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Abstract: Meeting minutes are useful, but creating meeting summaries are a time consuming task. 
Aiming at supporting such task, this paper proposes prediction models for important utterances 
that should be included in the meeting summary by using multimodal and multiparty features. We 
will tackle this issue from two approaches: Handcrafted feature models and deep neural network 
models. The best handcrafted feature model achieved 0.707 in F-measure, and the best deep-
learning based verbal and nonverbal model (V-NV model) achieved 0.827 in F-measure. Based on 
the V-NV model, we implemented a meeting browser, and conducted a user study. The results 
showed that the proposed meeting browser better contributes to the understanding of the content 
of the discussion and the participant roles in the discussion than the conventional text-based 
browser. 

Keywords: important utterances contributing to the meeting summary; meeting summarization; 
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1. Introduction 

Face-to-face meetings are a useful and effective way for a group of people to make decisions and 
create new ideas. To share what has been discussed and decided, we need to record the important 
points of a meeting in the form of minutes. For this purpose, we often create meeting minutes. 
However, writing such minutes is time-consuming and requires experience. Moreover, summarizing 
the discussion points while participating in the meeting increases the cognitive load on the 
participants. Therefore, automatic meeting summarization would allow us to remove the extra task 
of recording meeting minutes during or after a meeting. 

Some previous studies on automatic meeting summarization applied text summarization 
techniques to meeting transcriptions to extract important sentences for inclusion in meeting 
summaries [1–3]. Other studies applied a multimodal approach by combining prosodic information 
with the text features [2]. When a person is speaking at a high volume, this may be accompanied by 
larger bodily activity values. Such co-occurring behaviors may be perceived as salient and coherent 
characteristics of important utterances. This is not only the case for group meetings; many studies on 
multimodal interaction have asserted the usefulness of multimodal features [4,5]. Moreover, a group 
meeting involves multiparty communication, where social dynamics in group discussions are also 
important aspects to be considered in creating a summary. For example, utterances highly attended 
by others may be accepted by the group as an important idea or opinion. Therefore, a group meeting 
is a multimodal multiparty interaction, and thus, it is necessary to consider the co-occurrence of not 
only behaviors exhibited by a participant but also those taking place among the participants. 
However, few studies have considered the correlation or co-occurrence between different modalities 
among different participants. 

Based on the discussion above, this paper proposes prediction models for important utterances 
in group discussions using multimodal and multiparty features. We will tackle this task using two 
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approaches. The first approach is a traditional multimodal interaction analysis, where we first define 
a list of audio and visual features that are expected to be useful according to previous studies and 
choose useful features using a simple linear regression model or t-test. Multimodal and/or multiparty 
features can be defined by combining single modal features. In this approach, we can clearly discuss 
which features, and their combinations, are more predictive than others. We call these features hand-
crafted features. 

However, it is nontrivial to design hand-crafted features that can differentiate the important 
utterances of others. It takes time and effort to identify useful features from the many possible co-
occurring behaviors among speech, gestures, and facial expressions. Moreover, in multiparty 
conversations, it is necessary to consider the co-occurrence of not only behaviors exhibit by a 
participant but also those taking place between the participants. Therefore, it requires considerable 
effort to test all possible combinations of data stream from different modalities and different 
participants to identify useful multimodal features. 

Thus, reducing the cost and effort required for feature selection is one the most critical issues in 
multimodal interaction sensing. Deep learning is a promising approach in addressing this issue, and 
some successful feature learning algorithms have been proposed, such as RBM (Restricted Boltzmann 
machine) [6] and autoencoder [7–9]. In recent years, feature learning algorithms such as deep belief 
network (DBN) and Deep Boltzmann Machine (DBM) have been applied to the learning of 
multimodal features in emotion recognition [10]. A deep convolutional neural network (DCNN) [5] 
is another representative deep learning model, and it is known that convolutional layers in DCNN 
can learn discriminative feature representation from the raw input [11,12]. In a study of emotion 
recognition using multimodal data, Zang et al. [13] employed DCNN to automatically learn an audio-
visual feature representation from the raw audio and visual information. However, these approaches 
have not been applied to multimodal multiparty interactions. As a good challenge to applying deep 
learning to multimodal interaction, Nojavanasghari et al. [14] employed a deep neural network 
(DNN) to predict persuasiveness. They demonstrated a promising performance of the DNN, but 
some of the features were hand-crafted. 

In this study, we will create models using both approaches and compare the model 
performances. We will also discuss whether these two approaches have some common prediction 
features. Then, by applying the best performance model, we will build a discussion summarization 
and visualization system that shows whether the proposed model is more useful for the users to 
determine the social dynamics between the participants as well as the conversation content. 

Thus, this study addresses the following questions: 
• Are multimodal and multiparty features useful in predicting important utterances? 
• Which model performs best: Hand-crafted or deep learning? 
• Is the proposed model more suitable for selecting important utterances in visualizing the 

summary of group discussion videos? 
The remainder of this paper is organized as follows. In Section 2, we review previous studies of 

multiparty interactions, especially those covering text and meeting summarization. Section 3 explains 
the group meeting corpus that we use for our analysis. By employing two approaches, namely, hand-
crafted feature and deep learning, Section 4 proposes nonverbal models and Section 5 proposes 
verbal models. Then, in Section 6, first we evaluate the models created from these two approaches, 
then we fuse the best verbal model with the best nonverbal model for further improvement. In Section 
7, we present a multimodal meeting browser that incorporates the best performance model, and 
report the results of a user study. In Section 8, we discuss future directions. 

2. Related Work 

2.1. Multimodal Multiparty Corpus Studies 

In multimodal interaction studies, different types of group meeting corpora have been collected. 
The AMI Meeting corpus [15] was designed to collect group discussions in which each participant 
was assigned a different role and required to make decisions as a group in product design meetings. 
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The ISL corpus [16] collected audio and transcriptions of over 100 meetings with different scenarios. 
In a series of studies, Sanchez-Cortes et al. [17] collected the ELEA corpus in which the participants 
performed a winter survival task. Aiming at collecting collaborative behaviors, the Team 
Entrainment Corpus [18] collected participants’ behaviors while playing collaborative board games. 
The MULTISIMO [19] corpus also targeted collaborative interactions such as discussing answers of 
quizzes. The corpus described above are task oriented, i.e., data was collected in a limited situation 
for a specific purpose. In contrast, non-task-oriented corpora focused on natural conversation without 
any specific purpose. The ICSI corpus [20] collected speech and its transcription and various meta 
data in natural meeting settings. The D64 corpus [21] also collected natural daily conversations in an 
apartment room using various sensors such as motion capture, video cameras, and microphones. 

There have also been many studies that use these corpora. Many such studies attempted to 
estimate the characteristics of individual participants using audio, visual, and multimodal features. 
Some studies proposed models for predicting influential persons in group interactions [22,23]. Based 
on the influence model, Dong et al. [24] predicted the functional roles of participants, such as orienter, 
seeker, and giver [25]. Studies with similar motivation proposed models for estimating dominance in 
group discussions [26–29]. In their series of studies, Sanchez-Cortes et al. [17] also proposed a model 
for predicting emergent leadership, and found that dominance and leadership were highly 
correlated. Audio-visual nonverbal features were also used for predicting self-reported personality 
traits [30,31], as well as personality impressions from external observers [4]. These features were also 
used for characterizing behavioral patterns in group interaction [32]. Whereas the goal of these 
studies is to predict the characteristics of individual participants, the purpose of this study is to detect 
important utterances that contribute to group discussions. 

2.2. Text, Speech, and Meeting Summarization 

Text summarization involves two approaches: Extractive [33] and abstractive summarization. 
The basic idea of extractive summarization is to distinguish between the informative and 
uninformative dialogue units in meetings, and to concatenate the informative ones to produce a 
summary. There are two ways to identify informative sentences. One option is a vector space model 
in which sentences are represented as word vectors that are commonly weighted based on tf-idf. The 
cosine similarity between two sentences is used for judging relevance and redundancy [34]. As a 
more sophisticated approach, latent semantic analysis (LSA) is applied to project sentence 
representation in the LSA space [35]. Summarizations of text-based e-mail conversations and 
discussions have employed this approach [36,37]. In more recent studies, the deep learning approach, 
including embedding representation, was employed in text summarization, and achieved better 
performance [33,38–40]. The second option for extractive summarization is a feature-based approach, 
where supervised machine learning techniques are exploited to train a classifier, which judges each 
sentence as informative or not informative. Many extractive summarization studies have employed 
this approach. Recent studies in text summarization employed neural network approaches to learn 
feature representations, and achieved comparable performance to the models using hand-crafted 
features [41]. In contrast, abstractive summarization generates summaries rather than selecting 
sentences and ordering them. Wang and Cardie [42] introduced a template-based approach. In this 
approach, human-authored summaries were clustered and represented using word-graph models, 
and the ranked graph paths were used as templates to produce a summary. Singla et al. [43] proposed 
an automatic template selection method using cosine similarity on different levels of language 
representation. Murray [44] formulated the graph-based summary generation task as the Markov 
Decision Process (MDP), and proposed a model that learned a policy for selecting words in the word-
graph. As a neural network approach, Zhao et al. [45] proposed a hierarchical encoder based on 
recurrent networks to learn the high-level semantic representation of meeting conversations. They 
also proposed a decoder network using reinforcement learning to generate meeting summaries. 

In speech summarization, the first step is to extract an interval of speech from an audio stream 
as a unit of analysis. Text summarization techniques are then applied to the linguistic information in 
this unit. However, not all of the linguistic features used in text summarization are available in 
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speech. Instead, prosodic features, such as speech energy, pitch, and speech duration, can be used as 
speech-specific features. Maskey and Hirschberg [46] combined prosodic information with lexical 
information to summarize voicemail, and obtained promising results for improving the quality of the 
summary. 

The earliest research on meeting summarization by targeting spoken dialogues applied text 
summarization techniques to speech transcripts. Waibel et al. [47] adopted the vector space model 
for summarizing meetings. More recent work in the feature-based approach added features extracted 
from a speech signal such as pitch and energy [48,49]. The benefit of prosodic features has been 
revealed through speech summarization, even when speech recognition accuracy is not perfect 
[46,50]. In addition to prosodic features, it was observed that acoustic features such as MFCC and 
speech duration contributed to improving meeting summarization [51,52]. Murray et al. [49,53] 
incorporated speech-specific features, including prosodic information, to train a classifier that 
identifies informative utterances. Murray and Carenini [1] added conversational features specifically 
related to multiparty interaction such as the dominance of participants and turn-taking using the 
AMI meeting corpus dataset [15]. 

