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Abstract: Fitness apps equipped with various persuasive features have become popular worldwide
due to the physical inactivity crisis. However, there is a limited understanding of the most important
persuasive features that drive their adoption and the moderating effect of age and gender. To bridge
this gap, we designed storyboards illustrating six of the commonly employed persuasive strategies
in persuasive health applications: Goal-Setting/Self-Monitoring, Reward, Social Learning, Social
Comparison, Competition and Cooperation. We conducted an empirical study in which we asked the
participants to evaluate their receptiveness to the six persuasive features and their intention to use a
fitness app that features them. The result of our Partial Least Square Path Modeling (PLSPM) shows
that, overall, Goal-Setting/Self-Monitoring is the strongest predictor of the intention to use a fitness
app, followed by Reward and Competition, both of which are in second place. However, Social
Learning and Social Comparison turn out to be non-predictors of intention to use. Based on these
findings, we recommend that a minimally viable (one-size-fits-all) fitness app, in a personal setting,
should support a Goal-Setting/Self-Monitoring feature, coupled with a Reward feature, to increase its
appeal to a wide audience. Moreover, in a social setting, it should support a Competition feature to
increase its appeal to a wide audience. We discuss these findings and the gender and age differences
in the relationships between users’ receptiveness to the six persuasive features and their intention to
use a fitness app that support them.

Keywords: persuasive technology; persuasive features; fitness app; intention to use; goal-setting;
self-monitoring; competition; cooperation; age; gender

1. Introduction

Owing to the ever-increasing prevalence of physical inactivity and its attendant effects, fitness apps
are becoming more and more popular and essential in our daily lives. In particular, fitness applications
that support users in various settings, including at home, have become useful given the coronavirus
pandemic, which has confined people to their homes, thereby increasing sedentary lifestyles such as
playing video games and watching movies on the Internet. Given that many people can no longer go
to the gym to workout with their personal trainers or others in social settings due to gym closures, the
need for fitness applications in physical personal setting and virtual social setting as a tool for becoming
fit physically and mentally cannot be overstressed. Usually, they are equipped with a number of
persuasive features to motivate and facilitate the desired behavior change. Some of the commonly
employed persuasive features in fitness apps on the market today include Goal-Setting/Self-Monitoring,
Reward, Social Learning, Social Comparison, Competition and Cooperation [1–4]. Research [5–7] has
shown that these persuasive features have the potential of promoting the target behavior change in a

Multimodal Technol. Interact. 2020, 4, 17; doi:10.3390/mti4020017 www.mdpi.com/journal/mti

http://www.mdpi.com/journal/mti
http://www.mdpi.com
https://orcid.org/0000-0001-8300-3343
https://orcid.org/0000-0001-5050-3106
http://dx.doi.org/10.3390/mti4020017
http://www.mdpi.com/journal/mti
https://www.mdpi.com/2414-4088/4/2/17?type=check_update&version=2


Multimodal Technol. Interact. 2020, 4, 17 2 of 19

personal and/or social context. However, there are limited studies focused on uncovering how well the
perceived persuasiveness of these persuasive features predicts users’ intention to use fitness apps to
motivate their behavior change. Specifically, research on the relationship between users’ receptiveness
to persuasive features and their intention to use fitness apps that support them is scarce. To bridge
this gap, we designed a questionnaire of storyboards illustrating six of the commonly employed
persuasive features in persuasive health applications (PHAs): Goal-Setting/Self-Monitoring, Reward,
Social Learning, Social Comparison, Competition and Cooperation. Thereafter, in an online survey,
we asked the study participants residing in North America to evaluate their receptiveness to each
persuasive feature illustrated on a storyboard and their intention to use a fitness app prototype called
“HOMEX,” which is aimed to motivate regular exercise in a home setting. The study, which employed
a mixed-method approach, aims to support designers of persuasive fitness applications by providing
insight into the key persuasive features that drive the adoption of fitness applications on the market by
potential users.

The result of our PLSPM shows that, overall, Goal-Setting/Self-Monitoring (β = 0.52, p < 0.001) is
the strongest predictor of the intention to use the fitness app, followed by Reward (β = 0.17, p < 0.01),
Competition (β = 0.17, p < 0.05) and Cooperation (β = 0.13, p < 0.01). However, Social Learning and
Social Comparison turned out to be non-predictors of intention to use. Comparatively, the relationship
between Cooperation and intention to use is significantly stronger for females than for males, while
the relationship between Goal-Setting/Self-Monitoring and intention to use is significantly stronger
for older users than younger users. Overall, the findings reveal that personal features are stronger
predictors of the adoption of a fitness app than socially oriented features. Specifically, our results
show that among users residing in North America (which are mostly individualists by country of
origin), Goal-Setting/Self-Monitoring is the strongest motivator of the intention to use a fitness app.
However, older people are more likely to adopt a fitness app based on its Goal-Setting/Self-Monitoring
feature than younger people. Secondly, females are more likely to adopt a fitness app based on its
Cooperation feature than males. Thirdly, while Social Comparison is a motivator of the adoption of a
fitness app for younger people, it is a demotivator for older people. Based on our overall findings, we
recommend that designers of fitness apps, especially for the North American audience, should support
Goal-Setting and Self-Monitoring (accompanied by Reward) in minimally viable apps to increase their
appeal to a wider audience and chances of being used. Further, in a social context, fitness app designers
should support persuasive features such as Competition and Cooperation (in additional to the personal
features implemented on a group-basis) to foster intrinsic motivation [8–10] and accountability [2],
respectively. These social features have the potential of increasing user engagement in the target
behavior among socially oriented users.

