
Multimodal Technologies
and Interaction

Article

Unsupervised Keyphrase Extraction for Web Pages

Tim Haarman 1,2,*, Bastiaan Zijlema 2 and Marco Wiering 1,*
1 Bernoulli Institute, Department of Artificial Intelligence, University of Groningen, PO Box 407,

9700 AK Groningen, The Netherlands
2 Dataprovider.com, Helperpark 292, 9723 ZA Groningen, The Netherlands
* Correspondence: t.r.haarman@gmail.com (T.H.); m.a.wiering@rug.nl (M.W.)

Received: 28 June 2019; Accepted: 26 July 2019; Published: 31 July 2019
����������
�������

Abstract: Keyphrase extraction is an important part of natural language processing (NLP) research,
although little research is done in the domain of web pages. The World Wide Web contains billions
of pages that are potentially interesting for various NLP tasks, yet it remains largely untouched in
scientific research. Current research is often only applied to clean corpora such as abstracts and
articles from academic journals or sets of scraped texts from a single domain. However, textual
data from web pages differ from normal text documents, as it is structured using HTML elements
and often consists of many small fragments. These elements are furthermore used in a highly
inconsistent manner and are likely to contain noise. We evaluated the keyphrases extracted by several
state-of-the-art extraction methods and found that they did not transfer well to web pages. We
therefore propose WebEmbedRank, an adaptation of a recently proposed extraction method that can
make use of structural information in web pages in a robust manner. We compared this novel method
to other baselines and state-of-the-art methods using a manually annotated dataset and found that
WebEmbedRank achieved significant improvements over existing extraction methods on web pages.

Keywords: unsupervised keyphrase extraction; sequence embeddings; web pages; WebEmbedRank

1. Introduction

Keyphrases are short phrases of one or more words that exemplify a particular document.
Automatically generating fitting keyphrases for documents is an important task, as it can be used to
index and categorize large corpora of documents. This can in turn enable various applications, such as
fast and accurate searching through large collections of documents. The World Wide Web is one of the
domains wherein effective keyphrase generation could be highly relevant, as its size and inconsistent
nature makes accurate indexation difficult. It is also one of the largest sources of publicly available
textual data, with estimates of the size of the indexed web ranging up to 50 billion pages [1]. Despite
its size, sets of web pages are infrequently used in natural language processing (NLP) tasks such as
keyphrase extraction.

One important factor that differentiates web pages from more commonly used sources like
scientific articles or news reports is the presence of structural information in the form of HTML
elements. The extra information that these elements provide can be used to determine the most
relevant keyphrases on the page. For instance, phrases found in the title of a web page are intuitively
more likely to be relevant than phrases taken from a paragraph at the bottom of a page. An initial
method to retrieve useful terms could therefore be to extract phrases from the title. Although this seems
like an effective strategy, it has been found that more than one third of web pages have a title that is not
relevant [2]. This includes titles that contain a placeholder, irrelevant or generic terms, or are empty
or not even specified to begin with. Making assumptions based on the positional information alone
can therefore lead to poor keyphrase extraction, as these data are not consistently available or reliable.
This illustrates the difficulty that the inconsistency of web pages poses for keyphrase extraction.

Multimodal Technologies and Interact. 2019, 3, 58; doi:10.3390/mti3030058 www.mdpi.com/journal/mti

http://www.mdpi.com/journal/mti
http://www.mdpi.com
https://orcid.org/0000-0003-4331-7537
http://www.mdpi.com/2414-4088/3/3/58?type=check_update&version=1
http://dx.doi.org/10.3390/mti3030058
http://www.mdpi.com/journal/mti

Multimodal Technologies and Interact. 2019, 3, 58 2 of 12

To avoid this inconsistency, most research on keyphrase extraction is applied to clean documents
with a predetermined structure, such as journal papers and abstracts [3–5]. Research that does use
web content mostly uses data from specific web pages with a known structure for each page, like news
articles scraped from a single domain [6,7]. This is not representative for the web as a whole, and it is
questionable how well the methods from these studies transfer to a noisy and inconsistent domain like
that of the World Wide Web.

The majority of the state-of-the-art methods for unsupervised keyphrase extraction are
graph-based ranking methods [8]. These methods formalize a document as a graph, often representing
the words as the vertices with edges based on the co-occurrence frequencies between words.
The vertices are ranked using a graph-based ranking algorithm like PageRank [9]. Phrases of
multiple words are generally reconstructed after the ranking process. While graph-based methods
make use of statistical information, such as the word co-occurrence frequencies, the semantics of
words are not explicitly taken into account. Recently, a new keyphrase extraction method called
EmbedRank was proposed that moved away from graph-based methods [5]. EmbedRank achieved
state-of-the-art results on multiple benchmarks using pre-trained text embeddings to find relevant
candidates. The usage of text embeddings allowed EmbedRank to rank candidate phrases based on
their semantic similarity to the document, instead of their relation to other words in the document alone.

In this paper, we propose WebEmbedRank, a weighted adaptation of EmbedRank suited for
keyphrase extraction from web pages. By incorporating a bias towards more important hypertext
elements in the EmbedRank implementation, WebEmbedRank utilizes the structural information
present in hypertext documents while remaining robust against noise. Furthermore, we investigated
how well several state-of-the-art keyphrase extraction methods transferred to web documents from
multiple sources, and found that most methods performed poorly when web pages are treated like
standard text documents.

