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Abstract: Multiple sclerosis (MS) is a disease that affects the central nervous system, which consists
of the brain and spinal cord. Although this condition cannot be cured, proper treatment of
persons with MS (PwMS) can help control and manage the relapses of several symptoms. In this
survey article, we focus on the different technologies used for the assessment and rehabilitation of
motor impairments for PwMS. We discuss sensor-based and robot-based solutions for monitoring,
assessment and rehabilitation. Among MS symptoms, fatigue is one of the most disabling features,
since PwMS may need to put significantly more intense effort toward achieving simple everyday
tasks. While fatigue is a common symptom across several neurological chronic diseases, it remains
poorly understood for various reasons, including subjectivity and variability among individuals.
To this end, we also investigate recent methods for fatigue detection and monitoring. The result of
this survey will provide both clinicians and researchers with valuable information on assessment and
rehabilitation technologies for PwMS, as well as providing insights regarding fatigue and its effect on
performance in daily activities for PwMS.

Keywords: multiple sclerosis; gait; fatigue; sensors; rehabilitation

1. Introduction

Multiple Sclerosis (MS) is a disease in which the immune system attacks the neurons of the central
nervous system causing inflammation that damages the myelin, the fatty substance that surround the
axons [1]. It is incurable and is the most prevalent inflammatory disease affecting nearly 2 million
people worldwide and around 400,000 in the United States [2]. There are several different subtypes
of MS: Clinically Isolated Syndrome (CIS), Relapsing-Remitting MS (RRMS), Secondary Progressive
MS (SPMS) and Primary Progressive MS (PPMS) [3]. CIS is the first clinical presentation of the
disease which shows characteristics of inflammatory demyelination in the central nervous system
and it must last for at least 24 hours to be classified as a sign indicating MS. A person exhibiting
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CIS may or may not go on to develop MS [4]. RRMS is the most commonly diagnosed subtype and
is characterized by exacerbation of the disease in which some aspect of function (e.g., walking) is
compromised (a ’relapse’), followed by a remission of the disease in which the function is regained
to near pre-exacerbation levels. After an initial period of RRMS, SPMS typically follows [4]; this
is characterized by less recovery after attacks, gradually worsening attacks and shorter periods of
remission. PPMS is characterized by steady progression of disability once a person is affected (i.e.,
without the cycle of relapses and remissions seen in RRMS) [4]. There are no straightforward tests
or symptoms to diagnose MS. It usually involves several strategies to make sure that the various
symptoms are not due to a different underlying problem. The most commonly used tests for this
purpose include Magnetic Resonance Imaging (MRI), Evoked Potentials (EP) and spinal fluid analysis
apart from a meticulous medical history and a neurological exam. A widely used standard for the
diagnosis of MS is the McDonald Criteria, which has been developed and enhanced over the past
decade [5]. There are several options within this criteria including dissemination of lesions (detected
using MRI scans) in time and space.

One of the most important symptoms of MS is motor impairment. According to one of the
composite scales for quantifying disability in MS, the Multiple Sclerosis Functional Composite
(MSFC), several components are recommended for assessment including measurement of leg
function/ambulation, arm/hand function and cognitive function [6]. It is clear that the assessment
of motor impairments in PwMS is very important in the treatment of this condition. Impairments
can manifest as tremors, spasticity, paroxysmal, dystonia, ballism, chorea and paroxysmal kinesigenic
dyskinesia among others [7]. These impairments can be explained by muscle dysfunction which is
both neural and muscular in origin [8]. The most common movement defects in PwMS are gait and
balance abnormalities and upper-limb impairments. These defects deter proper day-to-day functioning
of PwMS. Such functional impairments require both specialized assessments and interventions by
rehabilitation specialists. Multiple studies have been conducted to assess movement deficits in terms
of gait and manual dexterity and several assessments are available. Studies have indicated that
PwMS have a higher gait variability and lower walking velocity than people without MS [9,10].
With developments in sensor-based technology and assistive robots, several of these assessments
have incorporated sensors and robots to assist clinicians and physical therapists in providing targeted
assessments and rehabilitation interventions. Our main objective is to provide both clinicians and
researchers with a survey of sensor-based and robot-based assistive technologies for both assessment
and rehabilitation approaches for such common motor impairments in PwMS. Hence, for our survey,
we include research studies and papers in which assistive technologies have been already proposed and
evaluated for assessment and rehabilitation for PwMS. Our search in Google Scholar included terms
related to “Multiple Sclerosis AND sensors”, “Multiple Sclerosis AND wearables OR rehabilitation
robots AND fatigue analysis OR fatigue monitoring” and “Multiple Sclerosis AND wearables OR
rehabilitation robots AND upper limb assessment OR upper limb rehabilitation”. We then refined,
enhanced and validated our results by using the following databases: PubMed, Science Direct,
ProQuest and Medline.

The main purpose of such a survey is to present the available assistive technologies used in
MS, providing researchers and clinicians with the different approaches (sensors, robots) used to
augment both assessment and rehabilitation approaches for different types of motor impairments
(lower/upper body). Towards this, we provide a description of well-established assessment tests
used by clinicians (Section 2) for upper limb motor function assessment, as well as balance and gait
assessment. We discuss the need for assistive technologies in the domain of MS assessment (Section 3),
providing a description of sensor technologies and robotic devices, used to augment and enhance
traditional assessments, as well as assistive technologies and approaches for rehabilitation, training
and intervention for PwMS (Section 4). Since fatigue is a commonly reported symptom for PwMS,
we discuss existing methods to estimate and assess fatigue, including both traditional methods (e.g.,
questionnaires, scales), as well as multimodal fatigue detection and analysis approaches and their
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application to rehabilitation and training for PwMS (Section 5). Finally, we conclude by providing
a summary of the paper, as well as a set of discussion points towards improving existing assistive
technologies for the assessment, rehabilitation and training for PwMS (Section 6).

2. Tests for Motor Function Assessment in Multiple Sclerosis

Diagnosis for MS has evolved over the years from being only a clinical symptom-based
assessment [11,12] to including MRI to the diagnostic criteria [13]. This advancement in the diagnostic
criteria has helped in the timely diagnosis of the condition. For long-term well-being, early treatment
is highly advised since it has been shown that it can slow down disease progression. The main
problem is that due to the multitude of symptoms, most people find it difficult to know when to
start treatment [14]. In the following sections, we present some of the commonly used tests for the
assessment of motor function, including gait, balance and walking difficulty, as well as upper limb
motor function in PwMS.

2.1. Tests for Gait and Balance Assessment

Gait, balance and walking ability are critical in the maintenance of independence and several tests
have been developed to assess these abilities in MS. Some of the most commonly used tests are Manual
Muscle Tests, Timed Walking Tests, balance and gait analyses, vestibular and sensory/proprioceptive
assessments, and safety evaluations [15]. In this section, we elaborate on some of the most explored
and researched tests for assessing balance and walking difficulties.

In Manual Muscle Testing, patients are instructed to hold the corresponding limb or appropriate
body part to be tested at the end of its available range of motion while the practitioner provides
opposing manual resistance. Different methods have been proposed to grade muscle strength like the
Oxford Muscle Strength Scale and the Medical Research Council (MRC) Scale [16]. The most commonly
used scale is a 6 point numeric grading system where 0 implies complete paralysis and 5 implies full
strength [17,18]. While it is not a highly accurate assessment, administering this test at the appropriate
time can provide physical therapists with valuable insights regarding the progress of the treatment
and can assist in planning proper intervention or modification to the current track of treatment.

Timed walking tests, such as the Timed 10-meter, 30-meter and Timed Up-and-Go tests are
designed and regularly used and recommended by physiotherapists for assessing and rehabilitating
walking defects [19]. The timed walking tests help measure the disability and the effectiveness of
physiotherapy intervention for PwMS [21]. In these tests, the patients are asked to walk a set distance
like 3, 10 or 30 meters as quickly and safely as possible. The Timed Up-and-Go test is used to assess
balance and physical mobility. In this test, the patients rise from a chair walk a distance of 3 meters,
turn around, walk back 3 meters and sit down again and the time taken for this activity is recorded
[22]. Tests with shorter distance like the timed 25-foot walking test and the timed up-and-go test have
been identified as important measures to assess leg function and ambulation [23].