The rest of the paper is organized as follows. Section 2 focuses on the background on commonly
employed persuasive features in fitness apps and related work. Section 3 describes the research method.
Section 4 presents the results of our path analysis. Section 5 dwells on the discussion of our findings.
Finally, Section 6 concludes the paper.

2. Background and Related Work

In this section, we present an overview of the six persuasive features of a PHA we investigated
and the related work.

2.1. Definition of Persuasive Features

Persuasive features are supportive/motivational features with which PHAs are equipped to
increase their perceived persuasiveness and actual effectiveness in changing behavior. Table 1 shows
all six persuasive features addressed in this paper and their definitions. The six persuasive features,
which are commonly employed in persuasive applications in the health domain [2,11], were adopted
from Oinas-Kukkonen and Harjumaa’s [7] persuasive system design (PSD) model. For example,
Reward, which entails offering incentives to users such as points, levels and badges, has been widely
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studied in prior studies [4]. However, most of the studies such as [12–14] have been focused on users’
receptiveness. Munson and Consolvo [4] particularly investigated the effectiveness of Reward in a
real-life fitness app. They found that reward elements such as trophies and ribbons were not successful
in motivating most of the study participants. According to the authors, this “raises questions about how
such rewards should be designed.” We argue that, prior to knowing how Reward should be designed, it
will be useful for designers to know ab initio whether Reward as a persuasive strategy has the potential
to drive the adoption of fitness applications. Secondly, Goal-Setting/Self-Monitoring, which is aimed at
setting a goal and tracking users’ performance towards achieving the set goal, has been widely studied
as well. For example, Munson and Consolvo [4] investigated the effectiveness of Goal-Setting as a
persuasive strategy in a real-life fitness application. They found that setting primary and secondary
weekly goals was beneficial to the study participants. Moreover, in a qualitative study, Orji et al. [15]
found that “Self-monitoring is the cornerstone of many health and wellness persuasive interventions” (p. 1).
However, both persuasive features have not been studied as a possible predictor of the adoption of
a fitness application. Finally, just as Reward and Goal-Setting/Self-Monitoring, social features such
as Cooperation, Social Comparison, Competition and Social Learning have been studied as well in
the prior literature. However, most of the existing studies [2,13,16] focus on users’ receptiveness to
these social strategies and not their potential, in the face of other persuasive features, to predict users’
adoption of fitness applications.

Table 1. Persuasive features and definition [17–19].

Feature Definition of Feature

Goal-Setting/Self-Monitoring A persuasive feature that allows users to set goals and track their
performance over time.

Reward A persuasive feature that allows incentives to be awarded to users for
the accomplishment of their goal.

Cooperation A persuasive feature that allows users to work together to achieve a
collective goal and reward upon reaching their goal.

Competition A persuasive feature that allows users with a common goal and
mutually exclusive reward to compete with one another to attain them.

Social Comparison A persuasive feature that allows users to view and compare their
performance and achievements with those of others.

Social Learning A persuasive feature that allows users to observe the behaviors and
achievements of other users and respond accordingly.

2.2. Gender and Age Differences

Research shows that demographic variables could be employed to segment populations for the
purpose of personalization of persuasive strategies to the target audience. In particular, gender and
age have been commonly employed to segment populations and studied in the literature [20,21].
Oyibo et al. [5] found that gender influences the receptiveness of users to persuasive strategies.
Specifically, in a non-domain-specific context, the authors found that males are more likely to
be receptive to Reward and Competition than females. Similarly, in the physical activity domain,
Van Uffelen et al. [22] found that males are more likely to be motivated by competitive physical activities
than females. Regarding age difference, in a non-domain-specific context, Oyibo et al. [5] found that
younger people (under 24 years old) are more likely to be receptive to Competition, Social Comparison
and Social Learning than older people (over 24 years old). Moreover, in the energy-conservation
domain, Shih and Jheng [3] found that age influences users’ receptiveness to persuasive strategies.
For example, they found that Reward is more persuasive to younger adults (under 40 years old) than
older adults (over 41 years old). However, they found that Self-Monitoring and Cooperation are more
persuasive to older adults than to younger adults. Thus, they recommended that designers should
employ different persuasive strategies when targeting different age groups of users. Due to the age
and gender differences in users’ receptiveness to certain persuasive strategies, we became interested in
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how both demographic variables moderate the relationships between commonly employed persuasive
features (e.g., Goal-Setting/Self-Monitoring, Cooperation, etc.) and users’ adoption of fitness apps that
support them.

2.3. Captology and Persuasive Technology

Fogg [6], the pioneer of persuasive technology, defined “Captology” (an acronym for Computers
As Persuasive Technologies) as the study of computers as persuasive technologies aimed to change
attitude and behavior. Thus, “Captology,” which is often used interchangeably with the terminology
“Persuasive Technology,” is regarded as a field of study that deals with the intersection of “Computer”
and “Persuasion” as shown in Figure 1. In this light, Captology refers to the employment of computers
and persuasive techniques from social psychology in the art of persuasion (motivating people, fostering
compliance, changing behavior and attitude, etc.) in different fields of human endeavors. Examples of
computer applications aimed at changing behavior and attitude include desktop applications (virtual
agent), mobile applications (e.g., fitness apps equipped with behavior models [23,24]), social media
(e.g., Facebook, etc.), persuasive health games [25–27], etc. All of these applications are regarded as
persuasive technologies, which have the potential to influence user attitudes and behaviors through
persuasion and/or social influence. However, there are limited studies with regard to the relationship
between the persuasive features of persuasive technologies and their targeted behavioral outcomes.
Specifically, very few studies have been conducted to investigate the relationship between persuasive
features and the intention to use a persuasive application. Rather, most of the related studies (e.g., [28–31])
have been conducted in the context of TAM, which focuses primarily on the relationship between
user experience (UX) design attributes (such as perceived usefulness, perceived usability, perceive aesthetics,
etc.) and intention to use/actual use. In the next section, we cover a cross-section of the relevant studies,
including the few studies that focused on the relationship between persuasive features and persuasive
outcomes such as intention to use/actual use of persuasive systems.
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2.4. Relationship between Persuasive Features and Intention to Use/Actual Use