The paper is structured as follows. In Section 2, we give a brief overview of the field of
unsupervised keyphrase extraction and web-related NLP tasks. The WebEmbedRank method is
described in Section 3, followed by an explanation of how the method was implemented and evaluated
in Section 4. We present our results and findings in Section 5 and conduct a final discussion in Section 6.

2. Related Work

In general, keyphrase extraction can be divided into supervised and unsupervised methods.
The supervised field usually treats keyphrase extraction as a binary classification problem, where a
set of candidate phrases are classified as either a keyphrase or a non-keyphrase [8]. An example of
this is the research by Yih et al., who proposed a supervised approach to extract keyphrases from
web pages [10]. Their system classified keyphrases based on several features in order to show more
relevant advertisements to the user, using a manually annotated dataset as training data. They found
multiple features that contributed to the classification, such as the location of a phrase in the document,
statistical features based on the term and document frequencies, and query log information. Though a
supervised approach can be effective, it requires a large set of annotated data, which is very laborious
to construct and as far as we know there is no suitable large dataset for this task openly available.
Additionally, the World Wide Web spans many different languages. Extending a supervised system
to another language often requires re-annotating and retraining new classifiers for each language.
Considering this, we focused on unsupervised extraction methods that can extract keyphrases based
solely on the information available on the web page.

2.1. Hypertext Documents

Although previous research on unsupervised keyphrase extraction from web pages is limited, it
has repeatedly been shown that the HTML element in which a word or phrase appears correlates with
its relevance for the topic of a page [11–13]. Thomaidou and Vazirgiannis proposed an unsupervised
keyphrase recommendation system for web pages that used hypertext location information [14].

Multimodal Technologies and Interact. 2019, 3, 58 3 of 12

Their extraction method calculated a relevance score for each phrase, which was based on word
frequency information and an additional weighting scheme considering the element it was extracted
from. They based the weighting factors on the locations web page designers place the most important
information on websites, although they provide no further justification for the exact values they chose.

This knowledge has furthermore been used in other NLP tasks using hypertext documents, such
as classification. Riboni introduced a method they referred to as the Structure-oriented Weighting
Technique (SWT) for web page classification [15]. The idea behind this weighting was to assign higher
weights to texts in elements that were more suitable to represent a web page, such as the title and
meta description. Their results showed higher classification performance when the extra weights
were applied, indicating that the title and meta description may contain more important terms than
the rest of the page. Similar to this, Kwon and Lee divided elements into three groups of varying
significance [16]. The highest weighted group contained elements such as the title, meta description
and headings. These weighting factors were used in combination with a k-nearest neighbor classifier
to effectively assign web pages to several categories.

This notion that the relevance of phrases may be tied to their location in the hypertext can be
used in the selection of keyphrases. By preferring phrases from elements that have a tendency to
be more descriptive for the content on a web page, we can potentially improve the quality of the
selected keyphrases.

2.2. Graph-Based Ranking

Most state-of-the-art unsupervised keyphrase extraction methods are graph based, many of which
are based on the PageRank algorithm [9] that was originally used by Google to rank websites. In this
ranking system, a directional graph is created wherein web pages are represented as vertices and the
connections are determined by the in and outgoing links. The PageRank algorithm is then iteratively
applied to rank each vertex. This method was first adapted to be used for keyphrase extraction by
Mihalcea and Tarau, who proposed the TextRank method [4]. In TextRank, an undirected graph
is constructed to represent documents where the vertices are all the unique words. The edges are
determined by passing a window of a fixed size over the text, creating undirected edges between the
vertices of all words that occur in the same window. A weighted version of the PageRank algorithm
is used to rank each vertex, after which the words are selected from the highest scoring vertices and
reassembled into phrases by combining high-scoring adjacent words.

Several methods have since been proposed that built and improved on the TextRank method.
Wan and Xiao proposed Singlerank [17], which is a slight adaptation of the original TextRank.
It weights the edges based on the co-occurrence frequency of the words that correspond to their
vertices. This ensures that words that occur together more frequently in the document are given a
higher weight. Additionally, they proposed to construct phrases by filtering for noun phrases, and
scoring the phrases by summing the scores of individual words to obtain a score for the phrase.
While this method showed increased scores over TextRank, Bougouin et al. suggested that there is
no justification for this scoring method [6]. They additionally argued that summing the individual
scores to obtain phrase scores leads to longer phrases getting higher scores, even when some of the
words in the phrase are irrelevant. To solve this, Bougouin et al. proposed TopicRank. In TopicRank,
phrases are first clustered into topics based on their similarity. The authors suggested placing two
phrases into the same cluster if at least 25% of their words overlap. TextRank’s ranking model is then
applied to a complete graph where the vertices are the topics, in order to assign a score to each cluster.
The keyphrases are selected by taking only the most representative candidate from each topic cluster,
starting with the cluster that got the highest score. This clustering attempts to avoid overgeneration of
similar keywords, however it can not effectively deal with synonyms that are semantically similar, but
not syntactically.