Gait is defined as the manner in which a person walks. Gait impairment is a very common defect
in PwMS. The degree of gait impairment depends on the severity of the defects in the neurological
system. Several factors like muscle power loss, level of spasticity, degree of instability due to impaired
coordination and degree of sensory impairment have been identified to induce gait variability in
PwMS [24]. Several studies have been conducted to monitor and assess gait deterioration [20,25–27].
In a study by Kaufman et al. [28], the Timed 25-foot walk was used to assess gait deterioration and it is
reported that an increase of 20% in the walking time between two trials signifies a clinically-relevant
deterioration of gait. Several other spatiotemporal parameters like decreased velocity, step length,
cadence and asymmetric gait with a difference between right and left stance periods, increased hip and
knee flexion, increased overall sagittal range of motion (ROM) in the hip joint and decreased overall
ankle sagittal ROM [25,29] have been reported as indicators of gait abnormality in a person with MS.
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2.2. Tests for Upper Limb Motor Function Assessment

Upper limb motor function is important for activities of daily living (ADL), such as cooking
or writing. Deterioration in hand dexterity, strength and coordination are common in PwMS [30].
In this section, we describe some of the tests commonly used to assess dexterity and upper limb motor
function.

The Nine Hole Peg Test (NHPT) is a brief, standardized and quantitative test which measures
manual dexterity and is considered as a “gold standard” assessment. It has been widely used for
measuring dexterity for PwMS [31–33], patients with Parkinson’s disease [34], children [35] and the
elderly [36]. NHPT is a timed test in which the patients are asked to transfer pegs from a container
to a block with 9 holes as quickly as possible. Figure 1 shows an example NHPT (left). The test
is done on both the dominant and non-dominant arms twice consecutively and the time taken
to complete the run is recorded. Several studies have been done to check the test’s reliability for
healthy and post-stroke subjects and have concluded that NHPT has high inter-rater and test-retest
reliability [37–39]. One drawback of this test is that NHPT may be sensitive to practice effects. Hence,
it is recommended that a few rounds should be administered before a baseline assessment [40,41].

Figure 1. Subject taking the custom built nine hole peg board test (left). Subject taking the custom built
box and blocks test (right).

The Box and Blocks Test assesses manual dexterity in physically challenged individuals [36].
The test usually involves participants moving blocks, from one side of a box to another in 60 seconds,
in a setup as shown in Figure 1 (right side). Several studies have concluded that the test has
high inter-rater and test-retest reliability [36,42] and recommend this test for assessment of manual
dexterity [40].

The Purdue Pegboard Test is also extensively researched and widely used and measures gross
movements of arms and hands as well as finger dexterity [40,43]. This test involves four sub-tests
where participants are asked to place small pegs, washers, and collars into holes on a pegboard or
perform an assembly task using pins and washers. The participants perform this test using both
dominant and non-dominant hand one after the other, using both hands simultaneously or using both
hands alternately. The user has to perform the task within 30 seconds and is evaluated on the number
of pegs placed in the holes or the number of pairs assembled [44].

Other tests for manual dexterity include the Crawford Small Parts Dexterity Test, the Functional
Dexterity Test, the Grooved Pegboard Test, the Jebsen-Taylor Test of Hand Function, the Minnesota
Rate of Manipulation Test, the Moberg Pick-Up test, the O’Connor Finger Dexterity Test, the Sequential
Occupational Therapy Dexterity Assessment and the Wolf Motor Function Test. These tests are
considered to lack psychometric soundness due to limited research establishing their reliability and
validity and must be used cautiously [40].

3. Assistive Technologies for Assessment in Multiple Sclerosis

Loss of motor function is a common problem faced by people suffering from MS, diabetes, the
elderly and patients suffering from other neurodegenerative diseases. Traditionally, motor impairment
and deterioration have been measured using rating scales like the Ambulation Index, the Functional
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Systems Score, the Expanded Disability Status Scale (EDSS) and many others and tests in a clinical
setup like the Timed 25-foot Walking Test, Timed Up-and-Go Test and the NHPT among others.
These tests are usually administered in person by an expert usually a neurologist, whose observations
are used as input. These tests often lack precision and might require patient input and/or clinician’s
expertise to administer the tests and interpret the results [45]. In recent years, several sensors and
assistive robots have been developed to provide an accurate measure of body movement and physical
activity early in the disease progression [46]. In this section, we discuss several sensor-based and
robot-based assessment technologies used for assessment and treatment of MS. We present the different
methods and approaches for multimodal gait analysis, for balance monitoring and for the assessment
of upper limb motor function and manual dexterity. We present the different technologies, sensors
used and procedures followed for assessment of both the lower and upper limb motor function.

3.1. Multimodal Gait and Balance Monitoring

Difficulty in walking or gait variability is one of the symptoms most commonly reported by PwMS.
Gait is defined as the manner in which a person walks and gait variability is defined as stride-to-stride
fluctuations in walking [47]. There are several factors that affect the gait of a person which include
fatigue, balance, weakness, spasticity and sensory deficit [48]. PwMS have greater variability in
their hip, knee and ankle joint angle movement compared to healthy subjects [9]. While objective
quantification of disability is routine in clinical trials/clinical visits, traditional methods for gait
assessment are semi-subjective, carried out by specialists who observe the quality of a patient’s gait
as they walk. Patients may also be surveyed to provide the specialist with a subjective evaluation
of their gait. The disadvantage of the subjective nature of the measurements is limited accuracy
and precision [46]. In contrast to traditional methods, progress in new technologies has given rise to
devices and techniques which allow a quantitative evaluation and analysis of different gait parameters,
resulting in more objective measurements and quantitative information related to patients’ gait,
potentially reducing error compared to subjective approaches. Several studies have shown the
reliability and the ability of these sensor-based setups to effectively measure gait parameters.

In a study by Sun et al. [49], static balance assessment is done by measuring the postural sway
by using lightweight inertial sensors and accurately measuring sway metrics like sway area, sway
path length, root mean square (RMS) sway amplitude along the anterior-posterior and medial-lateral
axis, mean velocity and jerk (an indicator of the smoothness of postural sway). Postural sway refers to
the horizontal movement around the center of gravity of the human body. The balance assessment
consists of two 30 s quiet standing trials in three different conditions: eyes open on a firm surface, eyes
closed on a firm surface, and eyes open on a foam surface. Statistical analysis of sway metrics from
BioStamp inertial sensors have shown a strong correlation with MTx sensor data and its capability
to distinguish PwMS from healthy subjects. This study considered PwMs with mild MS who had
EDSS score between 2 and 4 and severe MS with EDSS score ≥ 6. Another study by Filli et al. [50]
characterized MS-related gait pathology, aimed at defining and detecting specific gait patterns in
patients and monitored deterioration of walking function over a period of one year. PwMS recruited
for this study had a mean EDSS score of 4.5 ± 1.0. Patients showed a bilateral reduction in step
length, associated with diminished ROM in the leg joints. While ROM of the hip was preserved,
significant reductions in the extent of the movement were observed at the knee as well as at the ankle
joint. The study also showed that more pronounced restriction of ROM at the knee and ankle joint of
the weakest leg resulted in substantial left-right asymmetry. These kinematic gait parameters were
measured using the Nexus 2.2.3 Motion Capture Software to generate a set of full-body gait profiles
based on a comprehensive set of upper and lower extremity and trunk kinematic parameters.

Spain et al. [20] sought to determine if body-worn sensors could detect differences in gait and
balance between PwMS who had normal walking speeds and healthy controls. The system consisted
of six small, body-worn sensors (Xsens [51]) each housing a 3-dimensional gyroscope and tri-axial
accelerometer sensors. In this study, the authors compared different timed mobility tests like Timed
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25-Foot Walk, Timed Up-and-Go test and the Quiet Standing test for balance assessment with 31 PwMS,
with a median EDSS score of 3 and 28 age and sex matched control subjects while wearing the Xsens
sensor. They found that the traditional stopwatch-timed mobility tests with experts were insensitive to
mild MS. Whereas, the portable motion analysis system using the Xsens sensor showed significant
differences in balance and gait parameters in MS.