Researchers [23,33] have adapted Bandura’s [34] social cognitive model of reciprocal determinism
to the persuasive technology context. The model (see Figure 2) shows that personal factors,
environmental factors, and the target behavior interact with one another in a reciprocal fashion
to shape behavior. The personal factors include social cognitive factors such as self-efficacy, self-regulation
and outcome expectation [23].

The environmental factors, in the context of persuasive technology, include personal persuasive
features (Goal-Setting, Self-Monitoring, etc.,) and social persuasive features (Social Learning,
Cooperation, Competition, etc.). Finally, the target behavior includes behavioral outcomes such
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as intention to use, engagement, behavior performance, etc. A number of studies [23,35–37] in the
physical activity domain have been carried out based on this behavior change model. In this paper, we
focus specifically on the relationship between system features and target behavior in the context of
persuasive technology, especially for health interventions.
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2.5. Related Work on Relationship between Persuasive Features and Intention to Use/Actual Use

A number of studies have been carried out related to persuasive features and their potential to
change behavior. Stibe and Oinas-Kukonen [33] developed a model for the design of persuasive systems
that support user engagement in collaborative interaction. The model shows the social predictors
of user engagement and behavior intention in a socially oriented persuasive system integrated with
Twitter. The authors found that Social Learning, Social Facilitation and Cooperation (through perceived
persuasiveness) are significant predictors of both target constructs. Overall, perceived persuasiveness
has the strongest total effect on behavioral intention and user engagement, followed by Social Learning,
Cooperation, and Social Facilitation. However, apart from the investigated persuasive system not
being a health-based system, the authors only focused on social features as possible predictors of
the target constructs. In other words, they did not consider personal features such as Goal-Setting
and Self-Monitoring, perhaps, because they were not relevant in the Twitter-based social system they
investigated. Moreover, Lehto et al. [38] carried out an evaluation of a web-based persuasive system
(which they called behavior change support system) for healthy eating and losing weight. Specifically,
they investigated the factors that influence the usage of the persuasive system. They found that among
the six factors they investigated, perceived persuasiveness, unobtrusiveness and design aesthetics are the
strongest (overall) predictors of the actual use of the system, with the first two factors (only) having a
direct influence on intention to use. (Unobtrusiveness, in particular, is a measure of how well a system fits
with the environment in which the user uses it [39].) Drozd et al. [39] also carried out a similar study
in the eating domain. They found that perceived persuasiveness and unobtrusiveness are the strongest
predictors of the intention to use a persuasive system designed to promote health eating. The main
limitation of Lehto et al. [38] and Drozd et al.’s [39] studies, in the light of our study, is that they treated
the persuasive features of the persuasive system as a monolithic construct (perceived persuasiveness)
rather than as different constructs such as Reward, Cooperation, etc. Thus, it is hard to tell which
of the commonly employed persuasive features are the strongest predictors of the intention to use a
persuasive system. Our current study aims to bridge this gap.
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Specifically, due to the identified gaps, the aim of our study is to investigate the strongest predictors
of users’ intention to use a home-based fitness app that supports commonly employed persuasive
features: Goal-Setting/Monitoring, Reward, Social Learning, Social Comparison, Competition and
Cooperation. We used storyboards to illustrate each of these persuasive features.

3. Method

In this section, we present our research questions, measurement instruments for the six persuasive
features we investigated and the demographic information of participants.

3.1. Research Questions

In our study, given the paucity of research in the area of persuasive features as predictors of fitness
app use, as shown in the exploratory model in Figure 3, we set out to answer the following research
questions (RQs) using an exploratory approach:

RQ1. Can persuasive features predict users’ intention to use a fitness app?
RQ2. Which of the six commonly employed persuasive features is/are the strongest predictors of users’

intention to use a fitness app?
RQ3. How do gender and age moderate the interrelationships among the persuasive features and users’

intention to use a fitness app?
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3.2. Storyboards

To answer our research questions, we employed storyboards to illustrate each of the persuasive
features of interest. Figure 4 shows the storyboard illustrating the Goal-Setting/Self-Monitoring feature.
In the storyboard, the target user sets a tiny goal of 4000 calories (4 Kcal) on a given day. In our study,
we want to understand how well persuasive strategies such as this would influence or motivate users
to adopt (use) a fitness app aimed at encouraging physical activity. Storyboards such as this have been
widely used in previous studies (e.g., [2,3,40,41]) to elicit useful feedback from potential users.
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3.3. Measurement Instruments

We carried out an online survey to investigate users’ receptiveness to the six persuasive features
illustrated on the storyboards and their intention to use a fitness app in which they are featured. Prior
to administering the storyboards and their corresponding questions to participants, we presented a
description of a fitness app prototype (which we called the “Homex App”) to set the tone for users’
response to our questionnaire. The application description read as follows:

Imagine you want to improve your personal health and fitness level. Given the challenges (e.g., time,
cost, weather, etc.) associated with going to the gym regularly, the “Homex App” has been created,
say by health promoters in your neighborhood, to support your physical activity.