Recently, Boudin proposed a variation of TopicRank using multipartite graphs [7], which is
commonly referred to as MultipartiteRank. Arguing that a downside of TopicRank is that all phrases

Multimodal Technologies and Interact. 2019, 3, 58 4 of 12

in a single topic are seen as equally important, they proposed to model the topics in a multipartite
graph where the vertices are the words and the partitions the topics. This modification allowed the
graph to model the relations between all words while still being able to represent the different clusters.
They also added an additional weighting step, where the edges between words that first occurred early
on in the text were given a higher weight. The idea of including a weighting procedure to increase
the influence of earlier words was not new, and was earlier used by Florescu and Caragea in the
PositionRank method [3]. PositionRank introduced a positional bias to TextRank’s ranking procedure
to favor words at the start of the document and showed that this significantly improved the quality of
the extracted keyphrases.

2.3. Embedding-Based Ranking

Ever since the introduction of Word2Vec in 2013 [18], word embeddings have been adopted on a
large scale in a variety of NLP tasks. Before the popularity of word embeddings, words were often
represented as large one-hot encoded vectors. In this encoding method words are represented as
vectors with a separate dimension for each unique word, where only the dimension that corresponds to
the word is set to 1. With large corpora of text, this can result in very high-dimensional and sparse word
representations. Word embedding methods map these one-hot encoded vectors to a low-dimensional
continuous vector space. Most recent word embedding techniques are based on neural networks that
are trained to perform language modelling tasks [19]. In such tasks, a model is trained to predict the
words that surround a given target word. Because of this, the model has to learn how context words
affect the meaning of the sentence. The resulting vector space model containing the word embeddings
can therefore represent the relations and semantic similarities between words. Since the introduction
of Word2Vec, various other embedding methods have been introduced, including methods to create
embeddings for sequences of texts like Doc2Vec [20] and Sent2Vec [21].

With the increase of text embedding techniques, new possibilities also emerged for keyphrase
extraction. Using the semantic representation of text in the form of vectors can be very helpful in
determining whether a word is relevant to a document. Recently, Bennani-Smires et al. proposed a new
method called EmbedRank that improved on the state-of-the-art of unsupervised keyphrase extraction
using word sequence embeddings [5]. They introduced a relatively simple yet effective algorithm that
extracts phrases based only on the document itself and pre-trained sequence embeddings, requiring
no corpus. Similar to most other methods, EmbedRank starts with selecting candidate phrases. After
tokenizing all text in the document, part-of-speech (POS) tags are assigned to each token. Only
phrases that consist of one or more nouns and any adjectives that directly precede them are considered
candidates. The candidates are then ranked based on their similarity with the document as a whole.
To find this similarity, sequence embeddings of all the candidates and one of the complete document
are made. Bennani-Smires et al. compared the aforementioned Doc2Vec and Sent2Vec to create
these embeddings, and found that overall Sent2Vec had a higher accuracy while also being faster.
The similarity between each candidate embedding and the general document embedding is then
calculated using the cosine similarity between the candidate and document embedding vectors. The
final keyphrases are determined by selecting the candidates with the highest similarity to the document
as a whole. This ensures that keyphrases were selected based on the meaning of a phrase, rather than
term frequency or context related statistics from the document alone.

The authors of EmbedRank furthermore proposed a second version they named EmbedRank++,
which adds a diversity mechanism to decrease the amount of semantically equivalent keyphrases
being chosen. This diversity mechanism is an adapted version of the Maximal Marginal Relevance
(MMR) metric, which weighs diversity against similarity. It does this by taking into account the
cosine similarities between all the candidate embeddings. A parameter λ is used to determine the
balance between the relevance (similarity with the document) and the diversity (similarity with other
candidates). This parameter can range between 0 and 1, where a higher value indicates an increased
importance of the relevance versus the diversity, and vice versa. With a balanced value for λ, candidates

Multimodal Technologies and Interact. 2019, 3, 58 5 of 12

that are too similar to other candidates but not as relevant are excluded. Although this version scored
lower on their evaluation set, they also showed the results of a pilot user study that suggested that
users overall preferred the sets of phrases with diversity.

3. WebEmbedRank

While the EmbedRank method has been shown to be capable of extracting state-of-the art
keyphrases, it does not use the positional information from the text. In the original proposal,
the method is implemented for extracting keyphrases from scientific documents and news articles.
As documents from these domains consist of a single segment of continuous text, there is limited
structural information available. When web pages are treated in the same way, valuable structural
information from the hypertext is ignored. To effectively make use of this information, we propose
WebEmbedRank, an extension to the EmbedRank algorithm that adds an extra weighting scheme to
allow it to take advantage of the extra structural information present in web pages.

WebEmbedRank works similar to EmbedRank, in that this method calculates the cosine distance
between a document embedding and the candidate embeddings. Both the candidate and document
embeddings were calculated using Sent2vec [21], as Bennani-Smires et al. have shown that it generally
worked better and faster than Doc2vec [5]. We slightly altered the way the document embedding was
calculated to deal with the highly varying length of text on web pages. Instead of basing the document
embedding on all candidates, which can sometimes be scarce, we based it on all text on the page after
stop-word removal. The stop-words were removed, as these yield no semantic value and therefore
only add noise to the embedding. While lexical items other than adjectives and nouns may generally
not make the best keyphrases, they can contribute to the overall meaning of the page, and we found
that using all text improved the performance of WebEmbedRank on our evaluation set.