However, these studies did not use visual features to select informative utterances to be included 
in meeting extracts. There have been very few studies that utilize videos and other multimedia 
sources in meeting summarization. Erol et al. [54] proposed a method for detecting important 
segments of a recorded meeting based on activity analysis, which simply measured audio amplitude 
and luminance difference between two video frames as well as text analysis using tf-idf. More 
recently, Li et al. [55] proposed an extractive multi-modal summarization method that selects salient 
sentences by considering the images, audio, and videos related to a specific topic. However, they did 
not address the issue of meeting summarization. As more relevant research, [56] focused on detecting 
segments of high-interest, which is similar to what [57] defined as hot-spots, from audio-visual cues 
in meetings. However, it may also be that the participants carefully and quietly listen to what they 
think is important. Moreover, [56] annotated group interest level as ground-truth, which is clearly 
different from what we will annotate: Judging whether each utterance should be included in the 
meeting summary. 

2.3. Deep Learning and Multimodal Fearures  

According to the discussion above, defining useful multimodal and multiparty features is one 
of the most important issues in predicting meeting extracts. However, examining the co-occurrence 
of all possible combinations of behaviors such as speech, gestures, facial expressions, and language 
to identify useful multimodal and multiparty features is unrealistic. Therefore, reducing the cost and 
effort required for feature selection is necessary. 

To solve such a problem, this study employs a neural network approach and compares model 
performance between the models using handcrafted features and deep neural network models. 
Neural network approaches enable us to automatically acquire feature representation from raw data. 
Pan et al. [25] reported that in saliency prediction for images, end-to-end CNN performed better than 
models using hand-crafted features. This approach was also demonstrated to be useful for learning 
audio features from a raw speech signal [11,12]. 

Based on these techniques, in sentiment analysis and emotion recognition, multimodal fusion 
models have been proposed by concatenating audio and visual features learned by CNN [5,13]. 
Nojavanasghari et al. [14] applied this approach to social media videos to estimate persuasiveness 
from audio and visual features learned using a deep neural network. Wang et al. [58] and Poria et al. 
[59] employed LSTM to classify emotional polarities in microblogs. Such a model had the advantage 
of modeling the linguistic context. Our deep-learning based models take a similar approach to Shen 
and Huang [60] and Poria et al. [61] who extracted audio, visual, and textual features using CNNs 
and concatenated those features for final sentiment classification. 

2.4. User Studies on Meeting Summarization 
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There have been some user studies that evaluated summarization systems. Murray et al. [62] 
implemented a system for browsing meeting summaries, and conducted a user study in which the 
subjects compared three types of summaries: System-generated abstractive summaries, human-
authored abstractive summaries, and human-authored extractive summaries. They reported that the 
subjects preferred human-authored/system-generated abstractive summaries rather than extractive 
ones. In a user study by Hsueh and Moore [63], it was found that decision focused summaries were 
useful for the users to find relevant information and understand the decisions efficiently. Tucker and 
Whittaker [64] proposed an interactive compression (IC) system, which allows users to change the 
degree of summarization. They evaluated characteristics of the IC system based on quantitative and 
qualitative analyses, and reported that the users could efficiently find information they needed and 
they preferred the IC system. 

As described above, previous user studies on summarization mainly focused on the efficiency 
of finding information. In this study, we evaluate our meeting browsing system in terms of not only 
finding information but also understanding the participants’ roles in conversation.  

3. MATRICS Corpus 

To analyze human behavior in a face-to-face conversation, we first conducted a corpus collection 
experiment. The corpus is called the MATRICS (MultimodAl (Task-oriented) gRoup dIsCuSsion) 
corpus (Figure 1). In constructing the MATRICS corpus, we investigated multimodal corpus collected 
by previous studies. We designed experiments based on the survey results and collected data by 
corpus collection experiments. After that, we defined utterances to the corpus, which was the unit of 
analysis, and identified important utterances contributing to the summary of the discussion from the 
defined utterances. 

 

Figure 1. Snapshot of conversation. 

3.1. Corpus Collection Experiment 

The important utterances contributing to the meeting summary are assumed to be utterances 
that propose new ideas, summarize opinions, and agree or disagree with the current topic. A task-
oriented discussion can observe such utterances more frequently than a non-task-oriented discussion. 
Therefore, in this study, we decided to record a group behavior for task-oriented discussions. 

3.1.1. Participants 

We recruited 36 Japanese university students (24 male and 12 female), with an average age of 
20.7 (SD = 1.70), in the experiment as conversation participants. Four people made one group and a 
total of nine groups were formed. The participants did not know each other. 

3.1.2. Experimental environment and tasks 

We set up a 4.5 × 4.5 m experimental space enclosed by curtains. At the center of this space, we 
placed a 1.2 × 1.2 m table, with one participant sitting on each of its side. A snapshot of the experiment 
is shown in Figure 1, and the layout of the data collection environment is illustrated in Figure 2. 
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Figure 2. Layout of the data collection environment. 

The participants were notified that experts would evaluate their behavior after the experiment, 
so that they would take these tasks seriously. They were also instructed that one member of their 
group would report the discussion results for one minute as a group representative. A timer was 
placed on each of the two poles so that the participants could see the remaining time. The timers rang 
at the start and end of the discussion to notify the participants. At the end of all sessions, the 
participants were paid 3000 yen. 

The task given to a conversation group was to discuss and make decisions on a topic. Each group 
had three discussion sessions. These topics were familiar with university students, and created by 
investigating the frequently used tasks in group discussions in hiring processes. To cancel out the 
effect of task order, it was randomized. Following are the three discussion tasks used in the 
experiment. 
• Booth planning for a school festival: The participants were instructed to discuss and create a 

plan for a small booth intended to sell food or drinks at a school festival. The participants were 
given a map that indicated the location of other booths, as well as possible places for opening 
their own booth. They also had a document that showed data for the distribution of visitors’ 
ages and the number of visitors by time. The participants were instructed to review these 
documents for five minutes before starting the discussion. Then, based on the data shown in the 
documents, they were allowed to discuss where to open their booth and the type of goods they 
would sell, within 20 min.  

• Travel planning for foreign friends: The participants were instructed to create a two-day travel 
plan for foreign friends visiting Japan on a vacation. The discussion time allowed was 20 min, 
and there was no time granted to think individually. 

• Celebrity guest selection: The participants were asked to pretend that they were the executive 
committee members for a school festival, and were choosing a celebrity guest for the festival. 
Their discussion task was to decide the ranked order of 15 celebrities by considering cost and 
audience attraction. For the first five minutes, each participant was requested to read the 
instructions and decide alone (that is, without interacting with other members) the celebrity 
order. Subsequently, the participants were engaged in a discussion to determine the ranked 
order as a group. 
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In this study, we analyzed the corpus for “Booth planning for a school festival” (booth planning) 
and “Travel planning for foreign friends” (travel planning). The number of meetings were eight for 
each task, thus 16 in total. 

3.2. Analyzed Data 

In the experiment, we used various sensors, such as motion sensors, inertial measurement units 
(IMU), Kinect sensors, and eye trackers, alongside video cameras and headset microphones. We also 
asked the subjects to fill in the NEO-FFI [65] questionnaire, to evaluate their personality traits. The 
details of the collected data are described in [66]. The following describes the data that we analyzed 
in this study. 
• Head acceleration: An IMU (ATR-Promotions: WAA-010) was attached to the back of each 

participant’s head, more specifically, to each participant’s cap. These sensors can measure head 
acceleration and angular velocity in the x, y, and z coordinates at 30 fps. The measured data were 
sent to a server machine through Bluetooth, which received and saved the data with a 
timestamp. By applying the angular velocity of the three axes to equation ඥ𝑥௜ଶ + 𝑦௜ଶ + 𝑧௜ଶ, we 
calculated the head composite angular velocity of each participant. Here, 𝑥௜, 𝑦௜, and 𝑧௜ are the 
angular velocities for each frame 𝑖 for the 𝑥, 𝑦, 𝑧 axes, respectively. 

• Video: Two video cameras (SONY HDR-CX630V) were set to record an overview of the 
communication from opposite directions. In addition, four web cameras (Logicool HD Pro 
Webcam C920t) were placed in the center of the table to record close-up front face images of 
each participant. The images had a resolution of 1280 × 720 and frame rate of 30 fps. The distance 
between a web camera and each participant was approximately 1 m. We obtained head position 
and rotation data by applying the close-up face images to a vision-based face tracker (FaceAPI: 
https://www.seeingmachines.com/). We used head pose data to create a face direction 
classification model that estimated four directions of the face (forward participant, right 
participant, left participant, and his/her memo). The classification accuracy of the model was 
89.6%. We used this model to classify the head-gaze direction. The classification results were 
double-checked manually and corrected if necessary. 

• Audio: All participants wore a hands-free headset microphone (Audio-technica HYP-190H) to 
record speech data individually. The speech input from each microphone was sent to a PC via 
an audio interface, and recorded in four channels using a recording software. The sampling rate 
of the WAV format was 44.1 kHz. In addition, using the Praat (Praat: 
http://www.fon.hum.uva.nl/praat/) audio analysis tool, the speech intensity and pitch were 
computed every 10 ms during an utterance and the speech rate was measured for each utterance. 

• Transcription: Utterance transcription was obtained through an ASR for automatically detected 
utterances, and manually segmented utterances were transcribed manually. The utterance 
segmentation methods will be explained in Section 3.3 in more detail. 

All audio and visual data were synchronized using the start buzzer, and various sensing data were 
synchronized using the timestamp assigned to each record. The accuracy of the timestamp was 
guaranteed by synchronizing all computers that received sensor data through access to a unique NTP 
server in the same local network. 

3.3. Analysis Units 

In this study, we used utterance as analysis unit, and using different ways of segmenting the 
datastream, we created two datasets: Automatically detected utterances and manually segmented 
utterances. 

3.3.1. Automatically detected utterances 

Speech intervals as utterances were detected automatically using a voice activity detector (VAD) 
included in the Julius (Julius: http://julius.osdn.jp/en_index.php) speech recognition system, which 
segments audio data based on the amplitude and number of zero-crossing points in the audio stream. 
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When more than 300 ms of silence was observed between two speech intervals, it was identified as 
the end of the current utterance and the subsequent speech was regarded as a new utterance. 
Furthermore, the detected speech intervals were recognized by an automatic speech recognition 
(Google Speech API v2: https://www.google.com/speech-api/v2/) (ASR) system, and the outputs 
were used as the utterance transcription. The motivation for employing this method is that our 
ultimate goal is to automatically produce a discussion summary without any human labor. For this 
purpose, we need a dataset created using automatic speech detection and transcription. There are 
many cases in which the automatic data creation is not accurate. For example, a double consonant is 
pronounced at the start of the utterance or the voice amplitude gradually decreases at the end of the 
utterance. Furthermore, if ASR is applied to an incorrect speech interval, the recognition result would 
be even more inaccurate. Therefore, these automatically detected utterances were used to investigate 
the performance degradation when meeting summaries are generated automatically. 