Thereafter, with respect to each storyboard illustrating each of the six persuasive features
(Goal-Setting/Self-Monitoring, Reward, Social Learning, Social Comparison, Competition and
Cooperation), the first question in Table 2 was asked. Thereafter, the last question on intention
to use the fitness app was asked. Particularly, we combined Goal-Setting and Self-Monitoring as
one construct because we regard them as complementary. In other words, if a fitness app supports
the setting of goals, then users should be automatically allowed to have the option of tracking their
activities aimed at meeting the set goals as well. Otherwise, the persuasive strategy of Goal-Setting
may be less effective if users cannot keep track of their progress and achievement of their set goals.

Prior to answering the questions shown in Table 2, the study participants were asked to study
each storyboard, identify and choose the correct persuasive feature being illustrated from a number of
options. This was done to ensure that they paid attention to and understood the persuasive feature
illustrated in each storyboard prior to answering the first question shown in Table 2. We believe, in so
doing, the reliability of participants’ responses would be enhanced. Wrong responses to incorrectly
identified storyboard’s persuasive features were treated as missing data points and replaced by the
respective average scores during the data analysis. Specifically, we used the adapted version of
the Perceived Persuasiveness scale [39]—previously used by other studies (e.g., [23])—to measure
the perceived persuasiveness of each feature. For intention to use, we used a single-item scale. Prior
research [42] has shown that single-item scales could be as reliable as multi-item scales. After the
participants had finished rating the storyboards in terms of their receptiveness to the illustrated
persuasive features, they were requested to provide comments to justify their ratings. The question
read, “Provide comments about this application feature [persuasive strategy illustrated on the storyboard] to
justify your rating here [textbox].” This open question was included in the study in order to triangulate
the quantitative with the qualitative findings.
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Table 2. Study’s constructs and indicators.

Criterion Overall Question and Items

Perceived Feature [23]

Imagine that you are using the Homex App presented in the storyboard above to track
your physical activity, to what extent do you agree with the following statements:

1. This feature of the app would influence me.
2. This feature of the app would be convincing.

3. This feature of the app would be personally relevant to me.
4. This feature of the app would make me reconsider my physical activity.

5. Provide comments about this application feature [persuasive strategy illustrated on
the storyboard] to justify your rating here [textbox].

Intention to Use Assuming the app, together with the various features, described earlier on, would be
available to me, I predict that I will use it.

3.4. Participants

Our study was submitted to and approved by the authors’ University Research Ethics Board.
Thereafter, it was posted on Amazon Mechanical Turk (a crowdsourcing platform) to recruit participants
residing in Canada and United States. Each of the participants was compensated with USD $1.50 for
their time. Overall, 279 participants took part in the study. However, after cleaning, 228 were left (see
Table 3): males (132), females (95), and unidentified (1). The majority of the excluded 51 participants
was as a result of non-completion of the survey. About 72% of the valid participants had North America
(Canada and United States) as their country of origin. The other demographic information about the
valid participants is enumerated in Table 3.

Table 3. Demographics of participants (n = 228).

Variable Subgroup Number Percent

Male 132 57.9

Gender Female 95 41.7

Others 1 0.4

Age

18–24 38 16.7

25–34 122 53.5

35–34 45 19.7

45–54 16 7.0

54+ 7 3.1

Education

Technical/Trade School 31 13.6

High School 39 17.1

BSc 107 46.9

MSc 33 14.5

PhD 6 2.6

Others 2 0.9

Country of Origin

Canada 89 39.0

United States 98 43.0

Others 41 18.0

Continent of Origin

North America 164 71.9

South America 10 4.4

Europe 13 5.7

Africa 11 4.8

Asia 13 5.7

Middle East 5 2.2

Others 2 0.9
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4. Results

This section focuses on the results of the PLSPM, carried out using R’s “plspm” package [43],
including the evaluation of the measurement models and the analysis of the structural models at the
global and subgroup levels.

4.1. Measurement Models

The evaluated preconditions in each of the measurement models include indicator reliability,
internal consistency reliability, convergent validity, and discriminant validity of the constructs.

Indicator Reliability. All of the indicators in the respective measurement models had an outer
loading greater than 0.7.

Internal Consistency Reliability. This criterion assessed the reliability of each construct in each
measurement model. It was based on the composite reliability metric (DG.rho), which was greater
than 0.7.

Convergent Validity. This criterion assessed the degree to which the indicators of each construct
in each measurement model was related. It was based on the Average Variance Extracted, which was
greater than 0.5.

Discriminant Validity. This criterion assessed the degree to which the different constructs in each
of the measurement models are unrelated. It was based on the crossloading metric. Our results showed
that no indicator loaded higher on any other construct than its own construct [44].

4.2. Global Structural Model

Figure 5 shows the global model. The model is characterized by three parameters: goodness of fit
(GOF), coefficient of determination (R2) and path coefficients (βs). The GOF value captures how well
the model fits its data, while the R2 value represents the amount of variance of the target construct
(intention to use) that is accounted for by the persuasive features. Finally, the β value represents the
strength of the relationship between each persuasive feature and intention to use. The result of the
PLSPM shows that four of the six persuasive features significantly predict the intention to use a fitness
app, with the overall model accounting for 64% of its variance. Goal-Setting/Self-Monitoring (β = 0.52,
p < 0.001) turns out to be the strongest predictor, followed by Reward (β = 0.17, p < 0.01), Competition
(β = 0.17, p < 0.05) and Cooperation (β = 0.13, p < 0.01). Unfortunately, at the global level, Social
Leaning and Social Learning have no significant effect on intention to use.
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4.3. Gender-based Structural Models