As the resulting cosine similarity scores can be negative, the similarity scores for all candidates
are normalized between 0 and 1 before the weighting. The bonus weight is determined based on the
elements a phrase occurs in. As a phrase that appears in multiple key elements is likely to be more
important than one that only occurs in one, we propose a cumulative weighting system. This entails
that, for each candidate phrase, the bonus weight is determined as the sum of all weights of the
elements the phrase occurs in. Earlier work has shown that the hostname can be a strong descriptor
for a web page [22,23], and often consists of the most relevant words for the page such as the brand
name, or the main product or service it provides. We therefore included a weight to increase the score
for terms that occurred in the hostname. We also included a small penalty for long phrases. As the
document embedding is essentially a mean of the word vectors in the documents, a phrase embedding
has a tendency to move more towards the mean of all word vectors as the number of words in the
phrase increases. For this reason, we noticed that EmbedRank had a tendency to generate many long
phrases, which may also have been a cause for the lack of diversity described in the EmbedRank
paper [5]. By adding a slight penalty to long phrases, we bias the ranking by preferring shorter phrases,
while still allowing longer phrases to be selected if the added words significantly contribute to the
relevance of the phrase. The proposed weights were determined based on an exhaustive grid search
on our manually annotated dataset, and can be found in Table 1. To illustrate how this bonus weight is
calculated, consider a phrase that consists of two words and appears in the title and the description,
but not in hostname or headings. In this case, the bonus weight is 1.5 + 0.5− 0.25× (2− 1) = 1.75.
The scoring S(pi) is calculated as follows, where sim(pi, d) is the cosine similarity between a candidate
phrase embedding pi ∈ P and the document embedding d, and wi the bonus weight corresponding
to pi:

s̃im(pi, d) =
sim(pi, d)−min

pj∈P
sim(pj, d)

max
pj∈P

sim(pj, d)−min
pj∈P

sim(pj, d)
, (1)

S(pi) = (1 + wi)× s̃im(pi, d). (2)

Multimodal Technologies and Interact. 2019, 3, 58 6 of 12

Table 1. The bonus weighting scheme for candidate phrases using WebEmbedRank. n is the number of
words in the phrase.

Element Weight

Hostname 4
Title 1.5

Headings 1
Description 0.5

Others 0
Multi-word penalty −0.25 × (n− 1)

This scoring method allows a candidate phrase that is semantically similar to the complete
document to get a significant boost in the ranking if it appears in a key location. At the same
time, phrases that are highly dissimilar to the document will get a cosine similarity score closer to
zero, making the bonus multiplier much less effective. This ensures that semantically representative
keyphrases in good locations will get a high rank, while still being robust against irrelevant words
that are placed in the important HTML elements. For completeness, we also evaluated a variant of the
WebEmbedRank method with the MMR diversity mechanism from EmbedRank++ as explained in
Section 2.3, which we refer to as WebEmbedRank++. In this case, the MMR filtering is applied using
the relevance scores as computed in Equation (2).

By combining both a priori knowledge about the importance of specific elements and recently
developed text sequence embedding methods, we aim to provide a new method that combines the
best of both worlds. WebEmbedRank uses semantic information from the complete web page, and is
strengthened with structural information where available. This combination makes it more robust to
the inconsistent nature of web pages, where it can not be assumed that any of the elements are always
present. Figure 1 shows an example of this, illustrating the keyphrases extracted by WebEmbedRank
from the homepage of the University of Groningen along with the text from the bonus elements. Most
selected keyphrases appear often in the bonus elements, but not all phrases in those elements are given
high scores. Similarly, the word ‘Faculty’ only appeared on the bottom of the page (not pictured) and
not in any of the HTML elements that provide a bonus weight, but still got extracted due to its high
similarity to the document.

Figure 1. Top-10 keyphrases as extracted by WebEmbedRank from www.rug.nl, along with the parsed
text from the important HTML elements. The keyphrases are marked in red.

www.rug.nl

Multimodal Technologies and Interact. 2019, 3, 58 7 of 12

4. Materials and Methods

4.1. Text Extraction and Preprocessing

In order to rank phrases from a web page, the page first has to be parsed to extract all relevant
text. This parsing of raw HTML-code was done using the BeautifulSoup (https://www.crummy.com/
software/BeautifulSoup/) Python package. A potential problem with extracting text from HTML is
that some elements are used to stylize words in sentences, or even parts of words. To illustrate this,
consider the following snippet of HTML code:

<div>
Joe’s Restaurant
</div>.

In this case, the text ‘Joe’s Restaurant’ should be extracted, though using all elements as sentence
separators results in this small text fragment being separated into four words. This happens because
the bold element is not used as a structural, but as a styling element. Therefore, all elements
that were considered style elements were ignored, moving their content directly into the parent node.
Furthermore, elements that did not display their content when the page was rendered were removed.
As an example, the script element is normally filled with code that is executed when the page is
rendered, and does not contain any relevant text. All content within these elements was therefore not
considered. Two notable exceptions to this were the title and the description, which are often in the
invisible head and meta elements, as these do tend to contain text relevant to the page and company.
The complete document was constructed in a hierarchical fashion, starting with the title, followed by
the description, headings and finally the rest of the elements. The content from the rest of the elements
were placed in order of appearance in the HTML code.