3.3.2. Manually segmented utterances 

To obtain ideally segmented language data, a human annotator identified speech segments 
using an annotation tool (ELAN: https://tla.mpi.nl/tools/tla-tools/elan/) while checking the speech 
waveform. The same criteria for utterance detection as those in automatic utterance detection were 
applied; when a silence interval of 300 ms or more occurred before and after a given speech interval, 
it was recognized as an utterance boundary. Subsequently, each utterance interval was transcribed 
manually by a human annotator. This dataset was used to verify the correctness of the proposed 
method without, or by minimizing, utterance segmentation and transcription errors. 

3.4. Annotating Important Utterances to be Included in a Meeting Summary 

The study aims to select important utterances to be included in extractive summaries. To employ 
a machine learning approach, we need a gold standard of extract-worthiness to be used in training 
the models. We asked multiple annotators to judge whether each utterance should be included in the 
meeting summary. Note that we simply instructed the annotators “to select utterances to be included 
in the meeting summary” and gave no more detailed instructions. In text summarization studies, 
such simple instruction was used in asking human subjects to create an extractive summary. We 
adopted a similar procedure to create the gold standard by using human annotators. In addition, we 
assumed that the annotators observed various aspects of a group interaction in identifying important 
utterances; not only the utterance content but also nonverbal behaviors exchanged among the 
participants. Thus, we thought that relying on the annotators’ intuition would be better than 
providing a detailed annotation scheme. 

The annotators were seven undergraduate and graduate students majoring in information 
science (five males and two females), with an average age of 22.2. They were not the participants of 
the corpus collection experiment, and did not have any experience of creating a meeting summary. 

We asked the annotators to watch meeting videos using the ELAN video annotation tool, in 
which the automatically annotated utterance segments in Section 3.3.1 were shown in annotation 
tracks. There were four tracks, each of which indicated the speech track of each participant. The 
annotators could observe the whole interaction and play utterance segments individually. They were 
also allowed to watch the video multiple times. Each annotator watched 16 videos and judged 15,513 
utterance segments in total. The video contained the face images and overview images of the 
participants in the meeting. The order of viewing video was randomized. Figure 3 shows a snapshot 
of the annotation tool that the annotators worked on. 
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Figure 3. Snapshot of important utterances identification tasks. 

After completion of the annotation, we made 21 pairs from seven annotators, and calculated the 
inter-rater agreement using Cohen's kappa. We then selected five annotators who had higher 
agreement with each other (Kappa > 0.4; moderate agreement). For further analysis, we used the 
annotations by these five annotators. 

We calculated the agreement ratio of the judgments among the five reliable annotators. For 
further analysis, we used the utterances identified as important by three out of the five annotators 
(i.e., the majority of annotators) as a positive instance. Table 1 shows the numbers of positive and 
negative instances. The number of negative cases was almost twice that of positive cases. 

Table 1. Number of positive and negative cases (automatically detected utterances). 

Type of Utterance Number of Utterance 
Important utterance (positive) 5268 

Unimportant utterance (negative) 10,245 
total 15,513 

 
In the annotations of the important utterances above, we used automatically detected utterances, 

and the results were applied to manually segmented utterances. The speech intervals of these two 
datasets were almost the same, but automatic utterance detection tends to produce a shorter speech 
segment. For instance, the automatic segmentation program recognized breathing as a silence and 
judged it as an utterance boundary. Thus, we asked the annotators to work on the automatically 
detected utterances and applied the annotations to the manually segmented utterance. Figure 4 
shows this procedure. More specifically, when there were one or more important utterances that 
temporally overlapped with a manually annotated utterance, that utterance was judged as important. 
If there was no overlapped utterance to manually annotated one, the utterances were excluded from 
the analysis. As a result, the number of manually annotated utterances was 8939, and the number of 
important/not-important utterances is shown in Table 2. 
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Figure 4. Adaptation of the judgements. As a manually annotated utterance A overlaps with only one 
automatically detected utterance, which is an unimportant utterance, utterance A is identified as an 
unimportant utterance. As a manually annotated utterance B does not overlap with any automatically 
detected utterance, utterance B is excluded from the analysis. There are three automatically detected 
utterances that temporally overlap the manually recognized utterance C, and at least one important 
utterance is included in them. In such a case, utterance C is identified as an important utterance. 

Table 2. Number of positive and negative cases (manually segmented utterances). 

Type of Utterance Number of Utterances 
Important utterance (positive) 3789 

Unimportant utterance (negative) 5150 
Total 8939 

4. Nonverbal Models for Important Utterance Prediction 

Although various methods have been proposed for detecting important utterances, none of them 
have taken into account the co-occurrence and correlation of social signals displayed by multiple 
participants. In this section, we propose two approaches for creating important utterance detection 
models. 

One approach is a conventional machine learning in which features are manually defined. To 
choose useful features, researchers are required to have a deep understanding of communication. In 
this study, we define features based on our observation of the MATRICS corpus. We also introduce 
an algorithm to find the co-occurrence between different signals and to use them as features.  

The other approach is deep learning. Deep learning models have achieved high performance in 
various domains. CNN achieved good performance in image processing and LSTM in text 
processing. However, in multimodal multiparty communication, we need more discussion to find an 
effective network structure and representation of input data. Thus, this study aims to contribute to 
the research on multimodal multiparty conversations by exploring network structures and data 
representation that capture the co-occurrence of multiple participants’ multimodal behaviors. 

4.1. Defining Hand-crafted Features 

In the hand-crafted feature approach, it is important to observe the collected corpus to find the 
predictive features. In our observation, we find that important utterances are characterized not only 
by the behaviors of the speaker but also by those of other participants. We also find that important 
utterances are accompanied by meaningful behavior co-occurrence between multiple participants. 
For example, when other participants gaze at the speaker, they also display nods to the speaker. 

In addition, important utterances are expressed differently depending on the communicative 
skills of the participants. A participant with high communicative skills speaks while observing other 
participants, and frequently gives feedback such as acknowledgments and nodding to other 
participants. On the other hand, a participant less communicative does not display such behaviors. 
As there is a strong correlation between the number of utterances and the evaluation results of 
communication skills of human observers, we use the number of utterances as an approximate value 
of the level of communication skill. The participant who speaks most frequently is referred to as the 
“Rank1” participant, and the one who speaks least frequently is referred to as the “Rank4” 
participant. 

Based on the observation above, we define features for nonverbal information in three 
categories: 
• SP/OT: Features for speaker and other participants. 
• PR: Features with respect to the ranked order of utterance frequency.  
• CO: Features for behavior co-occurrence patterns. 

In this paper, we define the participant who produces a given speech interval as the “speaker” 
of that speech interval, and the remaining participants as “others.” Note that if multiple speech 
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intervals overlap with each other, the speaker’s behaviors in one speech interval are also counted as 
those of “others” in the other speech intervals. In the following sections, we will describe these 
categories. 

4.1.1. Features for Speaker and Other Participants’ Behaviors (SP/OT) 

We define audio/visual features for a speaker (SP) during speaking, and for others who are not 
the speaker of that speech (OT). Table 3 shows the 38 features defined. 

Table 3. SP/OT features. 

Category Speaker Others 

Visual 
attention 

• Number of attention shifts 
• Amount of attention received from 
others 
• Proportion of attention to others 
• Proportion of attention to Rank1 
• Proportion of attention to Rank2 
• Proportion of attention to Rank3 
• Proportion of attention to Rank4 
• Proportion of attention to his/her 
note 

• Number of attention shifts 
• Amount of attention received from 
participants 
• Proportion of attention to speaker 
• Proportion of attention to Rank1 
• Proportion of attention to Rank2 
• Proportion of attention to Rank3 
• Proportion of attention to Rank4 
Proportion of attention to his/her note 

Head 
motion 

• Composite head angular velocity 
(Average, Variance, Max) 

• Composite head angular velocity 
(Average, Variance, Max) 

Speech 

• Speech intensity (Average, 
Variance, Max) 
• Speech pitch (Average, Variance, 
Max) 
• Duration 
• Pause length 
• Speech rate 
• Position of the utterance 

• Speech intensity (Average, 
Variance, Max) 
• Speech pitch (Average, Variance, 
Max) 
 

Total 
21 (= 8 for attention + 3 for head 

motion + 10 for speech) 
17 (= 8 for attention + 3 for head 

motions + 6 for speech) 
 
The defined features are described below in detail. 
Features for visual attention: the following six features are extracted using face direction 

obtained from video data. 
• Number of attention shifts: The number of attention shifts of the participant during his/her 

speech. This feature is normalized by utterance duration. The feature value for others is defined 
as the average number of attention shifts of the other participants. 

• Amount of attention received from participants: Frequency of receiving attention from at least 
two participants in the group during the speech. The feature value for others is computed as the 
average amount of received attention of other participants. 

• Proportion of attention to others: The ratio of the time during which the speaker gazes at any 
other participant. It is defined only for the speaker.  

• Proportion of attention to speaker: The average value of the percentage of time during which 
the speaker is gazed at, calculated for the other three participants. This feature is defined only 
for other participants.  

• Proportion of attention to Rank1/2/3/4: The ratio of the time during which the participant gazes 
at the Rank 1/2/3/4 participant.  

• Proportion of attention to his/her memo: The ratio of the time during which the participant gazes 
at his/her notes.  
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Head motion: the average, variance, and maximum values of the current speaker's composite 
head angular velocity are computed per utterance. For the feature value for others, the sum of the 
composite head angular velocity values of the other three participants is calculated for each frame. 
Then, average, variance, and maximum values of the summed composite head angular velocity are 
computed per utterance and used as feature values. Thus, we define the six head motion features. 

Speech information: As prosodic features, the average, variance, and maximum values of the 
speaker’s speech intensity and pitch are calculated for each utterance. The same features are also 
calculated by summing up the speech intensities of the other three participants. The speech intensity 
and pitch are measured every 10 ms during a speech interval. In addition, the speech duration, pauses 
between speech intervals, speech rate approximated by the number of syllables, and the position of 
the utterance (proportion of the elapsed time of the utterance to the whole discussion length) are 
defined only for a speaker. Thus, there are 16 features in total in this category. 

4.1.2. Features with Respect to the Ranked Order of Utterance Frequency (PR) 

After ranking each participant by the number of utterances, we define the same features as 
SP/OT features. For example, by focusing on Rank1 participant, we define features for Rank1 as the 
speaker and those as the others. The total number of defined features is 144, which is broken down 
into 20 features (= 7 attentions + 3 head motions + 10 speeches) for each rank as a speaker and 16 
features (= 7 attentions + 3 head motions + 6 speeches) as the others. As it is meaningless to define the 
“Proportion of attention to Rank1” for Rank1, the number of attention features defined for each rank 
participant is two less than the SP/OT features. 