Figure 6 shows the gender- and age-based submodels. The respective submodels are similar
to the global model regarding some of the relationships. For example, as in the global model,
Goal-Setting/Self-Monitoring has the strongest relationship with intention to use: for male (β = 0.59,
p < 0.001), for female (β = 0.43, p < 0.001), for younger people (β = 0.45, p < 0.001) and for older people
(β = 0.58, p < 0.001). However, the results of our multigroup analyses showed that there is gender as
well as age difference regarding some of the relationships. In the gender-based model, the relationship
concerning Cooperation is significantly different for both genders (p < 0.05). It is significant for females
(β = 0.27, p < 0.001), but non-significant for males (β = 0.04, p = n.s). Moreover, in the age-based model,
the relationship concerning Social Comparison is significantly different for both age groups (p < 0.05).
It is positive for younger people (β = 0.19, p < 0.05), but negative for older people (β = −0.19, p < 0.05).
Finally, concerning Goal-Setting, the relationship is significantly stronger for older people (β = 0.58,
p < 0.001) than for younger people (β = 0.45, p < 0.001).
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4.4. Sample of Comments Supporting the Relationship between Users’ Receptiveness to Persuasive Features and
Intention to Use a Fitness App

In addition to the PLSPM, we manually went through the comments provided by the
study participants to uncover qualitative evidence that supports the relationship between users’
receptiveness to the significant persuasive features and intention to use a fitness app. Table 4 shows
a cross-section of participants’ comments supporting the relationship between users’ receptiveness
to Goal-Setting/Self-Monitoring and Reward, on one hand, and intention to use, on the other hand.
In addition, Table 4 shows the participants’ levels of receptiveness to both significant personal
persuasive features in question and intention to use.

Table 4. Participants’ comments on Goal-Setting/Self-Monitoring and Reward features and
receptiveness profile.

No. Participants’ Comments Profile Remark (PF, ITU)

P23 “I like the idea because it clearly tracks your calories which I
usually wouldn’t consider while doing exercise.” [GST/SMT = 7, ITU = 6] (High, High)

P26 “I just don’t think I could live up to the goals and that
would depress me.” [GST/SMT = 2, ITU = 1] (Low, Low)

P39 “Rewards often convince me to log into apps . . . ” [REWD = 5, ITU = 6] (High, High)

P05 “I am exercising because I like it; I don’t need points
rewards.” [REWD = 1, ITU = 1] (Low, Low)

PF = Personal Feature, GST/SMT = Goal-Setting/Self-Monitoring, REWD = Rewards, ITU = Intention to Use.

Table 5 shows a cross-section of participants’ comments supporting the relationship between
users’ receptiveness to Competition and Cooperation on one hand, and intention to use, on the other
hand. In addition, Table 5 shows the participants’ levels of receptiveness to both significant social
persuasive features in question and intention to use.

Table 5. Participants’ comments on competition and cooperation features and receptiveness profile.

No. Participants’ Comments Profile Remark (SF, ITU)

P69

“This would motivate and influence me to push harder
every day to achieve the top rank (or attempt to) therefore
this level of competition does indeed convince influence

motivate me and is directly relevant to myself.”

[CMPT = 6, ITU = 5] (High, High)

P127 “I’m not the competitive type. I don’t do things to be
better than others.” [CMPT = 1, ITU = 1] (Low, Low)

P44 “Having someone else depending on my activity to gain
rewards would influence me to meet my goal.” [COOP = 6.75, ITU = 7] (High, High)

P92 “I don’t want to depend on others, and I don’t want to
impose on others to do exercise.” [COOP = 1, ITU = 2] (Low, Low)

SF = Social Feature, CMPT = Competition, COOP = Cooperation, ITU = Intention to Use.

Table 6 shows comments supporting the moderating effect of age in the relationship between
users’ receptiveness to Social Comparison and intention to use. In addition, Table 6 shows the levels of
receptiveness to Social Comparison and intention to use for the younger and older people.

Finally, Table 7 shows a summary of the relationship between persuasive features and intention
to use. It is based on the results shown in Figures 5 and 6. The main takeaway from the summary is
that, regardless of age and gender, users’ receptiveness to Goal-Setting/Self-Monitoring has a positive
influence on their intention to use a fitness app. The second takeaway is that, for females, younger and
older people, users’ receptiveness to Competition has a positive influence on their intention to use a
fitness app as well. The other takeaways are discussed in Section 5.
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Table 6. Participants’ comments on social comparison feature and receptiveness profile.

No. Age Participants’ Comments Profile Remark (SF, ITU)

P12 18–24
“Similar to competitive leader boards

being able to compare yourself to friends
for a nice push is great.”

[SCOMP = 5, ITU = 6] (High, High)

P127 25–34 “I don’t like comparison/competition.” [SCOMP = 1, ITU = 1] (Low, Low)

P19 35–44
“Comparing myself to others can be
harmful and demotivating. Someone

always loses.”
[SCOMP = 1, ITU = 6] (Low, High)

P58 35–44

“If I can see the results of other people in
the group and everybody except me was

successful it would make me try harder in
the future. I would put more effort into

reaching my goal in order to keep up with
the others.”

[SCOMP = 6.25, ITU = 1] (High, Low)

P06 54+ “Not interested keep my goals personal.” [SCOMP = 2, ITU = 5] (Low, High)

SF = Social Feature, SCOMP = Social Comparison, ITU = Intention to Use.

Table 7. Summary of the relationship between persuasive features and intention to use.