In order to do the weighting for WebEmbedRank, the elements as mentioned in Table 1 were
extracted and stored while parsing the page. The matching for assigning the bonus weights was done
using only complete words. This meant that, for example, the term ’day’ would not get a weight
increase when the word ’daycare’ was present in the title. Furthermore, before the weighting the
hostname was stripped of the protocol specifier and the ‘www.’ (e.g., ‘http://www.’), and the top-level
domain (e.g., ‘.co.uk’). To check whether a multi-word phrase was present in the hostname, the words
from the candidate phrase were concatenated before matching.

4.2. Evaluation

In order to evaluate the quality of keyphrase extraction methods, there are several annotated
datasets available that are frequently used as benchmarks. Examples of these are the Inspec dataset
consisting of scientific abstracts [24], the keyphrase extraction part of the SemEval dataset on scientific
papers [25], and the set of news articles made by Marujo et al. [26]. However, as WebEmbedRank was
specifically designed for web pages, these commonly used datasets can not be used for the evaluation.
As far as we know, there are no comparable benchmarks publicly available for web pages. Given this
lack of gold-standard datasets, we created our own. To select a set of web pages that was representative
of the content on the Web, we used Dataprovider.com’s database of domains, which contains over
250 million indexed hostnames. From this database, 105 hostnames were randomly selected, using
some filters to improve the quality of the data. These filters constrained the data to web pages where
English was detected as the main language, as our tokenizer and embedding model were trained
on English texts. We furthermore included the constraints that the homepage still had to be online,
was not a placeholder or parked domain, and contained at least some text. The resulting dataset
consisted mostly of company web pages, but also included blogs and pages of local communities.
Three annotators were asked to annotate this set by going to each web page, and to write down the
keyphrases they thought best described the web page. They were given three main guidelines:

https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/

Multimodal Technologies and Interact. 2019, 3, 58 8 of 12

• Keyphrases must be present on the homepage (text in title or meta description is also allowed).
• Keyphrases consist of at least 1 and at most 5 words.
• Choose at least 3 and at most 8 keyphrases per page.

Two of the websites were further rejected for not containing enough content, leaving a final of
103 annotated web pages. Similar to [5,8], the union of the three sets of keyphrases for each web page
was used for the evaluation. The final combined dataset contained an average of 10.02 keyphrases
per document, while each annotator assigned on average 5.19 keywords per document. The amount
of text on the web pages after parsing the HTML varied between 38 to 4244 words, with an average
of 519 words. After filtering out phrases that did not fit the part-of-speech criterion, the number of
candidate keyphrases per page ranged from 29 to 808, averaging 174 candidates. To detect wrong or
misspelled annotations, all annotations that were not in the extracted text from the page were removed.
The text extraction and preprocessing were performed only once, after which all parsed content was
stored in page snapshots. This ensured that all methods were evaluated using identical web pages
as input. To avoid copyright infringement, we can not share the exact snapshots of the web pages
used for the evaluation; however, we published (https://gitlab.com/Tim-Haarman/WebEmbedRank)
the set of annotations in the hope that other researchers can use this for their experiments, and can
hopefully extend it.

4.3. Comparison

To evaluate the performance of our keyphrase extraction method, we compared it to several
baselines and state-of-the-art extraction methods. Similar to earlier research [3,4,7,24], the methods
were evaluated based on their precision, recall and F1 score with respect to the web page annotations.
In the matching of the keyphrases, we only accepted exact matches of the complete phrase. We will
briefly describe the evaluated methods.

The first method was the term frequency-inverse document frequency (TF-IDF) [27], a frequently
used and robust baseline that uses frequency information from a corpus to determine the relevance of
one or more words. TF-IDF works based on the idea that words that are relevant for a document occur
frequently in that document, yet infrequently in other documents from a large corpus. It consists of
two parts, being the term frequency and the inverse document frequency. By multiplying the frequency
of the word in a document by an inverse of how frequently it appears in other documents, a relative
frequency score is calculated. The top keyphrases were selected by taking the phrases with the highest
TF-IDF scores.

The Location method was a simple heuristic baseline that was based on the aforementioned
theory that certain HTML elements have varying levels of relevance. It applied a part-of-speech
(POS) tagger to all texts, and selected all the longest chains of zero or more adjectives followed by
one or more nouns as candidates. The candidates were ranked based on which HTML element they
appeared in. This hierarchical ranking method ranked candidates that occurred in the hostname (URL)
the highest, followed by the title, headings, description, and all remaining elements respectively. If
multiple candidates were present in an element, they were ranked in the order of appearance in the
original HTML code.