Another study conducted by Greene et al. [52] conducted a cross-sectional study with early-stage
MS patients to measure the reliability of manual and automatic mobility measures derived from
shank-mounted inertial sensors during the Timed Up-and-Go test. In this study, the authors tried to
see if a patient’s disease status can be explained with measurements from the inertial sensors and
distinguish them with measurements from healthy subjects. The mobility of 38 patients diagnosed
with relapsing-remitting MS, with a mean EDSS score of 1.3 and 33 healthy controls was assessed
using the Timed Up-and-Go test while the sensors were mounted on both the shanks. A total of 36
(out of 53) mobility parameters obtained during the Timed Up-and-Go showed excellent intra-session
reliability, while 9 (out of 53) parameters showed moderate reliability. This compared favorably with
the reliability of the mobility parameters in healthy controls, and mobility parameters of early-stage
PwMS could be distinguished from healthy subjects with 96.9% accuracy.

Considering mobility impairment in PwMS, a study by Moon et al. [27] proposed a wireless,
skin-mounted and conformal inertial sensor to assess mobility under controlled conditions. During the
test, PwMS were instrumented with BioStampRC [53] and MTx [51] sensors on their shanks, as well as
an activity monitor GT3X [54] on their non-dominant hip. Shank angular velocity was simultaneously
measured with the inertial sensors. Step number and temporal gait parameters were calculated from
the data recorded by each sensor. The study concluded that the BioStampRC sensor can accurately and
precisely measure gait parameters in PwMS across different diverse walking impairment levels and
detected differences in gait characteristics specific to disability level. There were three groups of PwMS
recruited for this study, PwMS with mild disability had EDSS score between 0 and 2.5, PwMS with
moderate disability had EDSS score between 3.5 and 6 and PwMS with severe disability had EDSS
score between 5.5 and 6.

Following a computational approach, Gong, Goldman and Lach [26] proposed a Deep
Convolutional Neural Network (DCNN) to learn the temporal and spectral associations among
the time-series motion data captured by inertial body sensors. A simulated model was developed to
train the CNN, and then the trained model assessed gait performance in a pilot dataset with 41 subjects,
28 PwMS who had an EDSS score <4.5 and 13 healthy controls. Five inertial body sensors, equipped
with a 3-D gyroscope and a tri-axial accelerometer were used to capture the body motion of walking
subjects. The authors reported that their proposed approach outperformed previous efforts to detect
differences between healthy controls and PwMS.

While it is not clear which factors influence the prognosis of MS, psycological stress has long been
suspected of aggravating progression. Lopez and Picard [55] discuss the opportunities for wearable
sensors in the management of stress in PwMS. To accurately gather measurements of autonomic
responses in the midst of daily activity, cumbersome electronics such as electrodes placed on the
chest have usually been required. In this work, the authors claim that wearable biosensors that can
accurately and unobtrusively measure autonomic responses have become available and can be used for
stress management. Electrodermal Activity (EDA) biosensors measure electrical conductance changes
in the skin, reflecting eccrine sweat-gland activity, while Blood Volume Pulse (BVP) signals obtained
from wrist photoplethysmograph (PPG) sensors measure heart and blood circulation changes.

Another study by Muro, Garcia and Mendez [56] presents a review of some sensors being used for
human gait recognition and analysis, including Echo5D with the GAITRite CIR-Face (GC) sensor [57],
M3D Force Plate [58], XSens MVN [51], Zebris FDM-T System [59], FootScan [60], MatScan [61],
Kistler Force Plate [62] and Or6-7 Platform [63]. Dobkin and Dorsch [64] also introduce two other
sensors, the DynaPort Minimod [65] and IDDEA Lifegate sensor [66] to analyze different activities for
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gait analysis, including walking, sitting and standing. The GAITRite CIRFace (GC) sensor was also
configured as a straight path for electronic gait analysis by Bethoux et al. [67].

Based on the studies presented above, it is evident that an inertial sensor-based setup is most
commonly used in several studies [20,26,27,49,50,52] and measurements from these sensors have also
been proven to be reliable to categorize patients to a specific disease state and differentiate an MS
patient from a healthy subject [52]. An inertial sensor like the BioStamp sensor or the Xsens sensor
usually consists of a 3-dimensional gyroscope and tri-axial accelerometer sensors. Positions of these
sensors usually vary based on the kind of tests performed. For example, for timed walking tests like
the Timed Up-and-Go test and the Timed 25-Foot Walk test, sensors can be mounted on each shank [27]
while for a balance test like the Quiet Standing task, the sensors could be placed on the posterior
trunk at L5 vertebrae [49]. The sensor placement also differed based on the kind of parameters to be
measured. It is important to note that there is a need for remote monitoring of patients to accommodate
longitudinal monitoring of gait and balance impairments in PwMS [50]. Most of these sensors being
wearable and lightweight provides an avenue for development of remote monitoring systems which
would help clinicians and health care providers make better treatment and rehabilitation plan. Table 1
summarizes the sensors and wearables that have been used for gait analysis and balance assessment.
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Table 1. Summary of sensor technology used for gait assessment.

Technology Used Papers Placement of the Technology Data Collected

BioStamp Sun et al. [49] On subject’s posterior trunk at L5 Sway metrics for postural sway measurement
Moon et al. [27] On subject’s shanks Shank angular velocity, step number and temporal gait parameters

MTx

Sun et al. [49] On subject’s posterior trunk at L5, near the body Center of Mass Sway metrics
Muro et al. [56] Wireless wearable suit sensors on chest, upper and lower limbs Motion capture and six degrees of freedom tracking
Moon et al. [27] On subject’s shanks Temporal parameters for gait assessment

Spain et al. [20] 4 cm above each malleolus, on the dorsum of the wrists, the upper trunk 2 cm
below the sternal notch, and on the lumbar trunk at L5

Rotational trunk velocity in roll, pitch and yaw planes. Linear
acceleration in vertical, lateral and sagittal directions

Bertec Sun et al. [49] Stand upright on a force plate Center of pressure sway metrics

Treadmill and Motion Capture
Software— Nexus 2.2.3 Filli et al. [50] Subjects walked on an instrumented treadmill equipped with 14 infrared

cameras recording via Nexus 2.2.3 28 key gait parameters describing leg, trunk and arm movements

Wireless inertial sensors Greene et al. [52] To the mid-point of each anterior shank (shin) Sample medio-lateral shank angular velocity signal obtained from left
(top panel) and right (bottom panel) shank

Gong et al. [26] 5 inertial sensors on the left/right wrists, left/right ankles, and sacrum Kinematic parameters for gait assessment

GT3X Moon et al. [27] Non-dominant hip Shank angular velocity, step number and temporal gait parameters

Electro dermal activity biosensors Lopez and Picard [55] On the skin of subjects Electrical conductance changes in the skin reflecting eccrine sweat-gland
activity

Wrist PPG sensors Lopez and Picard [55] On the wrist Blood volume pulse signals

Echo5D with GAITRite
CIRFace (GC)

Muro et al. [56] GC was placed on the floor on which the subjects were asked to walk Spatiotemporal gait parameters

Bethoux et al. [67] Echo 5D placed on a shelf top in the subject’s home.
GC was configured as a straight path with 16 feet (4.9 m) of active pathway

3D position of the subject at a rate of 30 samples/s from Echo 5D.
GC is used as an electronic gait-analysis walkway to measure subject’s
gait anomalies

M3D Force Plate Muro et al. [56] On toes and heels Measure forces along the three orthogonal axes (accelerometer,
geomagnetic, gyroscope)

Zebris FDM-T system Muro et al. [56] User walks on sensor mounted treadmill Kinematic motion analysis, place parameters, swing phase, step length,
centers of pressure

FootScan Muro et al. [56] User walks on floor plate (Plantar) pressure measurements

MatScan Muro et al. [56] Users steps on floor mat Static and dynamic pressure for foot action and gait analysis

Kistler force plate Muro et al. [56] User steps on floor platform Foot pressure compared to subject’s body weight is captured

Or6-7 Platform Muro et al. [56] User steps on floor platform Foot pressure compared to subject’s body weight is captured

DynaPort Minimod Dobkin and Dorsch [64] Placed over the L3 spinous process Accumulates gait stance as well as swing time and walking speed
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3.2. Multimodal Assessment of Upper Limb Motor Function

Several studies indicate that impairment in the upper limb motor function should be considered
as an important aspect of MS disease progression and management [68,69]. Dysfunction in the upper
limbs includes reduced manual dexterity, tremors, numbness, weakness in the muscles and difficulty
in slow movements. Such effects cause difficulty in completing common ADL like eating or dressing.
There are tests like the NHPT and Hand-Grip Strength Test (HGS) that are used to assess upper limb
mobility, but these are limited by being relatively insensitive to subtle changes in motor skills. This has
led to the development of sensor and robotic technologies, towards enabling medical and research
specialists to detect and analyze changes in motor skills and abilities. Examples of such sensors include
motion capture technologies, haptic interfaces and mechanical environments.