Relationship Global Male Female Young Old

Reward 4 4 × 4 ×

Goal-Setting/
Self-Monitoring 4 4 4 4 4

Cooperation 4 × 4 × ×

Competition 4 × 4 4 4

Social Comparison × × × 4 −

Social Learning × × × × ×

4 = Positive significant relationship with intention to use at p < 0.05; − = Negative significant relationship with
intention to use at p < 0.05; × = Non-significant relationship with intention to use (p = n.s).

5. Discussion

We have presented a path model of the intention to use a fitness app that supports users’ behavior
change in the physical activity domain. The goodness of fit (GOF) of the global model is 0.77. This is
considered a high value in the PLSPM community, indicating that the model fits its empirical data to a
large degree. Similarly, the GOFs of the submodels are above 0.70 as well, with the submodel for older
people having the highest value (0.88), while that for younger people having the lowest value (0.75).
According to Hussain et al. [45], a GOF value of 0.10, 0.25, and 0.36 is an indication that the overall
validation of a model by its empirical data is small, medium, and large, respectively. Moreover, the
global model accounts for 64% of the variance of intention to use. Similarly, the submodels account for
more than 60% of the variance of intention to use, with that for older people having the highest value
(83%), while that for younger people having the lowest value (62%). Again, like the GOF, the R2 values,
which are above 60% for the global and submodels, are high, indicating that the models’ significant
predictors do well in explaining the variance of intention to use. According to Sanchez [43], R2 values
above 60% are considered high values; those between 60% and 30% are considered moderate; and those
less than 30% are considered low. Particularly, in the global model, four of the investigated persuasive
features (Goal-Setting/Self-Monitoring, Reward, Cooperation, and Competition) have a significant
relationship with the intention to use a fitness app. We discuss our findings in detail in the context
of the significant personal features (Goal-Setting/Self-Monitoring and Reward) and social features
(Cooperation and Competition). In addition, we discuss the age and gender differences regarding
relationships concerning Cooperation, Social Comparison and Goal-Setting/Self-Monitoring, on one
hand, and intention to use, on the other hand.
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5.1. Personal Features as Drivers of Fitness App’s Use

Our PLSPM shows that at the global level (Figure 5) and subgroup levels (Figure 6),
Goal-Setting/Self-Monitoring is the strongest predictor of the intention to use a fitness app. For example,
at the global level, the path coefficient of the relationship is (β = 0.52, p < 0.001), while that at the
subgroup levels is (β > 0.40, p < 0.001). These significant path coefficients suggest that, regardless
of gender and age, Goal-Setting and Self-Monitoring are very important complementary persuasive
features in motivating behavior change in a fitness app. Our treating Goal-Setting and Self-Monitoring
as complementary features of a fitness app is supported by some of the participants’ comments,
in which goal-setting and tracking are mentioned side by side. For example, as shown in Table 4, P15
commented thus about the Goal-Setting/Self-Monitoring feature: “I think it is good to see results and
progression on a daily basis to set new and higher goals.” Similarly, P18 commented thus, “I love that I can
set a daily goal and track my progress towards it in real time [.] This gives me time to adjust my exercise routine
or diet to reach my goal.” In particular, the multigroup analysis (see Figure 6) shows that the relationship
between Goal-Setting/Self-Monitoring and intention to use is significantly stronger (p < 0.05) for older
people (β = 0.58, p < 0.001) than for younger people (β = 0.45, p < 0.001). This suggests that older people
are more likely to adopt a fitness app based on its Goal-Setting/Self-Monitoring persuasive features
than younger people. Overall, the finding that Goal-Setting/Self-Monitoring is the most important
predictor of users’ intention to use a fitness app corroborates Orji et al.’s [15] qualitative finding, in
which the authors stated that Self-Monitoring is “the cornerstone of many health and wellness persuasive
interventions” (p. 1).

Furthermore, we found that Reward (β = 0.17, p < 0.01) is an important feature as well in
determining the intention to use a fitness app. Particularly, there is no significant gender and/or age
difference with regard to the relationship between users’ receptiveness to Reward and intention to use
(see Figure 6). Hence, in the global model, both personal features (Goal-Setting/Self-Monitoring and
Reward) are the strongest predictors of intention to use, with Goal-Setting/Self-Monitoring (β = 0.52,
p < 0.001) being stronger than Reward. Both findings with regard to the relationships between
Goal-Setting/Self-Monitoring and Reward on the one hand, and intention to use on the other hand,
can be interpreted as follows. The higher users are receptive to the Goal-Setting/Self-Monitoring and
Reward features of a fitness app, the higher is their intention to use the fitness app to motivate their
physical activity. On the flipside, the lower users are receptive to the Goal-Setting/Self-Monitoring
and Reward features, the lower is their intention to use the fitness app. Table 4 shows a snippet of the
participants’ comments and profile with regard to both personal features, which attest to these findings.
For example, P23, who rated the Goal-Setting/Self-Monitoring (M = 7/7) and intention to use (M = 6/7)
high, commented positively, “I like the idea because it clearly tracks your calories which I usually wouldn’t
consider while doing exercise.” On the other hand, P26, who rated the Goal-Setting/Self-Monitoring
(M = 2/7) and intention to use (M = 1/7) low, commented negatively, “I just don’t think I could live up to
the goals and that would depress me.” Similarly, with respect to Reward, P39, whose average rating is
relatively high (M = 5/7), rated the intention to use the fitness app as high as well (M = 6/7) and gave
a positive comment about the persuasive feature. On the other hand, P05, whose average rating is
relatively low (M = 1/7), rated the intention to use the fitness app as low (M = 1/7) and gave a negative
comment about the persuasive feature as well.