We further compared WebEmbedRank and WebEmbedRank++ to four state-of-the-art graph
based models as described in Section 2, being TextRank [4], TopicRank [6], PositionRank [3] and
MultipartiteRank [7]. TextRank, TopicRank, PositionRank and MultipartiteRank were implemented
using the Python keyphrase extraction (PKE) toolkit [28]. Lastly, we also compared it to the
original implementation of EmbedRank [5], using both the standard version (EmbedRank) and the
version with diversity mechanism (EmbedRank++), each using Sent2vec as embedding method.
EmbedRank and EmbedRank++ were tested using the original implementation of the authors:
(https://github.com/swisscom/ai-research-keyphrase-extraction). For all methods we used the
versions and parameters as suggested by the authors. Similar to [5], we used λ = 0.5 for EmbedRank++
and WebEmbedRank++, indicating an equal importance of the relevance and diversity of the candidate

https://gitlab.com/Tim-Haarman/WebEmbedRank
https://github.com/swisscom/ai-research-keyphrase-extraction

Multimodal Technologies and Interact. 2019, 3, 58 9 of 12

phrases. The tokenization and POS-tagging was performed using the Stanford CoreNLP toolkit [29]
for all methods.

5. Results

As shown in Table 2, WebEmbedRank outperformed all other methods, achieving the highest
precision, recall and F1 score for both the top 5 as well as the top 10 ranked keyphrases. For N = 5,
paired t-tests showed significant improvements at α = 0.05 of WebEmbedRank over TF-IDF, TextRank,
TopicRank, PositionRank, MultipartiteRank, EmbedRank and EmbedRank++, all at p < 0.001. The
increase over WebEmbedRank++ (p = 0.12) and Location (p = 0.08) were not found to be significant.
For N = 10, paired t-tests showed a significant increase for WebEmbedRank at α = 0.05 over all
other methods at p < 0.001 for all tests. Surprisingly, the simple location based heuristic got the
second highest scores. This indicates the importance of considering the hypertext markup in the
extraction process. Even the TF-IDF method scores on par or even better than most other state-of-the
art methods. The low scores of most of these extraction methods relative to the baselines may suggest
that these methods transition poorly from normal documents to the noisy and inconsistent structure of
web pages.

Table 2. Scores of WebEmbedRank compared to various other state-of-the-art keyphrase extraction
methods on the newly constructed web page dataset for the top 5 and top 10 extracted phrases.
P denotes the precision, R the recall and F1 the micro-F1 score. The highest scores are marked in bold.

N = 5 N = 10

Method P R F1 P R F1

TF-IDF 30.49 16.20 20.78 20.97 21.81 21.00
Location 40.00 21.11 27.09 29.42 30.13 29.29
TextRank 15.73 8.37 10.74 14.94 15.54 14.98
TopicRank 29.51 15.47 19.92 22.04 22.86 22.01
PositionRank 24.85 13.43 17.14 21.36 22.61 21.57
MultipartiteRank 32.82 17.24 22.22 24.47 25.47 24.50
EmbedRank 11.84 6.53 8.24 16.02 17.06 16.22
EmbedRank++ (λ = 0.5) 11.07 5.63 7.34 10.10 10.54 10.09
WebEmbedRank 43.69 23.37 29.94 34.56 36.41 34.81
WebEmbedRank++ (λ = 0.5) 41.36 22.10 28.27 25.83 26.86 25.82

The lowest scores in both tests are from the original EmbedRank and EmbedRank++ methods.
By inspecting the generated keyphrases, we found that this may partially have been due to its
tendency to generate long keyphrases, as explained in Section 3. The phrases extracted by these
methods contained on average 2.43 and 2.13 words, respectively, compared to an average 1.51 words
for WebEmbedRank and 1.61 words for the annotated phrases in the gold-standard evaluation set.
We observed the same problem with PositionRank, which extracted phrases averaging 2.36 words. As
PositionRank constructs phrases by summing the scores of the individual words, a strong bias towards
long phrases is created, even when some of the words do not contribute much to the overall score.
In the evaluation of the original proposal [3], this problem is largely avoided by limiting the keyphrase
generation to at most tri-grams; however, it can be argued that such a hard cut-off is undesirable.

From the state-of-the-art models, MultipartiteRank achieved the highest F1 scores. This may
partially be attributed to the positional component in this method. As the documents were constructed
hierarchically, the phrases from the more important elements were effectively given a higher weight,
as these were placed at the beginning of the document. Unlike PositionRank, which also incorporates
a positional score but got lower scores, MultipartiteRank did not suffer from generating too lengthy
keyphrases. The extracted phrases contained on average approximately 1.61 phrases, almost identical
to the annotated set.

Multimodal Technologies and Interact. 2019, 3, 58 10 of 12

Finally, the EmbedRank++ and WebEmbedRank++ versions with the diversity mechanism both
scored lower than their counterparts without diversity. Interestingly, the scores are closer for the top
5 keyphrases, going from 29.94 to 28.27 for WebEmbedRank and WebEmbedRank++ respectively.
Looking at the top 10 phrases the scores are much lower when the diversity method is enabled, with
an F1 score of 34.81 for WebEmbedRank and 25.82 for WebEmbedRank++. A similar effect can be seen
between EmbedRank and EmbedRank++.

6. Discussion

In this paper, we proposed WebEmbedRank, an extension of EmbedRank [5] for keyphrase
extraction from web pages. WebEmbedRank uses text embeddings to extract only the phrases that
are relevant to the document, and strengthens the ranking with a weighting procedure based on
the structural information in the document. By using the structural information where available to
strengthen the ranking process, but not solely relying on it, WebEmbedRank can effectively deal with
the inconsistency in web documents.