In a study conducted by Corona et al., researchers recruited 20 PwMS with a mean EDSS score of
5.4 ± 1.3 in order to perform a Hand-To-Mouth (HTM) test while recording data for kinematic analysis
using the SMART-D system, a motion capture system [68]. The SMART-D system consists of 8 infrared
cameras that track movement using retro reflective markers positioned on specific points on the upper
arm. The task included sitting in front of a table with a neutral posture and moving the fingertips
to the mouth after a verbal signal. The task was self-paced and repeated at least 6 times. It was
evaluated using an Arm Profile Score (APS) which was derived as the root mean square difference
between the kinematic data of a healthy subject and a PwMS. Their finding was that PwMS showed
greater difficulty in reaching their mouth, for both their dominant and non dominant arms. They also
established that APS was suitable to discriminate movements between PwMS and healthy subjects.

Another study investigated the effectiveness of an accelerometer-based wrist-worn movement
sensor to measure and analyze tremors [70]. All participants were diagnosed with MS and were
clinically identified or self-reported to have tremors in one or both upper limbs. The study quantified
tremors in the impaired limb on a zero to four scale based on the Fahn-Tolosa-Marin clinical rating
scale [71]. Participants carried out several tasks, including several from the Fahn scale, a self-selected
daily activity affected by tremor and several from activities from the Action Research Arm Test
(ARAT) [72] another established performance test for upper arm function. Activities included
maintaining posture against gravity with both arms extended at a 90 degree angle, picking up a
wooden cube and placing it on a shelf or pouring water from one container to another. An algorithm
was developed to predict the presence of tremors based on the wrist monitor data. Overall, the
algorithm was able to predict 98.2% of the tremor cases with high specificity and sensitivity. This
categorization was in agreement with the judgment of an experienced therapist present during each
session.

Carpinella et al. conducted a study to quantify the assessment of the upper limb during ARAT.
Subjects were asked to perform all of the ARAT subtasks [73]. Users were monitored while sitting
upright on a chair with no armrests using an inertial sensor attached on their wrist and used the most
affected arm to perform each test. PwMS recruited for this study had EDSS score between 2 and 8.5
while the median score was 7. ARAT tests were categorized into 4 groups (grasp, grip, pinch and
gross).The Xsens sensor, which consists of an accelerometer, a 3D gyroscope and a 3D magnetometer,
was placed on the dorsal side of the wrist. After data collection, data segmentation and analysis were
carried out in MATLAB. Clustering analysis of clinical parameters revealed three sub-groups of PwMS
with different levels of upper limb impairments: mild, moderate and severe. Instrumental parameters
extracted from the sensor revealed slower movements and jerks in PwMS in comparison to the control
group. Most of the difficulties PwMS had were during the manipulation phase of the task. Overall,
the proposed method was shown to be effective in a clinical setting for identifying differences in
PwMS. This approach could also detect the level of tremor in a patient and subtle changes in motor
skill conditions that cannot be detected using typical medical test scores.

In subsequent work Carpinella et al. focused on improving the analysis of inertial sensor data by
implementing the Hilbert-Huang transform (HHT) [74]. They quantified the Finger-to-Nose Test (FNT)
by attaching a single Xsens inertial measurement unit to the hand of each patient’s most affected arm.
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The participants were asked to lift their arm, maintaining a 90 degree angle in shoulder abduction,
while keeping the other arm in a neutral position. When asked, the participants would touch the
index finger of the arm in abduction to their nose. This movement was divided into two parts the
acceleration and the deceleration phase. The FNT test was performed at a self-paced rate and was
repeated five times, after which the HHT method was used to classify the collected data. The HHT
consists of an Empirical Mode Decomposition (EMD) to extract the oscillatory modes of a signal by
breaking down the signal into finite sets of waveforms, and a Hilbert transform to compute their
instantaneous frequencies. The resulting signal was then classified into voluntary movement, noise
or tremors, based on its frequency. The raw signal was also processed using a Butterworth Bandpass
Filter to extract tremors. Once tremors were identified, a tremor index was calculated as the shown in
Equation (1). Here, TI indicates the tremor index, k indicates the dimension of the signal, i represents
the acceleration or deceleration phase, TR is the extracted tremors and A indicates the normalized
angular velocity. The study demonstrated the use of HHT method to identify the tremors and to
distinguish them from noise. PwMS recruited for this study had EDSS score < 9 while the mean EDSS
score was 6.2. One of the most important observations of this study was that the tremor index in PwMS
was greater during the deceleration phase compared to the acceleration phase, while moving towards
the nose in any directions. They also found that the tremor index for the deceleration phase correlated
significantly with the Fahn-Toloso-Marin tremor rating scale.

TIk
i = 100 × rms[TRk

i (t)]/rms[Ai(t)] (1)

Haptic interfaces have also been used to detect and assess upper limb impairments. A study
conducted by Bardorfer et al. used a haptic interface called PHANTOM [75], implemented on a
3 degree of freedom (DOF) robot. This device has a pen-like end effector which the subjects hold and
is used as a positional device and delivers a force feedback to the user. During testing, the subject
traverses a randomly generated labyrinth, viewed on a screen, with the help of the robot. Tactile
information about the labyrinth is provided as haptic feedback, and the system records and analyzes
the user’s movement and traversal using kinematic data. The authors evaluated their interface with
13 subjects with four types of neurological disorders: Parkinson’s disease, MS, muscular dystrophy
and Friedreich ataxia. They concluded that this device is appropriate for such an assessment and
that the kinematic parameters collected can be analyzed to provide a quantitative assessment of the
impairment.

Another study conducted by Pellegrino et al. focused on upper limb impairment in MS subjects
while interacting with different mechanical environments [76]. They aimed to define and characterize
upper limb behavioral parameters, muscle activity and muscle synergy. They used a robotic device
which subjects would hold and move in two dimensions. Subjects were asked to control a cursor and
hit targets appearing on a screen by moving the end effector. While the subject performed the task,
data were recorded using force sensors and EMG electrodes. From these, multiple parameters were
obtained and analyzed, including movement duration, average speed, normalized jerk index, aiming
error, endpoint error, linearity error and lateral deviation. In addition, a muscle synergy measure
that quantifies the usage of a group of muscles to perform a task was extracted using non-negative
matrix factorization. The authors compared performance between control subjects and PwMS with
a EDSS score ≤ 7 and found that the number of trajectory corrections was higher for PwMS during
the deceleration phase of the task; also the time taken for the MS subjects to complete the task was
longer with lower average speed and less smooth trajectories. However, when assistive forces were
provided, there were no significant differences in performance between the two groups. Although both
groups changed their organization of muscle synergies for different tasks, this change was greater in
MS subjects. The study identified behavioral and muscular features sensitive to MS that may be useful
in developing a further understanding of upper limb motor impairments and in creating personalized
and more effective interventions and rehabilitation plans.
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From the studies discussed above, it is evident that among the sensor-based setups,
the accelerometer is one of the most commonly used sensors for assessing and monitoring upper
limb motor impairments [70,73,74]. An accelerometer is usually attached to the wrist and is used to
collect data while the user performs physical tasks and exercises, such as the ARAT or NHPT. Analysis
of accelerometer data has proven useful to identify tremors and to distinguish between PwMS and
healthy subjects [70,73]. Results and measures from such approaches are highly correlated with clinical
measures for identifying tremors, including Fahn’s tremor rating scale. HHT-based analysis [74] has
shown better performance than traditional filtering-based method [70] and shows a better correlation
to the clinical measures. Although these studies have successfully shown the validity of this sensor,
the number of subjects and types of MS considered in these studies were limited. Apart from
accelerometer data analysis, vision-based tracking has been also used in similar settings [68]. Such a
methodology was shown to be effective in assessing arm kinematics and identifying impairments.
Haptic interfaces have also been successful in identifying upper arm impairments [75,76]. These devices
analyzed the arm movements while restricting the subject’s movement path. Subtle changes and
tremors could be detected using these devices. EMG in tandem with robotic manipulandum has been
used to identify behavioral and muscular features in upper arm impairments. Features like muscle
synergies extracted from EMG data have been shown to be an important biomarker for assessing
impairments and designing rehabilitative treatments [76]. Although haptic and robotic interfaces are
shown to be effective in identifying upper arm impairments, they are expensive and they require a
clinical setup and technical assistance for setup and monitoring. Table 2 provides a summary of all the
technologies discussed in this section.