Apart from Goal-Setting/Self-Monitoring (coupled with Reward) being a fundamental feature
of a fitness app, one possible explanation for its significant influence on intention to use is that the
studied audience is an individualist culture: citizens and/or residents of Canada and United States.
People living in this type of culture are mostly independent, self-motivated and goal-driven. In prior
studies based on Social Cognitive Theory, Oyibo et al. [35,46] found that Perceived Self-Efficacy and
Perceived Self-Regulation (mapped to persuasive features such as Goal-Setting, Self-Monitoring,
and Reward in the application domain) are the strongest determinants of physical activity behavior.
While Oyibo et al.’s [35] found that, in the behavior theory domain, personal factors are the strongest
determinants of behavior change for the individualist culture, in the application domain, the current
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study found that Goal-Setting/Self-Monitoring is the strongest driver of users’ intention to use a fitness
app to motivate their behavior change.

5.2. Social Features as Drivers of Fitness App’s Use

Apart from personal features, we found that social features such as Competition (β = 0.17, p < 0.05)
and Cooperation (β = 0.13, p < 0.01) are significant predictors of the intention to use a fitness app. This
means that the higher users are receptive to a fitness app’s Competition and Cooperation features,
the more likely they are to form favorable intentions to use the app. On the flipside, the lower users
are receptive to both features, the less likely they are to form favorable intentions to use the app.
In particular, the multigroup analysis (see Figure 6) shows that the relationship between Cooperation
and intention to use is significantly stronger for females (β = 0.27, p < 0.001) than for males (β = 0.04,
p = n.s). This suggests that females are more likely to adopt a fitness app based on its support for the
Cooperation persuasive feature than males. This finding is consistent with Van Uffelen et al.’s [22]
extant finding in the physical activity domain. The authors found that women were more likely than
men to spend time with others in their physical activity.

Table 5 shows a snippet of participants’ comments and profile with regard to Cooperation and
Competition features, which support the PLSPM findings in the global model. For example, P44, who
rated Cooperation (M = 6.75/7) and intention to use (M = 7/7) high, commented positively, “Having
someone else depending on my activity to gain rewards would influence me to meet my goal.” On the
other hand, P92, who rated Cooperation (M = 1/7) and intention to use (M = 2/7) low, commented
negatively, “I don’t want to depend on others, and I don’t want to impose on others to do exercise.”
Similarly, with respect to Competition, P69, whose average rating is relatively high (M = 6/7), rated
the intention to use the fitness app as high as well (M = 5/7) and gave a positive comment about the
persuasive feature. On the other hand, P127, whose average rating of Competition is relatively low
(M = 1/7), rated the intention to use the fitness app as low as well (M = 1/7) and gave a negative comment
about the persuasive feature.

Apart from Competition and Cooperation (see Figure 6), we found that for younger people, Social
Comparison has a positive relationship with intention to use (β = 0.19, p < 0.05). However, for older
people, Social Comparison has a negative relationship with intention to use (β = −0.19, p < 0.05). This
means that the higher (lower) younger users are receptive to a fitness app’s Social Comparison feature,
the more (less) likely they are to have a favorable intention to use the app. On the other hand, the lower
(higher) older users are receptive to the Social Comparison feature, the more (less) likely they are to
have a favorable intention to use the app. Table 6 shows sample comments about Social Comparison
from the younger and older groups. For example, P127 (a younger participant who commented,
“I don’t like comparison/competition”) rated Social Comparison high (M = 1/7) and intention to use high
(M = 1/7). On the other hand, P19 (an older participant who commented, “Comparing myself to others
can be harmful and demotivating. Someone always loses”) rated Social Comparison low (M = 1/7) and
intention to use high (M = 6/7).

Based on the above, we submit that, apart from personal features (Goal-Setting/Self-Monitoring
and Reward), social features (such as Competition and Cooperation) can be employed as well to
motivate fitness apps’ use. In particular, for younger people, Social Comparison can be employed
to motivate their adoption of a fitness app. This age-based finding can be explained by a prior
finding that younger people are more likely to be receptive to social comparisons than older people.
In two different empirical studies, Callan et al. [47] found that younger people reported higher levels
of social comparison tendency than older people. Moreover, in the social context of persuasive
technologies, Oyibo et al. [14] found that younger people are more likely to be persuaded by Social
Comparison as a persuasive strategy than older people. In sum, the finding that social features (such as
Competition, Cooperation, etc.) is a predictor of intention to use in the application domain is in line with
Oyibo et al.’s [35] finding in the behavior theory domain. Specifically, in the context of Social Cognitive
Theory, the authors found that Social Support (next to Self-Efficacy and Self-Regulation)—mapped to
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social features such as Competition, Cooperation, etc.,—was a significant driver of physical activity
behavior among people living in an individualist culture.