4.1.3. Features for Behavior Co-Occurrence Patterns (CO) 

Using the co-occurrence patterns of multiple nonverbal behaviors is expected to improve the 
model performance. We explore the useful co-occurrence patterns of multiple nonverbal behaviors 
using the multidimensional motif-discovery algorithm proposed by Vahdatpour [67]. This algorithm 
targets discretized sequential data and extracts frequent co-occurrence behavior patterns as motifs. 
Thus, this algorithm enables us to find meaningful co-occurrence patterns that are salient in group 
discussions. Moreover, this algorithm is robust for noisy input because it can avoid picking up 
infrequent co-occurrence patterns caused by sensing errors. We use the following features as the 
constituents of co-occurrence patterns. To discretize the data, we split the multimodal data into 33-
ms intervals, and assign or compute the feature values for each time interval. 
• Visual attention: Looking at Rank1, Rank2, Rank3, or Rank4, or looking down at his/her memo. 
• Binary judgment of head motion: To binarize the head movement data, the composite head 

angular velocities are divided into two clusters—moving and not moving. We use the EM 
algorithm for clustering.  

• Speaking state: If a given participant is currently speaking, that time frame is labeled as a 
speaking state. 
We define the following seven features: Four for visual attention, two for binary judgment of 

head motion, and one for marking the speaking state. These features are annotated for each 
participant, ranked in order of utterance frequency. 

As a result of applying the multi-dimensional motif-discovery algorithm to the above features, 
125 co-occurrence patterns are obtained. For example, the algorithm finds a pattern “Rank3Uttr + 
Rank1LaRank3 + Rank4LaRank3”: Rank1 looks at Rank3 (Rank1LaRank3) and Rank4 also looks at 
Rank3 (Rank4LaRank3), while Rank3 is speaking (Rank3Uttr). As another example, a pattern 
“Rank1LaRank4 + Rank2LaRank4 + Rank3LaRank4” indicates that all participants except Rank4 are 
looking at Rank4. These patterns suggest that the participants’ attentions are concentrated on a 
specific participant. If we obtain the co-occurrence pattern without applying the multi-dimensional 
motif-discovery algorithm, the number of patterns should be 2(଻ ௖௢௡௦௧௜௧௨௘௡௧௦ ∗ ସ ௖௢௡௩௘௥௦௔௧௜௢௡ ௣௔௥௧௜௖௜௣௔௡௧௦) = 268,435,456. Therefore, the motif-discovery algorithm finds 
the most salient 125 co-occurrence patterns efficiently. 
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Note that co-occurrence patterns are analyzed for each 33-ms interval. To use them as utterance-
based features, we calculate the proportion of occurrences of these 125 patterns for each utterance. 
We also use the 28 elements constructing the co-occurrence patterns as individual features. Thus, 153 
features are defined in total. 

4.1.4. Feature Selection by Statistical Tests 

In previous sections (Sections 4.1.1 to 4.1.3), we defined 335 (= SP/OT (38) + PR (144) + CO (153)) 
features. To select useful features from them, we examine each feature using a t-test to investigate 
whether the average value of a given feature is different between the important utterances and those 
not important. In addition to the t-value, we adopt Cohen’s d effect size, which is a standardized 
measure for evaluating the effect size of a t-test result without being affected by the data size. We 
select features as useful feature for estimation if the t-test result is statistically significant at 5% level 
and Cohen’s d is greater than 0.2. As a result, 96 features are selected as shown in Table 4. Table 5 
shows some selected features with high Cohen’s d. 

Table 4. Number of features that satisfied two conditions. The number in brackets indicates the 
number of feature before selection. 

Feature category Num. of features satisfied two conditions 
SP/OT（38 features） 13 

PR（144 features） 38 
CO（153 features） 45 

Total 96 

Table 5. Top features with Cohen’s d. 

Category Examples 

SP/OT 

Speaker feature Others feature 

• Duration (0.83) 
• Speech rate (−0.34) 
• Amount of attention received from 
participants (0.31) 

• Average of speech intensity (−0.76) 
• Proportion of attention to his/her 
note (0.76) 
• Maximum of speech intensity 
(−0.51) 

PR 

Speaker feature Others feature 
• Duration (Rank1: 0.89, Rank2: 0.75, 
Rank3: 0.78, Rank4: 0.78) 
• Speech rate (Rank1: −0.39) 
• Variance of speech pitch (Rank1: 
0.35, Rank2: 0.33) 
• Amount of attention received from 
participants (Rank2: 0.38, Rank3: 0.38, 
Rank4: 0.51) 
• Pause length (Rank3: −0.33) 
• Proportion of attention to his/her 
note (Rank4: 0.45) 

• Average of speech intensity (Rank1: 
−0.80, Rank2: −0.67, Rank3: −0.50, Rank4: 
−0.36) 
• Maximum of speech intensity 
(Rank1: −0.51, Rank2: −0.37) 
• Average of composite head angular 
velocity (Rank1: −0.43, Rank2: −0.34, 
Rank3: −0.27) 
• Proportion of attention to speaker 
(Rank4: 0.24) 

CO 

Component of co-occurrence pattern Co-occurrence pattern 

• Rank4Uttr (0.44) 
• Rank3Uttr (0.34) 
• Rank1HM (0.35) 

• Rank2Uttr + Rank3Uttr (−0.54) 
• Rank3Uttr + Rank4Uttr (−0.47) 
• Rank2Uttr + Rank3Uttr + Rank2HM 
(−0.46) 

 
From Table 5, most of the top features with respect to Cohen's d are speech information, and the 

features for head motion and attention direction are relatively few. In addition, in the SP/OT and PR 
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features, the utterance duration of the speaker and the average of speech intensity of others have the 
highest Cohen's d. 

As for speaker behavior features in the SP/OT category, the top three features are speech 
duration (0.83), speech rate (−0.34), and amount of attention received from participants (0.31). The 
number in bracket indicates Cohen’s d. On the contrary, for other behavior features, the top three 
features are average of speech intensity (−0.76), proportion of attention to his/her note (0.76), and 
maximum of speech intensity (−0.51). These results suggest that a speaker of an important utterance 
speaks longer and slowly, and the situation is watched by several others. In addition, other 
participants listen to the utterance quietly while paying attention to his/her note. 

For PR features, features with higher Cohen's d differ depending on the order of the participants, 
both as the speaker and others. Although the speech rate slows down when the Rank1 participant 
gives important utterances, this does not occur for the Rank4 participant. In contrast, the Rank4 
participant, who makes important utterances, is often watched by two or more others, but not by the 
Rank1 participant. This result suggests that the behaviors in speaking important utterances and those 
in listening are different depending on the participants’ communicative skills. 

For CO features, the co-occurrence patterns with higher Cohen’s d contain "Rank 3 participants 
uttered.” It is difficult to recognize from the corpus observation that the utterance from a Rank3 
participant is likely to contribute to the determination of unimportant utterance. Thus, this is an 
advantage of the algorithm to detect such characteristic patterns. 

4.2. Deep Neural Networks 

To construct a neural network that can learn the co-occurrence between multiple signals that 
multiple people express, in this study, we built a multimodal neural network model, as shown in 
Figure 5. This network first learns the co-occurrence signals among multiple participants, and then 
correlates the signals from different modalities by fusing the features. 

Important 
or 

not

Fully connected

Softmax

Convolution

Pooling

Input layer

3D pooling

3D convolution

･･･
･･･

･･･

Speech spectrogram

Head motion spectrogram

Speech intensity

Head pose

 
Figure 5. Proposed multimodal network. 

First, we construct unimodal models, which are networks based on single-modality data. The 
unimodal models, which target nonverbal information, aim to learn the correlation and co-occurrence 
relation between the speaker and other participants’ behaviors. Then, the outputs of the unimodal 
models are integrated and used as input to create multimodal models whose output is a binary 
classification; whether the input is an important utterance or not. In the following sections, we 
describe unimodal and multimodal models. 

4.2.1. Structure of Nonverbal Unimodal Models 

The following three types of networks are created as nonverbal unimodal models (Figure 6). 
• 3D-CNN 
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• 2D-CNN 
• AlexNet-based CNN 

These networks are trained to judge whether an input vector fed to the network should be 
selected as an important utterance to be included in a meeting summary. 

 

Figure 6. Unimodal models for nonverbal information. 

3D-CNN: 3D-CNN aims to model face-to-face communication by introducing a 3D convolution 
layer and a 3D pooling layer. By using 3D convolution [68], it becomes possible to simultaneously 
consider behavioral data presented by multiple participants using a 3D kernel. More specifically, the 
behavior data of a participant is expressed as 2D data, and such data for four participants are 
arranged three-dimensionally and convoluted with a 3D kernel. Through this computation, the 
behavior co-occurrence among the conversation participants can be learnt. Note that the input data 
from four participants are stacked according to the relative spatial relation to the person who 
produces the speech interval. As each participant sits on each side of a square table, we order the 
participants’ data in a clockwise fashion, starting with the participant who speaks at a given speech 
interval. 

Table 6 shows the details of the 3D-CNN network. The network consists of two 3D convolutional 
layers, a 3D pooling layer, two fully connected layers, and a softmax layer for classification. The input 
size of the input layer, the kernel size of the convolutional layer, and the filter size of the pooling 
layer depend on the modality of the input data; the details will be described later. The number of 
kernels in the convolutional layer for C1 and C2 layers is 32. The number of units in the fully 
connected layers for FC1 and FC2 layers is 128. ReLU is used as an activation function for C1, C2 and 
FC1, FC2. The dropout rate is 0.25 between the P1 layer and the FC1 layer, 0.5 between FC1 and FC2, 
and 0.5 between FC2 and the softmax layer. 

Table 6. Structure of nonverbal networks. 

Layer 2D-CNN 3D-CNN 
AlexNet-based 

CNN 

Input layer Size Depends on 
modality 

Depends on 
modality 

Depends on 
modality 

Convolution 
layer 

Kernel size Depends on 
modality 

Depends on 
modality 

Depends on 
modality 

Num. of kernel 
C1: 32, 
C2: 32 

C1: 32, 
C2: 32 

C1: 24, 
C2: 64, 
C3: 96, 
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C4: 96, 
C5: 64 

Activation 
function ReLU ReLU ReLU 

Pooling layer Filter size 
Depends on 

modality 
Depends on 

modality 
Depends on 

modality 

Fully connected 
layer 

Num. of 
neurons 

FC1: 128, 
FC2: 128 

FC1: 128, 
FC2: 128 

FC1: 256, 
FC2: 256 

Activation 
function ReLU ReLU ReLU 

Drop out 
P1-FC1: 0.25, 
FC1-FC2: 0.5, 

FC2-softmax:0.5 

P1-FC1: 0.25, 
FC1-FC2: 0.5, 

FC2-softmax:0.5 

FC1-FC2: 0.5, 
FC2-softmax:0.5 

 
Overfitting is a major problem in DNNs, especially when the dataset is not very large. The 

MATRICS corpus used in this study is not very large compared to the shared datasets used in 
computer vision studies. To avoid overfitting the models, we exploit lightweight convolutional 
neural networks. Pan et al. [10] proposed this strategy for predicting salient areas in images. 