Table 2. Summary of technologies used for upper limb motor assessment.

Technology Used Papers Placement of the Technology Data Collected

SMART-DX Corona et al. [68] 8 cameras that covers a table where subject sits Upper arm

AX-3 Teufl et al. [70] Subject’s wrist Upper limb movement

MTX Carpinella et al. [73] Subject’s wrist Orientation data and inertial measurements
Carpinella et al. [74] Subject’s dorsum hand Inertial measurement units

PHANTOM Bardorfer et al. [75] Subject would hold the end effector Arm kinematics

Robotic
Manipulandum Pellegrino et al. [76] Subject holds an end effector Movement trajectory parameters

EMG Pellegrino et al. [76] Sensors on major muscles of subject Muscle activations and synergies

4. Assistive Technologies for Rehabilitation and Intervention

According to The World Health Organization’s 2011 world report on disability, rehabilitation is
defined as “a set of measures that assist individuals who experience disability to achieve and maintain
optimal physical, sensory, intellectual, psychological and social functioning in interaction with their
environment” [77]. MS is a complex condition where the patients present several different symptoms
that can be related to motor, cognitive or behavioral systems. It is therefore very important to provide
personalized long-term rehabilitation plan. In the following section, we discuss several sensor-based
and robot-based technologies used during rehabilitation and interventions for patients with MS.
We present different technologies that have been proposed to assist PwMS during rehabilitation and
treatment, including robot-assisted training systems for movement rehabilitation (gait rehabilitation,
balance improvement, upper limb rehabilitation and robot-assisted training to improve reaching
and manipulation skills). We present the different approaches, considering both hardware (sensors,
rehabilitation robotics, exoskeletons, etc.), data collection and analysis, highlighting different user
studies which evaluate the effectiveness of robot-assisted rehabilitation and training systems.

4.1. Robot-Assisted Gait Training and Rehabilitation

One of the most common robots used for gait rehabilitation is Lokomat [78]. Lokomat is a lower
limb exoskeleton robot attached to a harness. A study conducted by Beer et al. evaluated the effect
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of robot-assisted gait training in 35 PwMS [79]. The subject population was divided into two groups,
one of which performed rehabilitation using a robot (19) and the other without (16). PwMS recruited
for each group had severe walking disabilities with a EDSS score between 6 and 7.5 while the median
EDSS score was 6.5. The subjects in both groups underwent a treatment session of one hour daily for
five days per week, over a period of three weeks. Walking velocity, walking distance, stride length and
knee-extensor strength were recorded, as well as clinical measures like activities of daily living and
Extended Barthel Index were measured. The study’s findings indicated the feasibility of robot-assisted
gait training for PwMS, although the authors noted that a larger subject population was required for
significant effect.

Another study conducted by Straudi et al. arrived at a similar result [80] using the Lokomat
robotic device with 16 subjects. They conducted a study comparing robot-assisted rehabilitation (8)
and conventional walking training (8). PwMS recruited for the first group had a mean EDSS score
of 5.8 ± 0.8 and 5.7 ± 0.7 for the second group. The effect of the two rehabilitation techniques
was analyzed by conducting a Six Minute Walk test, a Timed Up-and-Go test and using Fatigue
Severity Scale (FSS). To achieve this, gait kinematic data were collected using the VICON 460
system one week before treatment, one week after treatment and three months after treatment.
The authors concluded that robot-assisted gait training is effective in increasing walking competency;
in particular, they found a significant difference in gait speed and walking endurance improvement
in the subjects who underwent robot-assisted training compared to those experiencing conventional
walking training. They also hypothesized that robotic training could help to improve and/or restore
hip and pelvis movement.

Lokomat has also been used in conjunction with other technologies like virtual reality (VR).
A study conducted by Brütsch et al. combined the assistance of Lokomat with a VR setup to provide
motivation [81]. They conducted the study on 18 children, 10 with cerebral palsy, spinal cord injury and
MS among other neurological disorders and 8 healthy subjects. They investigated the rehabilitation
measures in four conditions: without any assistance, with a therapist’s assistance, with VR and with a
combination of VR and therapist. The VR setup was designed as a soccer game. Force feedback from
hip and knee joints were collected, as well as self-reports on experience with the system. The authors
observed that the motor output among PwMS using VR was similar to when they were motivated by a
therapist and concluded that active participation, through encouragement, resulted in a better motor
output than a passive condition. A therapist or VR or a combination of both could be used to provide
this encouragement.

Another lower limb exoskeleton robot called PK 100, a lightweight and portable exoskeleton
robot that covers the leg from thigh to foot, has been designed to assist in rehabilitation of lower limb
impairment [82]. The actuators present in the exoskeleton are used to apply forces to the knee in order
to assist in walking, providing an active knee orthosis. The robot has a force sensor at the foot to assist
in this actuation. The data from this sensor were used to determine whether the patient required extra
assistance for sit-to-stand motions or to climb stairs. The device has four modes: automatic, manual,
continuous passive and robotic therapy. In automatic mode the actuator provides assistance based on
the sensor data, in manual mode the patient has to press a button for the device to provide assistance,
in continuous passive mode the robot provides assistance for both flexion and extension movement of
the leg and in robotic therapy mode the robot provides assistance if it senses that the patient needs it.
Early studies showed improvement in walking speed for people who used this robot.

Robot-assisted gait training has been shown to be an effective technique for gait rehabilitation.
Multiple studies highlight the benefits of robot-assisted gait training over conventional walking
training [79,80,83]. A study conducted by Husemann et al. showed that post stroke subjects who used
a Lokomat for training had an increase in muscle mass [84]. There is some evidence of robot-assisted
training improving spatiotemporal parameters of gait, as well as improving overall mobility [79,80].
Studies have also indicated that task-oriented training is more effective in preserving white matter
integrity in the brain than passive training [85]. VR can be used to provide task-oriented training
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while performing the exercise using a robot [81] and can also improve the experience of therapy as
it can motivate and encourage the user during rehabilitation [86]. One of the common drawbacks in
studies that have looked at Lokomat and its effect on gait rehabilitation has been the limited size of
subject samples[79–81]. A post-hoc power analysis showed that a sample size of N=106 is required
for significant effect [79]. It must also be noted that VR studies are sensitive to practice effects [81].
Overall, robot-assisted rehabilitation in conjunction with active rehabilitation techniques have shown
promising results in gait rehabilitation. Table 3 provides a summary of all the technologies discussed
in this section.

Table 3. Summary of Robot-Assisted Gait Training and Rehabilitation.

Technology Used Papers Placement of the Technology Data Collected

Lokomat

Beer et al. [79] Harness based lower limb exoskeleton Device was used for rehabilitation. No data
was recorded.

Straudi et al. [80] Harness based lower limb exoskeleton Device was used for rehabilitation. No data
was recorded.