We furthermore showed that most state-of-the-art unsupervised keyphrase extraction methods
transfer poorly to web documents. Multiple methods had a tendency to extract very long phrases,
which may explain the lower scores. This might be due to the different nature of the data, as most
keyphrase extraction systems are evaluated on datasets of scientific abstracts and articles. These
documents often comprise multiple complex topics, which may require longer keyphrases to accurately
represent the document compared to web pages. To check this hypothesis, we analyzed the assigned
keyphrases in the training part of the Inspec [24] and SemEval 2010 [25] datasets, which are some of the
most frequently used datasets to evaluate unsupervised keyphrase extraction methods [8]. We found
that they respectively contained on average 2.33 and 2.16 words per phrase, which is substantially
more than the average of 1.61 in our web page dataset. This disparity can potentially explain why
some methods are more geared towards extracting longer phrases, and hence why their results are
poor when transferred to the present domain and evaluation set.

Similar to the results reported in [5], the diversity mechanism that EmbedRank++ and
WebEmbedRank++ employ did not increase the scores. However, we did notice a stronger relative
decrease of the F1 score at the top 10 keyphrases compared to the top 5 keyphrases. This may be
explained by the lack of relevant and sufficiently diverse keyphrases on a web page, as the aim and
topic of a web page tends to be quite specific. This is also shown by the fact that the annotators
assigned 5.2 keyphrases on average per web page, even though they could provide eight. Forcing
diversity during the generation of 10 keyphrases may result in irrelevant phrases being extracted when
there are only a few true main topics.

In this paper, we focused the weighting on what we perceived to be the most important elements,
being the hostname, title, headings and description. Earlier work has shown some indications that
other elements may also have positive or negative effects on the relevance of their contents, such as text
style elements (bold, italic, etc.) or anchor text [11,30]. Additionally, we could experiment with different
weights for the different sizes of headers (h1 to h6). We furthermore only focused on web pages with
English text. Given the unsupervised nature of WebEmbedRank, it is expected that this method can
be generalized to other languages relatively easily. The word embeddings can be trained in the same
way for different languages, as long as there is some large set of written text available in that language.
Given that the fastText method already provides pre-trained embedding models for 157 languages [31],
this is not expected to be a problem. Different languages will also require an automatic POS-tagger
trained for that language; however, the Stanford CoreNLP POS-tagger is available in most major
languages [29]. Whether the same rules about what constitutes a good keyphrase also apply to
different languages remains to be answered, which we will leave for future work.

Multimodal Technologies and Interact. 2019, 3, 58 11 of 12

Author Contributions: Conceptualization, T.H.; methodology, T.H., B.Z. and M.W.; software, T.H.; validation,
B.Z. and M.W.; formal analysis, T.H.; investigation, T.H.; resources, B.Z. and M.W.; data curation, T.H.;
writing—original draft preparation, T.H.; writing—review and editing, B.Z. and M.W.; visualization, T.H.;
supervision, B.Z. and M.W.; project administration, T.H., B.Z. and M.W.

Funding: This research received no external funding.

Acknowledgments: We thank the annotators for their help with constructing the evaluation set presented in this
research. We furthermore thank the anonymous reviewers for their helpful feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Van den Bosch, A.; Bogers, T.; De Kunder, M. Estimating search engine index size variability: A 9-year
longitudinal study. Scientometrics 2016, 107, 839–856. [CrossRef] [PubMed]

2. Hu, Y.; Xin, G.; Song, R.; Hu, G.; Shi, S.; Cao, Y.; Li, H. Title extraction from bodies of HTML documents
and its application to web page retrieval. In Proceedings of the 28th Annual International Acm Sigir
Conference on Research and Development in Information Retrieval, Salvador, Brazil, 15–19 August 2005;
pp. 250–257.

3. Florescu, C.; Caragea, C. PositionRank: An unsupervised approach to key-phrase extraction from scholarly
documents. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
Vancouver, BC, Canada, 30 July–4 August 2017; Volume 1, pp. 1105–1115.

4. Mihalcea, R.; Tarau, P. TextRank: Bringing Order into Text. In Proceedings of the 2004 Conference on
Empirical Methods in Natural Language Processing, Barcelona, Spain, 25–26 July 2004; Association for
Computational Linguistics: Barcelona, Spain, 2004; pp. 404–411.

5. Bennani-Smires, K.; Musat, C.; Hossmann, A.; Baeriswyl, M.; Jaggi, M. Simple Unsupervised Keyphrase
Extraction using Sentence Embeddings. In Proceedings of the 22nd Conference on Computational Natural
Language Learning, Brussels, Belgium, 31 October–1 November 2018; pp. 221–229.

6. Bougouin, A.; Boudin, F.; Daille, B. TopicRank: Graph-based topic ranking for keyphrase extraction.
In Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP), Nagoya,
Japan, 14–18 October 2013; pp. 543–551.

7. Boudin, F. Unsupervised Keyphrase Extraction with Multipartite Graphs. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Association for Computational Linguistics:
New Orleans, LA, USA, 2018; Volume 2, pp. 667–672. [CrossRef]

8. Hasan, K.S.; Ng, V. Automatic keyphrase extraction: A survey of the state of the art. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, MD, USA, 22–27 June
2014; Volume 1, pp. 1262–1273.