2D-CNN: 2D-CNN replaces the 3D convolution layer and 3D pooling layer introduced in 3D-
CNN with a 2D convolution layer and a 2D pooling layer. In 2D-CNN, behavioral data are convolved 
independently for each conversation participant by using a 2D kernel. The details of the network are 
shown in Table 6. Most of the network configurations are the same as those for 3D-CNN. 

AlexNet-based CNN: This network is based on AlexNet [69], which has demonstrated good 
performance in computer vision tasks. The network consists of five convolutional layers—three of 
which are followed by pooling layers—and two fully connected layers, with a final softmax layer. 
The details of the network are shown in Table 6. 

4.2.2. Nonverbal Unimodal Models 

The data input to the nonverbal network models are head motion spectrogram, speech 
spectrogram, speech intensity, and head pose. The data are normalized using min–max 
normalization for each modality. As the sampling rate varies depending on the sensing data, the size 
of the input vector varies depending on the modality. In addition, speech duration is set to 15 s for 
all inputs by adding blank data for shorter utterances. Therefore, the width of the input vector is 
sampling rate × 15. The details of representation of each input vector are described below. 

Speech spectrogram model (SS model): Speech audio with a sampling rate of 44.1 kHz is 
recorded from the headset microphone attached to each participant, and a spectrogram is created 
from the speech. The window width of the Fourier transform is approximately 1.5 s (216 = 65,536 
frames) and the slide width is 1 frame. Therefore, the maximum measurable frequency is 
approximately 22 kHz. After the Fourier transformation, the data are downsampled to 50 fps. Next, 
the frequency measured at 22 kHz resolution is divided into 32 bins. Then, the sums of the intensities 
of the frequencies at each bin are taken as the data points. 

Table 7 shows the input vector size supplied to the network, the kernel size in the convolutional 
layer, and the pooling size in the pooling layer. The speech spectrograms are input to the 3D-SCNN 
network as the tensor of size: 750 (utterance duration = 50 fps × 15 s = 750) × 32 (quantization 
resolution) × 4 (number of participants) × 1 (number of channels). For 2D-CNN and AlexNet-based 
CNN, the input is modified as the tensor of size: 750 (utterance duration = 50 fps × 15 s = 750) × 32 
(quantization resolution) × 4 (number of channels). In other words, in networks that introduce a 3D 
convolution layer, participants are treated as elements of convolution, and in those in which a 2D 
convolution layer is introduced, discussion participants are treated as a channel. The kernel size of 
the convolutional layers is 5 × 3 × 4 for 3D-SCNN and 5 × 3 for 2D-SCNN and AlexNet. The size of 
the pooling feature map is 2 × 2 × 1, 2 × 2, and 2 × 1 for 3D-SCNN, 2D-SCNN, and AlexNet, 
respectively. 
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Table 7. Sizes of input data. 

input Input Vector Size Convolution Kernel Size Pooling Filter Size 
SS 750, 32, 4, 1 5, 3, 4 2, 2, 1 
HS 450, 15, 4, 1 3, 3, 4 2, 2, 1 
SI 1500, 1, 4, 1 10, 1, 4 2, 2, 1 
HP 450, 3, 4, 2 3, 3, 4 2, 2, 1 

Head motion spectrogram model (HS model): By applying FFT, a sequence of composite head 
angular velocity data is represented as a spectrogram based on time, frequency, and amplitude. The 
window width of the Fourier transform is 30 frames and the slide width is 1 frame. A spectrogram is 
created for each of the four discussion participants. 

Similar to the head motion model, a spectrogram is created for each of the four discussion 
participants for each utterance. Therefore, the size is 450 (speech duration = 30 fps × 15 s) × 15 
(frequency resolution) × 4 (number of participants) × 1 (number of channels). The kernel size and 
pooling size for the convolutional operation are listed in Table 7. 

Speech intensity (SI model): For each utterance, the speech intensity is measured at 100 fps using 
a speech analysis tool, and input to the network as an image of size 1500 (speech duration = 100 fps × 
15 s) × 1 × 4 (number of participants) × 1 (number of channels). Table 7 shows the kernel size and 
pooling size for convolution operation. 

Head pose (HP model): The head poses are recognized by processing the close-up facial images, 
which are recorded by a webcam using a vision-based face tracker. The face tracker computes the 
head position and rotation in the x, y, and z coordinates at 30 fps. Therefore, each data point is 
transformed into an image of size 450 (speech duration = 30 fps × 15 s) × 3 (x, y, and z axes) × 4 (number 
of participants) × 2 (number of channels: position and rotation). Table 7 shows the kernel size and 
pooling size for the convolution operation. 

4.2.3. Nonverbal Multimodal Model 

We integrated unimodal models to create a nonverbal fusion model (NV fusion model) as 
illustrated in Figure 5. The NV fusion model integrates all nonverbal unimodal models. The 
integrated unimodal models are frozen. In integrating the models, the softmax layer of each model is 
discarded, and output vectors from the fully connected layer are concatenated. Then, this 
concatenated vector is given as the input of the fusion model. Therefore, the number of dimensions 
of the vector input to the NV fusion model is 512 (= 128 × 4). The fusion network comprises two fully 
connected layers followed by a softmax layer. The number of neurons in each fully connected layer 
is 256. Dropout is not used in the fusion models. 

5. Verbal Models 

Similar to the nonverbal models, we defined two kinds of verbal models based on hand-crafted 
features and deep learning. Although these models are not novel ideas, we created them to fuse with 
nonverbal models proposed in Section 4 and to improve our final model. Thus, we implemented 
verbal models proposed in previous studies [2,70]. 

5.1. Verbal Hand-Crafted Features 

The following two hand-crafted feature sets were defined: 
• Hand-crafted verbal features (HC_V): we defined 12 linguistic features by referring to a study 

of the meeting summarization by [2]. We used the following features: Number of words, number 
of nouns, number of new nouns, average/variance/maximum/minimum of tf-idf, cosine 
similarity between the entire meeting and the target utterance, cosine similarity between the five 
preceding utterances and the target utterance, and number of frequently appearing unigrams, 
bigrams, and trigrams in the utterance. 

• Bag-Of-Words (BOW) features: Bag of words to represent an utterance. 
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5.2. Verbal Model using Deep Learning (V Model) 

The input of the verbal model (V model) is the linguistic information of an utterance. Thus, the 
3D convolution used for considering behaviors by multiple participants is not suitable, and a 2D 
convolution is used instead. An overview of the V model is shown in Figure 7. The V model was 
created by referring to [70]. 

 
Figure 7. Verbal model. 

First, the transcribed text of an utterance is divided into words. We use the Mecab (Mecab: 
http://taku910.github.io/mecab/) morphological analyzer and the NEologd (NEologd: 
https://github.com/neologd/mecab-ipadic-neologd) dictionary, which includes entities for new 
words. Then, each word is represented as a vector using the Skip-gram model, which is trained using 
sentences in Wikipedia articles. The trained word embedding represents a word as a 200-dimensional 
vector. In addition, in morphological analysis, one of the 19 types of a part-of-speech tag is assigned 
to each word, and represented as a 19-dimensional one-hot vector. These two vectors are 
concatenated, and each word is represented as a 219-dimensional vector. In training the model, the 
utterance length is set to 28 words, because 28 is the maximum number of words in an utterance 
observed in the corpus. Blank word vectors are added to the representation of utterances shorter than 
28 words. Therefore, the size of the input data is 28 (number of words) × 219 (word vector (200) + 
part-of-speech vector (19)) × 1 (number of channels). 

The detailed network settings are shown in Table 8. The network configurations are similar to 
those of 2D-CNN of the nonverbal model. 

Table 8. Detailed configuration of the verbal model. 

Layer Configuration 
Input size 28, 219, 1 

Convolution layer 
Kernel size 3, 219 

Num. of kernel C1: 32, C2: 32 
Activation function C1: ReLU, C2: ReLU 

Pooling layer Filter size 2, 1 

Fully connected layer 
Num. of neuron FC1: 128, FC2: 128 

Activation function FC1: ReLU, FC2: ReLU 
Drop out P1-FC1: 0.25, FC1-FC2: 0.5, FC2-softmax:0.5 

6. Model Evaluation (and Verbal-nonverbal Fusion Models) 

In Sections 4 to 5 aiming at predicting important utterances, we proposed nonverbal models and 
verbal models from two approaches: Defining hand-crafted features and employing DNN. This 
section evaluates these models to propose verbal-nonverbal fusion models, and discusses their 
characteristics. 

6.1. Overview of Evaluation Method 

That place is close to the Imperial Palace.

Fully connected softmax

Input layer Convolution Pooling

Verbal model

C1 C2 P1 F1 F2

Important
or 
not

Word Elem. 0 Elem. 1 … Elem.
199 Noun Verb … Adjec.

That 0.55 0.82… 0.37 0 0 … 0
place 0.74 0.83… 0.07 1 0 … 0

is 0.95 0.73… 0.37 0 1 … 0
close 0.46 0.99… 0.98 0 0 … 1

… … … … … … … … …
(blank) 0 0 … 0 0 0 … 0
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All created models were binary classification models, which classify whether the input utterance 
is important enough to be included in the meeting summary. The performance of the models was 
evaluated using the leave-one-group-out cross-validation method. As this method evaluates a model 
using group data that were not used for training, the model performance for unknown data was 
appropriately evaluated. Equal numbers of positive and negative examples were used in the training 
data by under-sampling. We did not apply resampling for the test data. We aggregated TP, TN, FP, 
and FN for all folds, and then computed the performance measures using the total number. We used 
precision, recall, f-measure, and accuracy as the evaluation metrics to evaluate the models. 

While the total number of utterances in the corpus was 15,513, the ASR program output the 
speech transcript only for 5269 utterances. Therefore, all models with linguistic information were 
trained using these 5269 utterances. In model evaluation, if the transcript of the input utterance was 
missing, the best-performing nonverbal model was applied to such input. This evaluation procedure 
is based on our motivation to develop a fully automatic summarization system. We assumed that in 
practical usage, an input with missing linguistic information should be judged by nonverbal models. 

As a naive baseline model, we employed the longest-utterances method which simply selects 
long utterances as important ones. 
• LU: In order to define the longest utterances in each meeting, we sorted utterances by their 

duration, and then set up a threshold where the F-measure was the highest. As a result, 44% 
utterances in order of length were selected as important utterances. 