5.3. Design Guidelines

Based on our key findings summarized in Table 7, we recommend a number of persuasive
technology design guidelines. In Figure 5 and Table 6, we found that Goal-Setting/Self-Monitoring,
regardless of gender and age, is the strongest and most consistent predictor of the intention to use a
fitness app aimed to motivate behavior change. Given this finding, among the persuasive features
we investigated, we recommend that, in a one-size-fits-all fitness app, regardless of gender and age,
Goal-Setting/Self-Monitoring should be given priority as an essential persuasive strategy for motivating
behavior change in the physical activity domain. Due to its importance and effectiveness, many
health apps (e.g., Houston [11], UbiFit [48], etc.) often employ Goal-Setting/Self-Monitoring as a key
persuasive feature to motivate and drive physical activity behavior. Specifically, research has shown
that Goal-Setting as a persuasive strategy, complemented by Self-Monitoring, will be more effective in
motivating behavior change if set goals are “SMART” (Specific, Measurable, Attainable, Relevant, and
Time-bound) [18]. Moreover, to increase the effectiveness of the Goal-Setting/Self-Monitoring feature
in fitness apps, we recommend that the Reward feature be employed to motivate behavior change
alongside Goal-Setting/Self-Monitoring. Research shows that users are more likely to meet their goals
if their accomplishments are rewarded, especially immediately. According to Oyibo et al. [5], Reward
has “the tendency to provide an immediate reinforcement and present users something to work for since it is
often difficult to visualize the short-term benefit of most behavior” (p. 40). Prior research [14] has shown that
people living in individualist culture are receptive to Reward as a persuasive strategy for motivating
behavior change.

Apart from the personal features, we recommend that, among the social features we investigated,
Competition and Cooperation should be employed to motivate our target audience (mostly
individualists) to engage in physical activity behavior. Competition can be implemented with
the aid of leaderboards, while Cooperation can be implemented in a way that allows users to work
together in groups of two or more to set a collective goal and earn a joint reward upon achieving
their goal. While Competition fosters intrinsic motivation [1], Cooperation has the potential of
fostering a sense of accountability among collaborative users. Specifically, P158 commented thus about
Cooperation, “Having someone to help keep you accountable is always a good motivator.” Therefore, based on
all of the findings, we suggest that, among people living in individualist cultures, to motivate behavior
change in the fitness domain at the personal level, Goal-Setting, Self-Monitoring, and Reward should
be employed. Moreover, at the social level, in addition to the personal features (the basic features of a
fitness app [11]), Competition and Cooperation should be employed to motivate the behavior change
of socially oriented individuals.

5.4. Summary of Main Findings and Contributions

In summary, we present the key findings of our investigation in the light of our research questions
as follows:

1. Goal-Setting/Self-Monitoring feature is the strongest predictor of the intention to use a fitness
app among people living/residing in individualist countries such as Canada and United States,
followed by Reward, Competition and Cooperation.

2. Cooperation feature is more likely to motivate females to use a fitness app than males.
3. Goal-Setting/Self-Monitoring feature is more likely to motivate older people to use a fitness app

than younger people.
4. Social Comparison feature is likely to motivate younger people to use a fitness app, but likely to

demotivate older people.
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Our main contribution to knowledge is as follows. First, our study is the first to demonstrate
using a PLSPM approach that Goal-Setting/Self-Monitoring is the strongest driver of the intention to use
a fitness app, regardless of gender and age. Second, in a prior study in the behavior theory domain,
Oyibo et al. [35] found that, among individualist members, Perceived Self-Efficacy and Perceived
Self-Regulation (mapped to Goal-Setting and Self-Monitoring) are the strongest drivers of physical
activity. The authors also found that both social-cognitive determinants are stronger than Social
Support (mapped to Competition, Cooperation, Social Comparison, etc.) for the individualist
culture. In furtherance of research in the application domain, the current study showed that
Goal-Setting/Self-Monitoring is the strongest driver of the intention to use a fitness app among
members of the individualist culture. Moreover, we found that Competition and Cooperation are
significant drivers of the intention to use a fitness app as well. Just as in the behavior theory domain,
in the application domain, we found that Goal-Setting/Self-Monitoring is a stronger predictor of a
fitness app’s use than Competition and Cooperation among people living/residing in individualist
cultures. These findings lay the groundwork for investigating in a field setting in the future whether
Goal-Setting/Self-Monitoring will be more effective in motivating the physical activity behavior of
individualist users than social features such as Competition and Cooperation.

5.5. Limitations

Our study has a number of limitations. The first limitation of our study is that it is not based on
an actual fitness app. Rather, it is based on a prototyped fitness app, storyboards and users’ intention
to use a fitness app, the last of which does not imply the actual usage behavior. Thus, our findings may
not generalize to an actual setting, in which a real-life application, equipped with the investigated
features is used by the study participants to motivate their physical activity. The second limitation of
our study is that most of the participants that took part in the study are citizens/residents of Canada
and United States. This may threaten the generalizability of our findings to other populations outside
Canada and United States. Therefore, in our future work, we intend to address these limitations by
investigating the relationships between users’ receptiveness to the investigated persuasive features
and their intention to use a fitness app among non-Canadian/Americans or people residing in Canada
and United States.

6. Conclusions

We have presented a path model to investigate the relationship between users’ receptiveness to
persuasive features and their intention to use a fitness app. The persuasive features were illustrated
on storyboards as a case study. We found that Goal-Setting/Self-Monitoring is the strongest predictor
of the intention to use a fitness app, followed by Reward, Competition and Cooperation. Based on
our findings, we recommended that in a minimally viable fitness app, especially for users from
individualist cultures, Goal-Setting/Self-Monitoring should be given priority to make the app appeal
to a wider audience, especially to older people who are more motivated to use the fitness app based
on this feature. In addition, in a personal setting, Reward should be supported by the fitness app.
Moreover, at a social level, in addition to the personal features of Goal-Setting/Self-Monitoring and
Reward, Competition, followed by Cooperation, should be supported. Comparatively, our results
showed that the Cooperation feature is more likely to motivate females to use a fitness app than males.
Moreover, Social Comparison is likely to motivate younger people to use a fitness app, but demotivate
older people. As a result, Social Comparison should only be implemented in fitness apps targeted at
younger people. In future research efforts, we look forward to investigating the generalizability of our
findings to other populations outside Canada and United States.
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