Brütsch et al. [81] Harness based lower limb exoskeleton Force values at hip and knee joints

VICON Straudi et al. [80] Reflective markers attached to specific
anatomical landmarks Sagittal plane pelvis and hip kinematics

PK100 Horst [82] Lower limb exoskeleton Force applied by the foot on the force
sensitive resistor

4.2. Upper Limb Training and Rehabilitation

According to a cross-sectional study [69], which considered 219 PwMS, to find the concurrent
presence of disability, 76% of the population were found to be suffering from manual dexterity issues.
Studies have shown the effect of robotic upper limb rehabilitation on PwMS. One such study conducted
by Carpinella et al. evaluated the feasibility of an upper limb robotic rehabilitation system for reaching
tasks [87]. In this work, the authors proposed using Braccio di Ferro, a planar robotic manipulandum.
This robot has an end effector that subjects hold to perform a set of reaching movements. The study
team recruited 16 subjects: 7 MS subjects with a mean EDSS score of 5.71 and 9 healthy controls.
The subjects controlled a cursor on a screen using the end effector and were asked to hit targets as
they appeared on the screen. During the exercise, the system recorded three trajectory parameters:
trajectory duration, jerk metric and lateral deviation. The protocol included a NHPT, Tremor Sensitivity
test and transfer test, all both before and after the exercise. The transfer test was performed by asking
the subjects to track a figure-of-8. This was done to verify if the improvements noted was specific to
the task during rehabilitation or can be observed in other movements as well. The authors observed
that prior to rehabilitation there were significant differences between the two groups in all three
trajectory parameters. Over the course of 8 sessions of treatment, they observed an improvement in
the quality of movements, especially during the first three sessions. Through the figure-of-8 tracking
test, they showed that the improvement was generalized and not task specific. Overall, their results
suggest the viability of a robot-based upper limb rehabilitation and therapy approach.

Carpinella et al. also conducted a study in which they compared two protocols for robot-based
rehabilitation [88]. As in their earlier work, they used the Braccio di Ferro robot for a reaching task.
A splint in which the subject would suspend their arm was added to the end effector for use in reaching
and manipulation tasks. PwMS recruited for this study had EDSS score < 9 with a mean EDSS score
of 6.7. For the reaching task, the participants used a cursor and target setup as described above, and
for the manipulation task they were asked to manipulate real objects like LEGOs, bottles and jars.
Two types of forces were applied by the robot: perturbing forces that acted in the perpendicular
direction to the movement and resistive forces that opposed the movement. Kinematic assessments
like reaching duration, manipulation duration, jerk index, mean and maximum lateral duration,
normalized path length and learning index and also clinical assessments like the NHPT and ARAT
were analyzed. The authors found that the proposed robotic therapy approach reduced arm tremor
and improved arm kinematics and functional ability. They also found that MS subjects had the ability
to adapt to the perturbing forces generated by the robot, which suggests that the PwMS were able to
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learn an internal model to account for these forces. While prior to the treatment the MS subjects had
difficulty counteracting resistive forces, this ability improved when tested post treatment.

Another study by Sampson et al. combined robotic rehabilitation with functional electric
stimulation (FES) and VR [89]. FES is a method in which a low level electrical stimulation is applied
to a muscle in order to artificially contract it. In this study, stimulation was applied to the anterior
deltoid and triceps. The authors proposed using an upper limb exoskeleton to provide passive support
during a set of tracking tasks, which were tested in 5 PwMS. The authors analyzed the accuracy of the
tracking task, as well as measures from clinical tasks like the ARAT, NHPT, Manual Ability Measure
and Fugl-Meyer assessment (FM). The study concluded that a combined system of FES plus a passive
robot could improve upper arm movement and control. They also found that none of the participants
reported an increase in muscle fatigue.

Upper limb training using a robot in a VR environment was also studied by Feys et al. [90].
They aimed to compare the effect of robot-assisted upper limb training compared to conventional
training. To achieve this, they used HapticMaster, a 3 DOF robot with a gimbal at the end within
which the subject’s hand is suspended using a brace. A VR system, using I-TRAVEL, was designed
to engage subjects with games while performing exercises. Both clinical assessment measures and
robot-based task measures were gathered and analyzed. As clinical assessments, Motricity Index (MI),
FM, ARAT and Motor Activity Log (MAL) were used. MI gives an indication of limb strength, FM is a
performance-based measurement for impairment, ARAT was used here to quantify the subject’s ability
to handle different objects and MAL was used to examine the performance of limbs. For task-based
parameters, active ROM, movement duration velocity and quality were analyzed. Two groups of MS
subjects were recruited, and one, with median EDSS score of 8, was given robot-assisted training while
the other, with a median EDSS score of 7.3, received conventional training. The duration of the study
was 8 weeks, and data were gathered at the start and the 8th week. No significant changes were found
in the clinical measures for either group. However, improvements in the task-based parameters did
occur in the robot-assisted training group, specifically in the speed and time of movements and the
trajectories for reaching tasks.

Studies have shown that PwMS display a slower and less smooth upper arm trajectories during
reaching tasks [87]. These impairments can often manifest as ataxia, tremors, muscle weakness
or coordination deficits. Upper limb rehabilitation has been shown to have a positive effect on
upper-arm functioning in persons with progressive MS [91]. Robots, like Braccio di Ferro and
HapticMaster [87,88,90], have been used to assist users in rehabilitation by providing them the ability
to perform multiple exercises with specific mechanical constraints. These robots can provide different
kinds of forces to the its end effector, which the subjects would hold, to simulate different mechanical
constraints. Apart from these, passive robotic support in tandem with FES has also been studied by
Sampson et al. [89]. In that work, a robotic exoskeleton system was used to support the subject’s arm
while FES provided assistance during rehabilitation exercises.

In another study, improvement in the quality of reaching movements has been noted following
robot-assisted upper arm rehabilitation where the subjects performed the figure-of-8 tracking task,
pre and post rehabilitation [87]. One important observation during robotic rehabilitation is that
PwMS retained the ability to adapt to disturbing forces [88]. An improvement in the clinical measures
pertaining to upper limb movement was observed by Carpinella et al., though not by Feys et al., perhaps
because the task chosen by Feys et al. focused mainly on proximal upper limb movements while
Carpinella et al. focused on reaching tasks and reaching and manipulation tasks. This indicates a need
for selecting appropriate rehabilitation and assessment tasks when designing robotic rehabilitation
systems. Studies have shown that task-oriented training is more effective than passive training during
rehabilitation to retain the white matter integrity of the brain [85]. As with gait rehabilitation, VR
has also been used with upper limb rehabilitation [89,90]. Table 4 provides a summary of all the
technologies discussed in this section.
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Table 4. Summary of upper limb training and rehabilitation.

Technology Used Papers Placement of the Technology Data Collected

Braccio di Ferro Carpinella et al.
[87,88] End effector held by subject

Trajectory duration, jerk metric, lateral
deviation, manipulation duration,
normalized path length and learning index

Functional Electric
Stimulation Sampson et al. [89] Anterior deltoid and triceps FES Amplitude

Passive robot support Sampson et al. [89] Upper arm exoskeleton Arm position

HapticMaster + ITravel Feys et al. [90] End effector held by subject, VR screen in
front of subject

Active Range of Motion, movement duration,
movement velocity and movement quality

5. Monitoring Fatigue in Persons with Multiple Sclerosis

Fatigue is very a commonly reported symptom by PwMS, and many consider it to be the worst
symptom of MS as it may lead to unemployment and disrupt the social functioning of patients [92].
Several studies indicate that fatigue in MS has a major impact by reducing the quality of life of patients
but it remains poorly understood, principally because it is subjective and its etiology varies both across
individuals and across different stages of disease progression [93–95].

