10.1109/TIP.2006.884954
http://dx.doi.org/10.1109/34.908962
http://dx.doi.org/10.1016/S0921-8890(99)00103-7
http://dx.doi.org/10.1007/s00530-010-0182-0
http://dx.doi.org/10.1016/j.neuroimage.2013.11.007
http://dx.doi.org/10.1016/j.cviu.2015.09.015
http://dx.doi.org/10.1007/s13246-017-0571-1
http://www.ncbi.nlm.nih.gov/pubmed/28717902
http://dx.doi.org/10.1016/j.knosys.2018.07.041


Multimodal Technol. Interact. 2020, 4, 46 21 of 21

111. Mencattini, A.; Ringeval, F.; Schuller, B.; Martinelli, E.; Di Natale, C. Continuous monitoring of emotions by
a multimodal cooperative sensor system. Procedia Eng. 2015, 120, 556–559. [CrossRef]

112. Shah, M.; Chakrabarti, C.; Spanias, A. A multi-modal approach to emotion recognition using undirected
topic models. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS),
Melbourne, Australia, 1–5 June 2014; pp. 754–757.

113. Liang, P.P.; Zadeh, A.; Morency, L.P. Multimodal local-global ranking fusion for emotion recognition.
In Proceedings of the 2018 on International Conference on Multimodal Interaction, Boulder, CO, USA,
16–20 October 2018; ACM: New York, NY, USA, 2018; pp. 472–476.

114. Yin, Z.; Zhao, M.; Wang, Y.; Yang, J.; Zhang, J. Recognition of emotions using multimodal physiological
signals and an ensemble deep learning model. Comput. Methods Prog. Biomed. 2017, 140, 93–110. [CrossRef]

115. Tripathi, S.; Beigi, H. Multi-Modal Emotion recognition on IEMOCAP Dataset using Deep Learning.
arXiv 2018, arXiv:1804.05788.

116. Dataset 01: NIST Thermal/Visible Face Database 2012.
117. Nguyen, H.; Kotani, K.; Chen, F.; Le, B. A thermal facial emotion database and its analysis. In Proceedings of

the Pacific-Rim Symposium on Image and Video Technology, Guanajuato, Mexico, 28 October–1 November
2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 397–408.

118. Livingstone, S.R.; Russo, F.A. The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS):
A dynamic, multimodal set of facial and vocal expressions in North American English. PLoS ONE
2018, 13, e0196391. [CrossRef]

119. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Miami, FL, USA, 22–24 June 2009; pp. 248–255.

120. Sun, Q.S.; Zeng, S.G.; Liu, Y.; Heng, P.A.; Xia, D.S. A new method of feature fusion and its application in
image recognition. Pattern Recognit. 2005, 38, 2437–2448. [CrossRef]

121. Haghighat, M.; Abdel-Mottaleb, M.; Alhalabi, W. Fully automatic face normalization and single sample face
recognition in unconstrained environments. Expert Syst. Appl. 2016, 47, 23–34. [CrossRef]

122. Mi, A.; Wang, L.; Qi, J. A Multiple Classifier Fusion Algorithm Using Weighted Decision Templates. Sci. Prog.
2016, 2016, 3943859. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.proeng.2015.08.716
http://dx.doi.org/10.1016/j.cmpb.2016.12.005
http://dx.doi.org/10.1371/journal.pone.0196391
http://dx.doi.org/10.1016/j.patcog.2004.12.013
http://dx.doi.org/10.1016/j.eswa.2015.10.047
http://dx.doi.org/10.1155/2016/3943859
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Use of Speech, Visible, and Infrared Images
	Emotion Identification
	Data Fusion
	Feature Level
	Decision Level
	Hybrid Fusion


	Proposed Framework
	Datasets and Pre-Processing
	VIRI Dataset
	RAVDESS Dataset

	Two-Stage AER Framework
	Stage Ia: AER with Visible and IR Images
	Stage Ib: AER with Speech
	Stage II: Decision Level Fusion


	Results
	Visible Images Only
	IR Images Only
	Fusion of IR and Visible Images
	Speech Only
	Fusion of IR Images, Visible Images, and Speech
	Discussion

	Conclusions and Future Work
	References