6.2. Evaluation of Hand-Crafted Feature Models 

To investigate which types of features are more useful, we examined the following seven 
combinations of feature sets proposed in Section 4.1. We employed random forest as the learning 
scheme.  
• SP/OT: SP/OT features only 
• PR: PR features only 
• CO: CO features only 
• SP/OT + PR: Union of SP/OT and PR features 
• SP/OT + CO: Union of SP/OT and CO features 
• PR + CO: Union of PR and CO features 
• NV-ALL: Union of SP/OT, PR, and CO features 

In addition, by combining hand-crafted verbal features (HC_V, BOW) described in Section 5.1, 
we trained the following three models using random forest. 
• HC_V: HC_V features only 
• BOW: BOW features only 
• V_ALL: Union of HC_V and BOW features 

Table 9 shows the performance of all hand-crafted feature models. The best and second-best 
performance models for each evaluation metric were marked with bold and underline, respectively. 
As shown in the table, SP/OT, SP/OT+PR, SP/OT+CO, and NV_ALL were superior to other models 
including the baseline in all evaluation metrics. This shows that features for speaker and others were 
good predictors. Moreover, SP/OT performed best in Recall, F-Measure, and Accuracy. Thus, we 
decided to use the SP/OT model as the best handcrafted nonverbal model for the rest of the analysis. 
The SP/OT+CO model was the best in Precision and slightly higher than SP/OT in Precision. This 
suggests that the CO features complement the SP/OT features. Note that among verbal models, 
V_ALL is the best in all evaluation metrics. 

Table 9. Performances of hand-crafted feature models. 

Category Model Precision Recall F-Measure Accuracy 
Baseline LU 0.552 0.715 0.623 0.707 

Verbal models 
HC_V 0.634 0.566 0.598 0.742 
BOW 0.638 0.533 0.581 0.739 

V_ALL 0.644 0.572 0.606 0.747 
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Nonverbal models 

SP/OT 0.668 0.750 0.707 0.789 
PR 0.655 0.703 0.678 0.773 
CO 0.599 0.678 0.636 0.736 

SP/OT+PR 0.668 0.732 0.698 0.785 
SP/OT+CO 0.670 0.744 0.705 0.788 

PR+CO 0.656 0.698 0.676 0.773 
NV-ALL 0.669 0.720 0.694 0.784 

 
Based on the discussion above, with the best hand-crafted nonverbal feature set (SP/OT), we 

created three verbal and nonverbal fusion models. 
• HC_V-SP/OT: Early fusion model of the best hand-crafted nonverbal model (SP/OT) and HC_V. 
• BOW-SP/OT: Early fusion model of SP/OT and BOW. 
• V_ALL-SP/OT: Early fusion model of SP/OT, HC_V, and BOW. 

Table 10 shows the performances of verbal and nonverbal fusion models and the best nonverbal 
model. Among three verbal and nonverbal fusion models, the HC_V-SP/OT performed best in all 
evaluation metrics. In hand-crafted feature, fusing verbal and nonverbal information did not 
contribute to improve recall, f-measure, and accuracy. 

Table 10. Performances of hand-crafted feature verbal-nonverbal models. 

Category Model Precision Recall F-Measure Accuracy 
Baseline LU 0.552 0.715 0.623 0.707 

Best nonverbal 
model 

SP/OT 0.668 0.750 0.707 0.789 

Verbal and 
nonverbal models 

HC_V-SP/OT 0.680 0.619 0.648 0.772 
BOW-SP/OT 0.658 0.568 0.610 0.753 

V_ALL-SP/OT 0.665 0.584 0.622 0.759 

6.3. Evaluation of Deep Learning Models 

First, we compared the performances of the models created by combining three types of network 
structures (2D-CNN, AlexNet-based CNN, and 3D-CNN) and four types of input data (HS, SS, SI, 
and HP) and their fusion model (NV). All networks were trained using a stochastic gradient descent 
(SGD) with AdaDelta and the mini-batch size was set to 32. The number of epochs was 30. 

The results are shown in Table 11. The best performance model for each input data is marked in 
bold. For example, for HS models, the Precision was 0.598 for 2D-CNN, 0.657 for AlexNet-based CNN, 
and 0.668 for 3D-CNN. Thus, 3D-CNN performed best and 0.688 was marked in bold. 

As shown in Table 11, 3D-CNN outperformed other network structures in most input data and 
evaluation metrics. This result suggests that 3D-CNN successfully captured meaningful relations 
between signals by considering participants as the third dimension in convolution. Moreover, 3D-
CNN performed best for all input data. This is a meaningful result in terms of summarizing the 
meeting based on the detected important utterances. Thus, we conclude that 3D-CNN is the best 
network structure for our research purpose. 

Table 11. Comparison of nonverbal neural network models. 

Network structure Model Precision Recall F-measure Accuracy 
Baseline LU 0.552 0.715 0.623 0.707 

2D-CNN 

HS 0.598 0.714 0.651 0.740 
SS 0.703 0.781 0.740 0.814 
SI 0.654 0.771 0.708 0.784 

HP 0.555 0.638 0.594 0.703 
NV 0.670 0.789 0.725 0.797 
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AlexNet-based CNN 

HS 0.657 0.630 0.643 0.763 
SS 0.702 0.789 0.743 0.814 
SI 0.703 0.749 0.726 0.808 

HP 0.618 0.640 0.629 0.744 
NV 0.709 0.830 0.765 0.827 

3D-CNN 

HS 0.668 0.666 0.667 0.774 
SS 0.695 0.821 0.753 0.817 
SI 0.696 0.797 0.743 0.813 

HP 0.601 0.696 0.645 0.740 
NV 0.732 0.842 0.783 0.841 

Verbal model V 0.731 0.750 0.741 0.822 
 
Based on the discussion above, we created the V-NV model by fusing the features from the V 

model and those from the NV model learned by 3D-CNN architecture. Table 12 shows the 
performances of the V-NV model and models learned by 3D-CNN architecture. The V-NV model 
was created by the same fashion in the NV model described in Section 4.2.3. Note that the number of 
dimensions of the vector input to the V-NV model is 640 (= 128 × 5) since the input is a concatenation 
of the output vectors from 5 unimodal models: HS, SS, SI, HP, and V. The best performance model 
for each evaluation metric is marked in bold. The NV model performed best in Recall and F-measure, 
and the V-NV model performed best in Precision and Accuracy. These results suggest that the NV 
model detected important utterances in a more recall-oriented manner. On the other hand, the V-NV 
model cared more about classifying the utterances accurately. Note that the NV model outperformed 
all unimodal models in all evaluation metrics. While it has already been known that multimodal 
fusion is effective in traditional machine learning [71], we confirmed that this is also true in deep 
learning. 

Table 12. Comparison of nonverbal neural network models. 

Network Structure Model Precision Recall F-measure Accuracy 
Baselines LU 0.552 0.715 0.623 0.707 

3D-CNN 

HS 0.668 0.666 0.667 0.774 
SS 0.695 0.821 0.753 0.817 
SI 0.696 0.797 0.743 0.813 

HP 0.601 0.696 0.645 0.740 
NV 0.732 0.842 0.783 0.841 

Verbal and nonverbal fusion model V-NV 0.761 0.786 0.773 0.843 

6.4. Comparison between Two Approaches 

This subsection compares the model performance between the two approaches. Table 13 shows 
the best performing models for each approach based on the discussion in previous sections. The table 
shows the performance of LU, which is a naive baseline model, hand-crafted feature models (V_ALL, 
SP/OT, HC_V-NV), and deep learning models (the NV model, in which 3D-CNN was employed; the 
V model, which is a deep learning-based verbal model; and the V-NV model, which integrated all 
3D-CNN-based nonverbal unimodal models and the V model). The best- and second-best-
performance models for each evaluation metric were marked in bold and underline, respectively. 

Comparing the nonverbal information models based on the hand-crafted features (SP/OT) and 
those based on deep learning (NV), NV was superior to SP/OT for all evaluation metrics. Likewise, 
the V model was superior to V_ALL, and V-NV was superior to HC_V-NC_NV. V-NV model 
performed best for all metrics, and all the differences were statistically significant in ANOVA and a 
post-hoc test (see Appendix). These results suggest that the feature expression learned using deep 
learning exceeds the manually defined features. 
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Table 13. Comparison between the two approaches. 

Category Models Precision Recall F-measure Accuracy 
Baseline LU 0.552 0.715 0.623 0.707 

Models based on 
hand-crafted feature 

V_ALL 0.644 0.572 0.606 0.747 
SP/OT 0.668 0.750 0.707 0.789 

HC_V-SP/OT 0.680 0.619 0.648 0.772 

Models based on 
deep learning 

V 0.731 0.750 0.741 0.822 
NV 0.732 0.842 0.783 0.841 

V-NV 0.761 0.786 0.773 0.843 

6.5. Performance using Manually Segmented and Transcribed Data 

So far, we have evaluated the models using automatically detected utterances. To show the top 
performance of our models using ideal input data, this section evaluates the models using manually 
segmented and transcribed data. The procedure is completely identical to that described in previous 
sections, except for verbal information models. As there was no missing transcription, verbal 
information models judged all the input. In addition, as the maximum number of words in the 
manually transcribed utterance was 48, the size of the input vector of verbal information models in 
deep learning was changed to 48 × 219 × 1. In LU model, the top 60% of the longest utterances were 
selected as important ones according to the definition in Section 6.1. 

Table 14 shows the model evaluation results. It is clear that the V-NV model performed best for 
all metrics, and the second-best model was NV. Moreover, ANOVA and a post-hoc test showed that 
the V-NV model was superior to all models in precision, F-measure, and accuracy (see Appendix) (In 
post-hoc test for recall rate, we could not prove that V-NV was significantly superior to GS. This is 
because the GS model is extremely recall-oriented. Moreover, in our research purpose, F-measure is 
much more important than the recall rate.) This indicates that fusing language information and 
nonverbal information yields the best performance if no segmentation/transcription error is included 
in the language data. 

Table 14. Performance of manually segmented models. Models with the best and second-best 
performance for each metric are marked in bold and underline, respectively. 

Category Model Precision Recall F-Measure Accuracy 
Baseline LU 0.585 0.828 0.686 0.678 

Models based on 
hand-crafted feature 

V_ALL 0.686 0.728 0.707 0.744 
SP/OT 0.729 0.720 0.725 0.767 

HC_V-NV 0.743 0.757 0.750 0.785 

Models based on deep 
learning 

V 0.765 0.806 0.785 0.813 
NV 0.777 0.844 0.809 0.831 

V-NV 0.807 0.847 0.827 0.850 

6.6. Discussion 

6.6.1. Characteristics of Deep Learning Models 

This section discusses the characteristics of deep learning models. The characteristics of hand-
crafted features have already been discussed when we selected useful features in Section 4.1.4. 

Characteristics of the verbal model 
We investigated what types of utterances the V model more correctly detects as an important 

utterance or correctly rejects as not-important utterance compared to nonverbal models. 
We converted each utterance in the corpus into a combinations of part-of-speech tags, and 

counted the combinations where TP of the V model was higher than that of the NV model (Table 15). 
As shown in Table 15, we found that such part-of-speech lists frequently contained one or more nouns 
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and particles. In addition, part-of-speech tags that can serve as a predicate (e.g., verb) were frequently 
observed. 