5.1. Fatigue Measurement Scales

Several questionnaires have been developed to measure fatigue, and different clinicians and
physical therapists may use different questionnaires, in part due to working with different populations.
While there is no “gold standard” fatigue measurement standard for PwMS, Braley and Chervin [94]
review some of the most commonly used questionnaires for PwMS. They discuss some of the widely
used and researched scales, including The Chalder Fatigue Scale (CFS), Fatigue Severity Scale (FSS)
and the Modified Fatigue Impact Scale (MFIS). CFS includes 14 questions, each of which is rated with
a numeric Likert scale. A total score is calculated and a higher value indicates more severe fatigue.
The main advantage of this test is its brevity and ease of use. The authors also state that while this test
lacks assessments of validity and consistency, it is considered valuable for clinical studies. FSS is a
survey that includes 9 questions, each of which is rated on a 7-point Likert scale that focuses primarily
on physical fatigue. MFIS is a survey originally derived from a 40-item survey, the Fatigue Impact
Scale. The MFIS survey consists of 21 questions assessing aspects of fatigue on a 0–4 point Likert scale
(“never” to “always”). In scoring, answers contribute to three categories: physical fatigue (9 questions),
cognitive fatigue (10 questions), and psychological fatigue (2 questions). A total MFIS score is also
obtained by summing all responses. The advantages of this scale include ease of use, reproducibility,
and a high correlation with the FSS metrics. All three of these scales assess “trait fatigue”, or the
fatigue experienced by PwMS over an extended period of time (e.g., over the past month), and not
the complementary “state fatigue” component. It is also important to note that some researchers
have adopted the use of Visual Analogue Scale (VAS) in their surveys to get a more precise value for
statistical analysis. The VAS has been used to measure the severity of pain or fatigue and correlate it to
depression in PwMS [96]. This scale provides the users with a scale of 100 mm horizontal line where,
one extreme (0 mm) is “not fatigued at all” to another extreme (100 mm) representing “extremely
fatigued”. This scale helps to measure the level of fatigue a patient is experiencing at a given point in
time. In other words, it helps measure the “state fatigue” component.

5.2. Multimodal Fatigue Detection and Analysis

The scales discussed above provide a subjective measure of fatigue in PwMS, based on self-reports.
These kinds of tests are always susceptible to human error, like overestimation or underestimation
by the patient, indicating a need for objective measurement and analysis of fatigue [95]. Towards
this goal, several studies have attempted to measure fatigue using physiological data. In this section,
we discuss some of the sensor-based technologies used by researchers to monitor and assess fatigue
levels in patients.
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A study by Sehle et al. [95], looked into the detection of motor fatigue using kinematic gait
analysis in PwMS. They developed the Fatigue Kliniken Schmieder (FKS) index to classify patients as
fatigued or non-fatigued. The study was conducted with 20 healthy subjects and 40 PwMS with a mean
EDSS score of 3.4 ± 1.3, all between the ages of 18 and 65 years. Participants were asked to walk on a
treadmill for a maximum of 60 minutes or until they were completely exhausted. The treadmill speed
was set 10% higher than their preferred speed or a maximum of 5 km/h. Though there was no explicit
screening based on disease course or disability level, the MS group was required to walk without
aids or assistance as a recruitment criteria. Gait data was recorded for one minute at the beginning
and one minute at the end using an AS200 motion analysis device and gait parameters including step
length, width and height, bilateral leg circumduction, bilateral knee flexion angle and medio-lateral
trunk sway were recorded. Blood samples were taken during the start and the end of the exercise to
measure blood lactate levels using a lactate analyzer (Arkray Lactate Pro LT-17810) and lactate strip.
Heart rate was measured using a chest mounted Garmin Forerunner heart rate monitor. Based on the
FKS value computed, patients with a value of 4 and above were classified as having fatigue and others
as non-fatigued. The authors reported that the FKS scale was a more sensitive and reliable measure of
motor fatigue than traditional methods where an expert would rate a PwMS. Also, based on the lactate
levels they concluded that the motor fatigue in MS is not related to muscle fatigue. It is important to
note that the sensors used for assessment involved a complex setup, including a harness to support
MS patients as they walked on the treadmill, as a safety measure and blood samples were also drawn.
Thus, this type of experiment is difficult to replicate without access to clinical facilities.

In a more recent work by Barrios et al. [97], the use of sensors capable of measuring heart rate
through changes in blood volume and electrodermal activity (EDA) were explored using wearable
Empatica E4 and Everion devices. The authors attempted to verify whether these devices were able
to accurately monitor the functions of the autonomic nervous system by comparing their output
to a medical-grade Holter monitor. Their results showed that the tested devices may be capable of
monitoring motor fatigue, though they lacked psychometric soundness. However, there is limited
research backing of reliability and validity of the methods used.

Several other wearable non-invasive sensors have been explored by researchers for fatigue
assessment. An advantage of such sensors is that they can be used for long term data monitoring at
home or at work to better assess improvement or deterioration. For instance, Yu et al. [98] developed a
wireless Fatigue Monitoring System (FAMOS), to monitor physiological and functional parameters
like ECG, EMG, body-skin temperature and motion. This system was capable of recording data during
cognitive and functional tests, as well as during activities of daily living. The signals recorded were
transferred to a laptop via a wireless router. They tested this system in a sample of 17 fatigued PwMS,
who had a EDSS score <5.5 and 9 control subjects to see if they were able to distinguish the groups.
Participants wore a temperature sensor on the back near the L5 vertebra of the spine to measure
body temperature, motion sensors on the shank, ECG electrodes on the sides of the thorax under the
arms and EMG electrodes on the quadriceps and below the eye to measure muscle activity and eye
movement respectively. Participants in the study also received several cognitive and functional tests.
Based on the data calculated from these tests, the authors were able to distinguish healthy controls
from fatigued PwMS. Although the main aim of the study was to build a wireless system, it was
limited to indoor setup as the system required WiFi to store data to a cloud-based data store.

Fatigue monitoring related to driving has been a specific area of some interest. A study by
Chipchase et al. [99] looked at 75 MS patients and 63 control subjects and found that fatigue along
with other factors like leg problems, numbness and eye problems were a significant cause for driving
impairment. A study by Nayak et al. [100], found an effective way to score driver fatigue by integrating
EEG parameters, heart rate variability and blood biomarkers, but lack psychometric soundness.

In summary, it is clear from these studies that fatigue is a very important aspect of MS, and
that it needs more research to build assessment and monitoring systems. Although several wireless
sensor-based setups were developed [95,97,98] , it is still the general consensus that subjective measures
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generally give a more accurate measure of fatigue a person experiences, regardless of the drawbacks.
Several researchers propose a task based framework to monitor fatigue while performing a physical
or cognitive task [101]. Care must be taken to decide what parameters are required for monitoring
fatigue and what kind of sensors are to be used.

5.3. Measuring and Analyzing Fatigue in Rehabilitation

Developing rehabilitation strategies to treat MS-related symptoms is critical in helping PwMS
achieve a better quality of life. Although several pharmacological treatments are available to control MS
symptoms, assessments and rehabilitation using physical therapies have proven to help improve the
quality of life [102]. Fatigue is an important factor to consider during rehabilitation and in designing
rehabilitation plans [103], as studies have shown a decline in performance during rehabilitation tasks
due to fatigue [104,105]. In this section, we discuss several techniques investigated by researchers for
monitoring and detecting fatigue during rehabilitation.

Several research studies have been conducted to assess the relationship between rehabilitation
and fatigability in PwMS. One study conducted by Severijns et al. looked at the fatigue induced
by robot-mediated arm training in PwMS and healthy controls [105]. 16 control subjects and 16 MS
subjects, with a median EDSS score of 6, participated in the study. The two groups performed repetitive
anteflexion movements using a HapticMaster robot. During the exercise, EMG data were recorded
from the anterior deltoid, middle deltoid, biceps brachii and upper trapezius muscles using a Delsys
sensor. Fatigue was recorded using a Visual Analogue Scale, which provided a subjective measure
of state fatigue. Fatigue was also recorded by analyzing the RMS and median frequency of the EMG
signal as well as Maximum Voluntary Contraction (MVC) of each muscle. Although the authors found
no relationship between subjective feeling of fatigue and objective measures, they did find a higher
increase in RMS values of healthy individuals compared to PwMS, accompanied by an 8% decrease in
median frequency in healthy control compared to a 5.4% decrease in PwMS. In general, a drop in the
mean frequency of greater than 8% is used as an indication of fatigue [106,107]. The authors caution
against overinterpreting the differences in median frequency as they found that the on an average a
5.4% change in the median frequency was observed for PwMS. The study also found that objectively
measured fatigue was present in both groups after robot-mediated training. PwMS with hand grip
weakness displayed a larger increase in subjective fatigue level than PwMS with normal hand grip
strength, and the authors concluded that objective signs of fatigue were less obvious in weaker PwMS.
Changes in MVC were correlated with subjective feelings of fatigue in PwMS, though this relationship
was not observed in healthy controls.