9. Brin, S.; Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst.
1998, 30, 107–117. [CrossRef]

10. Yih, W.T.; Goodman, J.; Carvalho, V.R. Finding advertising keywords on web pages. In Proceedings of the
15th International Conference on World Wide Web, Scotland, UK, 23–26 May 2006; pp. 213–222.

11. Choi, B.; Yao, Z. web page classification. In Foundations and Advances in Data Mining; Springer:
Heidelberg/Berlin, Germany, 2005; pp. 221–274.

12. Hammouda, K.M.; Kamel, M.S. Efficient phrase-based document indexing for web document clustering.
IEEE Trans. Knowl. Data Eng. 2004, 16, 1279–1296. [CrossRef]

13. Zhang, Y.Z.; Zincir-Heywood, N.; Milios, E. Summarizing web sites automatically. In Proceedings of the
Conference of the Canadian Society for Computational Studies of Intelligence, Halifax, NS, Canada, 11–13
June 2003; Springer: Heidelberg/Berlin, Germany, 2003; pp. 283–296.

14. Thomaidou, S.; Vazirgiannis, M. Multiword keyword recommendation system for online advertising.
In Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining,
Kaohsiung, Taiwan, 25–27 July 2011; pp. 423–427.

15. Riboni, D. Feature selection for web page classification. In Proceedings of the Workshop on Web Content
Mapping: A Challenge to ICT, Shiraz, Iran, 29–31 October 2002.

http://dx.doi.org/10.1007/s11192-016-1863-z
http://www.ncbi.nlm.nih.gov/pubmed/27122648
http://dx.doi.org/10.18653/v1/N18-2105
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1109/TKDE.2004.58

Multimodal Technologies and Interact. 2019, 3, 58 12 of 12

16. Kwon, O.W.; Lee, J.H. Text categorization based on k-nearest neighbor approach for web site classification.
Inf. Proc. Manag. 2003, 39, 25–44. [CrossRef]

17. Wan, X.; Xiao, J. Single Document Keyphrase Extraction Using Neighborhood Knowledge. In Proceedings
of the 23rd National Conference on Artificial Intelligence, Chicago, IL, USA, 13–17 July 2008; Volume 8,
pp. 855–860.

18. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and
phrases and their compositionality. In Proceedings of the 26th International Conference on Neural
Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119.

19. Almeida, F.; Xexéo, G. Word Embeddings: A Survey. arXiv 2019, arXiv:1901.09069. Available online:
https://arxiv.org/abs/1901.09069 (accessed on 25 June 2019).

20. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the
International conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1188–1196.

21. Pagliardini, M.; Gupta, P.; Jaggi, M. Unsupervised Learning of Sentence Embeddings using Compositional
n-Gram Features. In Proceedings of the NAACL 2018—Conference of the North American Chapter of the
Association for Computational Linguistics, New Orleans, LA, USA, 2–7 February 2018.

22. Kan, M.Y. web page classification without the web page. In Proceedings of the 13th International
World Wide Web Conference on Alternate Track Papers & Posters, New York, NY, USA, 19–21 May 2004;
pp. 262–263.

23. Kan, M.Y.; Thi, H.O.N. Fast webpage classification using URL features. In Proceedings of the 14th ACM
International Conference on Information and Knowledge Management, Bremen, Germany, 31 October–5
November 2005; pp. 325–326.

24. Hulth, A. Improved automatic keyword extraction given more linguistic knowledge. In Proceedings of
the 2003 Conference on Empirical Methods in Natural Language Processing, EMNLP 2003, Sapporo, Japan,
11–12 July 2003; pp. 216–223.

25. Kim, S.N.; Medelyan, O.; Kan, M.Y.; Baldwin, T. Semeval-2010 task 5: Automatic keyphrase extraction
from scientific articles. In Proceedings of the 5th International Workshop on Semantic Evaluation, Uppsala,
Sweden, 15–16 July 2010; pp. 21–26.

26. Marujo, L.; Gershman, A.; Carbonell, J.; Frederking, R.; Neto, J.P. Supervised topical key phrase extraction
of news stories using crowdsourcing, light filtering and co-reference normalization. In Proceedings of the
Eighth International Language Resources and Evaluation (LREC), Istanbul, Turkey, 21–27 May 2012.

27. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988,
24, 513–523. [CrossRef]

28. Boudin, F. PKE: An open source Python-based keyphrase extraction toolkit. In Proceedings of the 26th
International Conference on Computational Linguistics: System Demonstrations, Osaka, Japan, 11–16
December 2016; pp. 69–73.

29. Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.; McClosky, D. The Stanford CoreNLP natural
language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, Baltimore, MD, USA, 22–27 June 2014; pp. 55–60.

30. Craven, T.C. HTML tags as extraction cues for web page description construction. Inf. Sci. 2003, 6, 1–12.
[CrossRef]

31. Grave, E.; Bojanowski, P.; Gupta, P.; Joulin, A.; Mikolov, T. Learning Word Vectors for 157 Languages.
In Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, 7–12 May 2018.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0306-4573(02)00022-5
https://arxiv.org/abs/1901.09069
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.28945/509
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Hypertext Documents
	Graph-Based Ranking
	Embedding-Based Ranking

	WebEmbedRank
	Materials and Methods
	Text Extraction and Preprocessing
	Evaluation
	Comparison

	Results
	Discussion
	References