Table 15. Part-of-speech (POS) tuples that are accurately predicted as POSITIVE case by the V model. 
P, V, N, AUX, C, and Adv. indicate particle, verb, noun, auxiliary verb, conjunction, and adverb, 
respectively. 

Num. of words Tuple of POS tag Specific Example 

3 
P, V, N 

Visit Tsukiji, 
Tsukiji/it/te  

P, C, N 
Well then, Tokyo. 

ja/Tokyo/de 

4 P*2, N*2 
Pancake or fried chicken. 
panke-ki/ka/karaage/ka 

5 P, AUX, V, N*2 
Do we go to the Imperial Palace? 

ko-kyo/iku/n/desu/ka ? 

Conversely, when we looked at the negative examples (not-important utterances) that the V 
model successfully rejected, many of them included filler words such as “well” and “ah,” and 
interjections (Table 16). They were acknowledgments and approvals of others’ utterances, or 
mumbling to herself/himself. These utterances seemed not to be intended to communicate 
propositional content to other participants. 

Table 16. POS tuples that were accurately predicted as NEGATIVE case by the V model. Int., F, and 
Adj. indicate interjection, filler, and adjective, respectively. 

Num. of words Tuple of POS tag Specific example 

1 Int., F, N, Adv. V, C, Adj. 
um (Aa).  

right (So-desune). 
zoo (Do-butsuen). 

2 Int., N 
Mount Fuji, I see. 
Fujisan/naruhodo 

3 Int., P, N 
Um, popcorn. 
A/poppuko-n/ka 

4 P, AUX., N*2 
That sounds good. 

yosa/ge/desu/kedo 

Characteristics of the nonverbal model 
By observing cases where the nonverbal information model can estimate important utterances 

with higher performance than the verbal information model, we investigated the characteristics of 
important utterances captured by the nonverbal information model. 

First, there were 450 positive cases that the NV model correctly detected, while the V model 
failed to detect. The average speech spectrogram and head motion images for these cases are shown 
in Figure 8. In such cases, the speaker’s speech spectrogram contained frequency ranges with higher 
amplitude (marked with brighter colors), indicating that the person was speaking. However, no such 
range appeared in other participants’ speech spectrograms. This means that one person spoke, while 
other participants were quiet. Likewise, in the head motion spectrogram, the speaker’s head motion 
had frequency ranges with brighter colors, indicating that the head motion was more active. On the 
other hand, the head motions of other participants were less active. These observations suggest that 
the NV fusion model successfully detects important utterances that were fully attended, and other 
participants listened quietly. 
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Figure 8. Activity of speech and head motion. 

On the other hand, there were 503 negative cases that the NV model correctly detected and the 
V model failed to detect. In such cases, both the speaker’s and other participants’ spectrograms had 
frequency ranges with higher amplitude, indicating that both the speaker and other participants 
produced speech sound. The same trend was observed in the head motion spectrogram. These 
observations suggest that the NV fusion model successfully rejected non-important utterances when 
everyone was speaking and actively moving. 

In Section 4.1.4, for selecting hand-crafted features, we discussed that a speaker of an important 
utterance spoke longer and slowly, and the situation was watched by several others. In addition, 
other participants listened to the utterance quietly while paying attention to their note. Based on these 
findings, we can conclude that the deep learning model captured nonverbal features similar to the 
carefully selected hand-crafted features. 

6.6.2. Toward Meeting Summarization 

We aim to generate a summary using the proposed model in the last step of this study. In 
extractive summarization, summaries are produced by identifying important statements and 
ordering them. Therefore, the summary length is changed according to the number of statements 
judged as important. To select an arbitrary number of utterances as meeting extracts, previous studies 
estimated the importance or saliency of a given utterance using machine learning and statistical 
techniques [48,72]. However, this paper proposes binary classification models, which do not estimate 
the degree of importance of each utterance as meeting extract. 

To produce an arbitrary length of summaries, we used the probability obtained from the softmax 
function as the threshold to select an arbitrary number of meeting extracts. As the justification of this 
idea, we computed the correlation coefficient between the degree of importance of a given utterance 
and the score obtained from the softmax function of the V-NV fusion model. As the degree of 
importance, we used the agreement ratio; 0 (no one judged the utterance as important) to 1.0 (all five 
annotators agreed on selecting the utterance). As a result, a strong correlation was found between 
them (Pearson’s r = 0.77, p < 0.01). This suggests that our model allows to generate an arbitrary length 
of summary by changing the probability threshold in the softmax function. 

7. Multimodal Meeting Browser 

This section presents a multimodal meeting browser that implements the V-NV model. In 
addition to video and audio playing functionality, this browser can visualize the utterances and 
highlight the important utterances estimated by the model. As our estimation model detects 
important utterances based on multimodal and multiparty information, we expect that the 
multimodal meeting browser can support the users in understanding the role of each participant of 
the meeting as well as its contents. Furthermore, we examine whether the multimodal meeting 
browser is efficient in browsing the discussion. 

7.1. System Design 

To support the user in understanding the content, as well as role of each participant, of the 
meeting, we implement two main functions in the multimodal meeting browser: (1) Suggesting and 
visualizing the important utterances based on the estimated important utterances, and (2) displaying 
the video of the meeting to perceive its atmosphere. Figure 9 shows a snapshot of the browser. 
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Figure 9. A multimodal meeting browser. 

Utterance visualization: A timeline of utterances (A in Figure 9) is placed at the bottom of the 
browser. Each utterance is visualized as a white block on the timeline with elapsed time. A video can 
be played at any point of the timeline. 

Indicating the speaker and the content: By superimposing a semitransparent yellow rectangle 
(B) on the current speaker’s face image, the speaker is easily identified. Furthermore, the transcription 
of the current utterance is shown in area J. These functions support the user in understanding which 
participant spoke what utterance. 

Visualization of important utterances: By moving the slider (C) on the right part of the browser, 
the users can adjust the number of utterances shown on the timeline. As discussed in Section 6.6.2, 
the probability obtained from the softmax function is used as the threshold to select an arbitrary 
number of meeting extracts. The user can change the threshold by moving the slider up and down. 
When the user moves the slider up, more important (but fewer) utterances are shown on the timeline. 
Figure 10 shows the browser when the slider is operated. In Figure 10a, all utterances are displayed 
(the slider is at the bottom), and in Figure 10b, only the important utterances are displayed (the slider 
is at the top). 

Other features: The browser has many other functions. The user can play back and pause the 
discussion video shown in area E by using the button F. The time scale of the timeline can be changed 
by sliding the timeline zoom slider G. The playback position is changed by moving the playback 
position change slider I. In addition, by clicking on the utterance, the transcription of the utterance is 
displayed in J area (the utterance transcription display area).  

 
(a) Before change 

 
(b) After change 

Figure 10. A multimodal meeting browser: User can change the number of important utterances 
shown on the timeline by moving the slider. 

Figure 11 shows the system components of the multimodal meeting browser. The inputs of the 
browser are a meeting video and a text file that records the start/end time of utterance, degree of 
importance estimated by the model, and transcription for each line. The system reads it and creates 
an object of each utterance to be placed on the GUI. The user can access the utterance object at any 
time via the slider on the GUI and adjust the amount of utterance displayed. 
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Figure 11. System components of the multimodal meeting browser. 

7.2. Conducting User Experiment 

7.2.1. Hypotheses and conditions 

We conducted an experiment to investigate whether the proposed multimodal meeting browser 
is useful for browsing a group meeting. We examined the following three hypotheses.  
• H1: The multimodal meeting browser allows the users to understand the content of the 

discussion better than the text-based meeting browser. 
• H2: The multimodal meeting browser allows the users to understand the role of each participant 

better than the text-based meeting browser.  
• H3: The users’ impression on the multimodal browser is better than that on the text-based 

browsers.  
As the conventional text-based browser, we implemented a browser that focuses on the 

utterance content. We called this the text-based browser. A snapshot of the text-based browser is 
shown in Figure 12. The utterances of each participant are marked in different colors (blue, red, green, 
and yellow). Similar to the multimodal meeting browser, the text-based browser suggests the 
important utterances based on the estimation results of the model. Similar to the multimodal meeting 
browser, the number of utterances shown on the browser is changed by moving the slider. 

 
Figure 12. Overview of the text-based browser. 

We also implemented a simple browser that did not have any summarization function. This 
browser is similar to a movie player, where only media playing and seeking functions are 
implemented. In using this browser, the subjects need to browse the whole discussion to perform the 
task. Therefore, we expect that the results obtained from the subjects using this browser are not 
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affected by the important utterance estimation model or the browser functions. We use the 
summaries created by the subjects using this browser as the reference summaries. 

7.2.2. Task 

While observing the meeting videos using a browser, the subjects work on two tasks: creating a 
meeting summary and judging the participants’ roles. After browsing the video, the subjects are 
asked to answer a questionnaire for subjective evaluation about the browser. 

For the meeting summarization task, the subjects are instructed to create a 180−200 character 
summary in Japanese. They are also instructed that the summary should be comprehensible for the 
readers to capture the whole discussion. 

For the participant role judgment task, the subjects are asked to choose one person who is the 
best fit among the four participants for the description of a participant role. The list of descriptions 
for all participant roles is shown in Table 17. These statements are extracted from the definition of 
functional roles in the discussion proposed by [24]. 

The third task is answering a questionnaire after browsing the meeting. From the questionnaire, 
we collect the subject’s impression to the browser. We use the eight questions used in [63], such as 
“perceived ease of use” and “ease of search,” and add one item “usefulness of the browser.” The list 
of questions is shown in Table 18. 

7.2.3. Procedure 

Fifteen subjects (8 males and 7 females) participated in the experiment. The average age was 21.3 
(SD = 1.12). We had six combinations (= three types of bowsers x two videos discussing different 
topics). Each subject participated in two sessions, in each of which he/she watched a different video 
with a different browser. The assignment of subjects was based on the Latin square design, and five 
subjects were assigned to each combination. 

Before the experiment, the subjects awee explained the three types of browsers and had a 
training session to learn how to use the browsers. 

When using the multimodal meeting browser or text-based browser, the subjects were required 
to complete the task (summarization and participant role judgment) in 15 min. In using the simple 
browser, the time limit was set to 40 min to give enough time to complete the task. Therefore, if the 
quality of summary using the multimodal meeting browser or the text-based browser was equal to 
that using the simple browser, it is proved that the function of visualizing the important utterances 
effectively supports the subjects in creating a summary. The subjects were paid for completing all 
tasks. 

7.3. Results 

H1: the multimodal meeting browser allows the users to understand the content of the discussion 
better than the text-based meeting browser. 