Octavia et al. evaluated muscle fatigue during robot-mediated upper limb rehabilitation as PwMS
and healthy control subjects were performing five sessions of lifting and transporting exercises using a
HapticMaster robot and an I-Travel system [104]. While performing the tasks EMG was recorded from
the anterior deltoid and trapezius muscles, filtered using Infinite Impulse Response and Butterworth
bandpass filters and then rectified using an RMS sliding window approach. Analysis of the EMG
measures also incorporated performance measures and subjective fatigue measures captured with a
visual analog scale. The authors observed an increase in the EMG amplitude in the muscles responsible
for the exercise accompanied by a decrease in performance and an increase in the perception of fatigue.
There were 20.29% and 15.25% increases in EMG amplitude in PwMS and control subjects respectively
between the first and the final session, which was taken as evidence of greater muscle fatigue in PwMS.

A study conducted by Wier et al. examined the effect of robot-assisted body-weight-supported
treadmill training (BWSTT) on the quality of life (QOL) for PwMS [108]. In robot assisted BWSTT,
gait training is conducted on a treadmill, where the user is suspended and assistance is provided
to them through an exoskeleton robot. The authors compared the effects of training done with a
Lokomat robotic device to training without. To assess QOL measures, they used the Multiple Sclerosis
Quality of Life Inventory (MSQLI), which is a 36-item short form survey incorporating the MFIS and a
Pain Effect Scale (PES) to measure the effect of pain on the subject’s mood, physical and psychosocial
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functions. The subjects were divided into two groups, each of which performed training with the
robot in one of two sessions with a six-week rest period between them. PwMS recruited for this
study had a mean EDSS score of 4.9 ± 1.2. Questionnaires were collected at baseline, after the first
session, after the six-week rest period and after completing the second session. Participants in both
groups showed a significant overall improvement in a few of the QOL measures including MFIS items.
In all subjects, regardless of whether robot training occurred in the first or second session, there were
significant improvements in FSS, MFIS and PES following the first session. However, there were
no significant differences in improvement between the two groups. Within the groups there were
significant improvements in some of the measures, but across groups, only one measure showed a
significant difference, suggesting that the order of training sessions (with the robot and without) did
not matter. However, the number of participants was small (6 subjects used the robot in session 1 and
7 subjects used it in session 2).

Straudi et al. analyzed the effects of robot-assisted gait training on subjects with progressive
MS by comparing subjects using a Lokomat robot, who had a mean EDSS score of 6.43 ± 0.38, with
subjects who performed conventional walking therapy, who had a mean EDSS score of 6.46 ± 0.43 [109].
Both groups performed multiple tests including the FSS and were evaluated at the start of the study,
after 3 weeks, after the end of the treatment and during a 3-month follow up. Overall, the authors
found that robot-assisted gait training might be beneficial to people with progressive MS. However,
none of the treatment methodologies had a significant effect on perceived fatigue, which differs from
other studies [83,108]. One explanation advanced by the authors is that the FSS might not be reliable
while measuring high levels of fatigue.

Pompa et al. studied the effect of robot-assisted gait training in PwMS with high disability
in comparison to conventional walking training [83]. During this study the researchers recorded
parameters for walking capacity and ability using the Rivermed Mobility Index and a modified Barthel
Index VAS to measure lower limb spasticity and the FSS to measure perceived fatigue. They found that
the improvement in walking using robot-assisted training was comparable with that from conventional
walking training. When they looked at the effect of the two training methodologies on fatigue, however,
they found that subjects in the robot-assisted group reported lower fatigue severity than the subjects
in the conventional training group, who showed no significant improvements. The authors suggested
that robot-assisted gait training should therefore be considered as an add-on to conventional training.

One of the most important and detrimental phenomena during rehabilitation is fatigue.
The performance during rehabilitation has shown to worsen due to fatigue. Many studies have
directly or indirectly tried to account for fatigue. Octavia et al. aimed to evaluate muscular fatigue
during robot mediated upper limb rehabilitation [104]. Here, they found that during rehabilitation
there was an increase in the subjective fatigue which was accompanied by a decrease in performance.
This could have a negative impact on the rehabilitation. An increase in the EMG amplitude was
observed with the increase in subjective fatigue, indicating its usability to objectively measure fatigue.
Serverijns et al. also observed an increase in fatigue during robot mediated upper limb training [105].
They found a correlation between the force applied by the PwMS and subjective feeling of fatigue,
however, such a relationship could not be observed between subjective fatigue and EMG parameters.
Although, an 8% and 5.4% decline in median frequency was observed for healthy and PwMS subjects
respectively during the exercise. Apart from upper limb rehabilitation, the effect of fatigue on gait
rehabilitation has also been studied. Wier et al. examined the QOL measures during robot assisted
BWSTT [108]. Among other metrics, fatigue was also examined. An overall improvement in subjective
feeling of fatigue was observed both with and without robot assisted BWSTT. There was limited
evidence to support the use of robot assisted BWSTT over conventional BWSTT. A study conducted by
Pompa et al. found similar result with robot assisted gait training. Although, people who underwent
conventional walking training did not show an improvement in subjective fatigue [83]. Straudi et al.
on the other hand did not find significant improvement in the perceived fatigue during robot assisted
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gait training [109]. Overall, studies have shown that fatigue is an important aspect to be considered
while designing rehabilitation protocols for PwMS.

6. Concluding Remarks

In this paper, we present a survey of assistive technologies used for assessment and rehabilitation
for PwMS, with a focus on movement defects in the upper and lower body. Multiple sensors and
devices like robots have been used to detect movement defects in upper limbs as well as gait defects.
Wearable and lightweight sensors and devices can enable the development of remote monitoring
systems which would enhance the decision making of clinicians and health care providers for treatment
and rehabilitation plans. One of the most common types of sensor used in analyzing gait defects
is the inertial sensor. BioStamp and MTx are two of the most common inertial sensors used in gait
assessment. For gait rehabilitation, robot-assisted gait training has shown some advantages over
conventional walking training. The Lokomat is one of the most common robots used for robot-assisted
training. Robot-assisted rehabilitation in conjunction with active rehabilitation techniques have shown
promising results in gait rehabilitation. Along with gait, upper limb rehabilitation and assessment
have also benefited from robotics. Multiple robots like the PHANTOM, HapticMaster and Braccio di
Ferro among others have been developed for this purpose. Although haptic and robotic interfaces are
shown to be effective in identifying upper arm impairments, they are expensive and require a clinical
setup and technical assistance for setup and monitoring.

Taking the several applications mentioned in this survey into consideration, we would like to
highlight the need for selecting appropriate rehabilitation and assessment tasks when designing
sensor-based and robotic rehabilitation systems. Clinicians and researchers should take into
consideration each patient’s specific needs while selecting an assessment or rehabilitation strategy
(tests, sensors). The selection and design of assistive technologies (e.g., sensors, robots) should be made
considering both user experience (e.g., non-invasive sensors) and efficiency (clinical outcomes). Studies
have shown that task-oriented training is more effective than passive training during rehabilitation.
Moreover, user involvement (patients, caregivers and clinicians) should be considered during both
system design and evaluation [110]. Successful design and selection of sensor-based technologies for
PwMS can enable the development of sensor-based experimental testbeds for research in MS and
analysis of multisensing data during assessment and rehabilitation of PwMS towards improving such
technologies and treatment plans.

Since fatigue is such a commonly reported symptom, it should be considered during assessment
and rehabilitation of PwMS. Towards this, we provide a survey of recent research in this area that
highlights the importance of measuring and accounting for fatigue in assessing PwMS, in general daily
living and in rehabilitation. Since fatigue, as well as its impact on user behavior and performance,
is highly subjective and varies across users, there is a need to combine both subjective and objective
fatigue measures to enable both patients and caregivers to provide reports and expert input in order to
develop reliable personalized fatigue measurement and detection tools that can be used to provide
PwMS with personalized rehabilitation plans towards improving their treatments and thus their quality
of life. Moreover, designing sensor-based assessment and rehabilitation systems which take fatigue
into account, could lead to valuable multimodal data for physical and cognitive fatigue analysis [101].
The variety of the available assistive technologies for MS, as presented in this survey, can provide
researchers and clinicians with insights about performance of PwMS in daily activities, assessment and
rehabilitation, and how it is affected by fatigue, mood and other cognitive–behavioral factors [111].
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