To test this hypothesis, we compared the multimodal meeting browser and text-based bowser 
with respect to the quality of summaries that subjects created using these browsers. For this purpose, 
we used the summaries that the subjects produced by using a simple browser as reference summaries, 
and computed ROUGE scores for summaries using the multimodal meeting browser 
(ROUGE୫୳୪୲୧୫୭ୢୟ୪ିୱ୧୫୮୪ୣ) and those using the text-based browser (ROUGE୲ୣ୶୲ିୱ୧୫୮୪ୣ). Figure 13 shows 
recall, precision, and f-measure values for ROUGE-1, 2, L, and SU4 scores. As shown in the graphs, 
for all ROUGE scores, ROUGE୫୳୪୲୧୫୭ୢୟ୪ିୱ୧୫୮୪ୣ was better than ROUGE୲ୣ୶୲ିୱ୧୫୮୪ୣ. This indicates that 
visualizing important utterances with multimodal contents is more useful in improving the user’s 
understanding of the discussion than only displaying the text information. Thus, H1 is supported. 
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Figure 13. ROUGE comparisons. 

H2: the multimodal meeting browser allows the users to understand the role of each participant 
better than the text-based meeting browser. 

To test this hypothesis, we analyzed the results of the participant role judgment task. First, we 
computed the ratios that a person was selected for each description. For example, if a person was 
chosen from three out of five subjects for a given description, the ratio is 0.6. These ratios were 
calculated for all participants for all descriptions. Then, using these values, we computed Spearman’s 
rank correlation between the multimodal meeting browser and the simple browser, as well as the 
text-based browser and the simple browser. The results are shown in Table 17. 

Table 17. Correlation between multimodal browser and simple browser, and that between text 
browser and simple browser. 

Category Role description 
Cor (Simple, 
Multimodal) 

Cor (Simple, 
Text) 

Orienter 

A person who orients the group by 
introducing the agenda 0.91 0.82 

A person who defines goals and 
procedures 0.82 1.00 

A person who keeps the group focused 
and on track and summarizes the most 

important arguments and group decisions 
0.82 0.57 

Giver 

A person who provides factual 
information and answers to questions −0.14 0.86 

A person who states his/her beliefs and 
attitudes about an idea 0.39 0.00 

A person who expresses personal values 
and offers factual information 0.82 0.28 

Seeker 
A person who requests information 0.67 0.17 
A person who requests clarifications 0.66 0.66 

Follower A person who does not actively 
participate in the interaction 0.38 0.91 

Attacker 
A person who deflates the status of others −0.44 −0.17 

A person who expresses disapproval 0.92 0.56 
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A person who attacks the group or the 
problem 

0.00 0.30 

Gate 
Keeper 

A person who is the moderator within the 
group 0.25 −0.24 

A person who encourages and facilitates 
the participation 0.82 0.82 

A person who regulates the flow of 
communication 0.82 0.66 

Protagonist 

A person who takes the floor 0.82 0.38 
A person who drives the conversation 0.75 0.66 

A person who assumes a personal 
perspective and asserts her/his authority 0.44 −0.22 

Supporter 

A person who shows a cooperative 
attitude, manifesting understanding, 
attention, and acceptance to others 

−0.67 0.50 

A person who provides technical and 
relational support. 0.03 0.69 

Neutral 
Role 

A person who passively accepts the ideas 
of others. 0.38 0.30 

A person who serves as an audience in a 
group discussion. 0.67 0.61 

 
The values shown in the table are the average of the correlations of two topics. The average 

correlations higher than 0.8, which is a strong correlation, are shown in bold. As shown in the table, 
strong correlations are more frequently observed between the judgments using the multimodal 
meeting browser and those using the simple browser, compared to the correlations between the text-
based browser and a simple browser. Suppose that the subjects who use the simple browser observe 
the discussion as long as they need and most correctly evaluate the participant roles. Thus, the 
subjects more correctly evaluate the participant roles using the multimodal meeting browser than 
that using the text-based browser. 

For individual roles, people can find the Attacker and Protagonist more correctly using the 
multimodal meeting browser than the text-based browser. On the other hand, the text-based browser 
is more suitable for finding the Supporter. However, for the Orienter and Gate keeper, clear results 
were not found. These results suggest that the multimodal browser is useful in finding a person who 
proactively claims his/her opinions. By contrast, the text-based browser more suitably finds a person 
who does not actively participate in the interaction and is more agreeable and supportive. Therefore, 
hypothesis H2 is partially supported. 

H3: users’ impression on the multimodal browser is better than that on the conventional browsers. 

Finally, we analyzed the subjects’ impression to the browsers. We asked eight questions on a 5-
point Likert scale to the subjects after browsing the discussion. The average value and the results of 
the t-test that examines the difference of the average score between the multimodal meeting browser 
and the text-based browser are shown in Table 18. 

Table 18. Usability comparison between multimodal browser and text browser. 

Questionnaire item Multimodal Text t-test 
Ease of use 4.1 3.1 t(18) = 1.945† 

Ease of search 3.7 3.1 t(18) = 0.868 
Efficiency in finding all relevant information 4.0 3.5 t(18) = 0.921 

General task comprehension 4.3 3.4 t(18) = 2.242* 
Task success 3.7 2.7 t(18) = 2.224* 
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Task difficulty 3.0 2.6 t(18) = 0.802 
Perceived pressure 2.7 2.5 t(18) = 0.418 

Usefulness of the browser 4.5 3.5 t(18) = 2.301* 
 
As shown in the table, the subjects have a better impression on the multimodal meeting browser 

than the text-based browser for all aspects. The difference is statistically significant in “general task 
comprehension,” “task success,” and “usefulness of the browser,” and the difference in “ease of use” 
has a trend toward significant. Therefore, the subjects perceived that the multimodal meeting 
browser was easier to use, easy to understand the task, and more useful than the conventional text-
based browser. 

8. Conclusions and General Discussion 

By focusing on the co-occurrence of multiple social signals among multiple participants, this 
study proposed a verbal-nonverbal model to detect important utterances contributing to a meeting 
summary. In Sections 4 to 6, we created prediction models by employing two approaches–a 
handcrafted feature and deep learning–and compared the model performance in Section 6. The best 
handcrafted feature model achieved 0.707 in F-measure, and the deep-learning based verbal and 
nonverbal model (V-NV model) achieved 0.827 in F-measure when using manually segmented 
utterances. 

Then, we implemented a meeting browser using our best performance model (V-NV model), 
and conducted a user study. The results of the experiment showed that the proposed meeting 
browser contributed to a better understanding the content of the discussion and the role of 
participants in the discussion than the conventional text-based browser. It was also suggested that 
the proposed browser helps the user to observe the participants who are actively speaking, but is not 
very helpful in detecting participants who support the others and do not actively participate in the 
discussion. 

As future directions, first, we need to add more modalities. In the MATRICS corpus, we collected 
eye gaze and body motion data, but these data were not used in training the models. Combining 
these data with those used in this study will contribute to exploring meaningful co-occurrence 
patterns. For example, this study only used head-gaze. It is expected that by combining head-gaze 
and eye-gaze data, more accurate prediction may be possible. It is also necessary to improve the 
structure of deep neural network by employing a attention mechanism and other state-of-the-art 
techniques of deep learning. It is also necessary to improve the V model because our current V model 
is simple. It would be beneficial to incorporate state-of-the-art NLP techniques such as a hierarchical 
encoder [45] and transformer [73] into our prediction model. Finally, intriguingly, our meeting 
browser was useful in observing participants with some specific roles, but not for those with other 
roles. To tackle this problem, we need to create models to detect different types of important 
utterances and display them distinguishably on the meeting browser. 
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Table A1 shows the results of ANOVA and a post-hoc test for automatically detected utterances 
(Table 13) and Table A2 shows the results for manually segmented utterances (Table 14). 

Table A1. ANOVA test for automatically detected utterances. 

Metric Test Result 

Prec 

ANOVA F(1.608, 24.123) = 19.687 (p<.05) 

Post-hoc 
test 

Proposed models vs. 
baseline 

• LU < V_ALL, SP/OT, HC_V-SP/OT, V, NV, 
V-NV (p < .05) 

Handcrafted feature vs. 
deep learning 

• V_ALL < V (p < .05) 
• SP/OT < NV (p < .05) 
• HC_V-NV < V-NV (p < .05) 

Rec 

ANOVA F(2.326, 34.893) = 40.803 (p < .05) 

Post-hoc 
test 

Proposed models vs. 
baseline • LU < NV, V-NV (p < .05) 

Handcrafted feature vs. 
deep learning 

• V_ALL < V (p < .05) 
• SP/OT < NV (p < .05) 
• HC_V-NV < V-NV (p < .05) 

F1 

ANOVA F(1.453, 21.794) = 36.295 (p < .05) 

Post-hoc 
test 

Proposed models vs. 
baseline 

• LU < SP/OT, HC_V-SP/OT, V, NV, V-NV (p 
< .05) 

Handcrafted feature vs. 
deep learning 

• V_ALL < V (p < .05) 
• SP/OT < NV (p < .05) 
• HC_V-NV < V-NV (p < .05) 

Acc 

ANOVA F(1.726, 25.887) = 29.378 (p < .05) 

Post-hoc 
test 

Proposed models vs. 
baseline 

• LU < V_ALL, SP/OT, HC_V-SP/OT, V, NV, 
V-NV (p < .05) 

Handcrafted feature vs. 
deep learning 

• V_ALL < V (p < .05) 
• SP/OT < NV (p < .05) 
• HC_V-NV < V-NV (p < .05) 

Table A2. ANOVA test for manually segmented utterances. 

Metric Test Result 

Prec 

ANOVA F(2.457, 36.858) = 19.869 (p<.05) 

Post-hoc 
test 

Proposed models vs. 
baseline 

• LU < V_ALL, SP/OT, HC_V-SP/OT, V, NV, 
V-NV (p < .05) 

Handcrafted feature vs. 
deep learning 

• V_ALL < V (p < .05) 
• HC_V-NV < V-NV (p < .05) 

Rec 

ANOVA F(2.834, 42.51) = 12.691 (p < .05) 

Post-hoc 
test 

Proposed models vs. 
baseline 

• There were no models superior to LU 
significantly. 

Handcrafted feature vs. 
deep learning 

• V_ALL < V (p < .05) 
• SP/OT < NV (p < .05) 
• HC_V-NV < V-NV (p < .05) 

F1 

ANOVA F(2.147, 32.202) = 18.524 (p < .05) 

Post-hoc 
test 

Proposed models vs. 
baseline 

• LU < V_ALL, SP/OT, HC_V-SP/OT, V, NV, 
V-NV (p < .05) 

Handcrafted feature vs. 
deep learning 

• V_ALL < V (p < .05) 
• SP/OT < NV (p < .05) 
• HC_V-NV < V-NV (p < .05) 

Acc ANOVA F(2.539, 38.086) = 23.908 (p < .05) 
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Post-hoc 
test 

Proposed models vs. 
baseline 

• LU < V_ALL, SP/OT, HC_V-SP/OT, V, NV, 
V-NV (p < .05) 

Handcrafted feature vs. 
deep learning 

• V_ALL < V (p < .05) 
• SP/OT < NV (p < .05) 
• HC_V-NV < V-NV (p < .05) 
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