
Multimodal Technologies 
and Interaction

Article

Semantic Fusion for Natural Multimodal Interfaces
using Concurrent Augmented Transition Networks

Chris Zimmerer, Martin Fischbach and Marc Erich Latoschik *

Chair for Human–Computer Interaction, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
chris.zimmerer@uni-wuerzburg.de (C.Z.); martin.fischbach@uni-wuerzburg.de (M.F.)
* Correspondence: marc.latoschik@uni-wuerzburg.de; Tel.: +49-(0)931-31-85871

Received: 14 October 2018; Accepted: 4 December 2018; Published: 6 December 2018

Abstract: Semantic fusion is a central requirement of many multimodal interfaces. Procedural
methods like finite-state transducers and augmented transition networks have proven to be
beneficial to implement semantic fusion. They are compliant with rapid development cycles that
are common for the development of user interfaces, in contrast to machine-learning approaches
that require time-costly training and optimization. We identify seven fundamental requirements for
the implementation of semantic fusion: Action derivation, continuous feedback, context-sensitivity,
temporal relation support, access to the interaction context, as well as the support of chronologically
unsorted and probabilistic input. A subsequent analysis reveals, however, that there is currently no
solution for fulfilling the latter two requirements. As the main contribution of this article, we thus
present the Concurrent Cursor concept to compensate these shortcomings. In addition, we showcase
a reference implementation, the Concurrent Augmented Transition Network (CATN), that validates the
concept’s feasibility in a series of proof of concept demonstrations as well as through a comparative
benchmark. The CATN fulfills all identified requirements and fills the lack amongst previous
solutions. It supports the rapid prototyping of multimodal interfaces by means of five concrete traits:
Its declarative nature, the recursiveness of the underlying transition network, the network abstraction
constructs of its description language, the utilized semantic queries, and an abstraction layer for
lexical information. Our reference implementation was and is used in various student projects, theses,
as well as master-level courses. It is openly available and showcases that non-experts can effectively
implement multimodal interfaces, even for non-trivial applications in mixed and virtual reality.

Keywords: multimodal fusion; multimodal interface; semantic fusion; procedural fusion methods;
natural interfaces; human–computer interaction

1. Introduction

Multimodal interfaces (MMIs) implement human-computer interaction paradigms that center
around users’ natural behavior and communication capabilities [1]. Such interfaces combine at
least two modalities potentially operating simultaneously [2]. During intentional interactions,
the specification of parameters for required system actions can thus be distributed among adequate
modalities in a synergistic fashion [3]. For instance, using speech to specify an interaction and deictic
gestures to specify operands and target locations (see Figure 1). Potential benefits of such multimodal
interfaces include increased expressiveness, flexibility, reliability, and efficiency [4–6].

Multimodal Technologies and Interact. 2018, 2, 81; doi:10.3390/mti2040081 www.mdpi.com/journal/mti

http://www.mdpi.com/journal/mti
http://www.mdpi.com
http://dx.doi.org/10.3390/mti2040081
http://www.mdpi.com/journal/mti


Multimodal Technologies and Interact. 2018, 2, 81 2 of 30

Figure 1. Intentional multimodal interaction (MMI) in three application areas: Space Tentacle,
a fully-immersive virtual reality adventure game ([7] left). A mixed reality real-time strategy game on
an interactive surface ([8] middle). SiXton’s Curse, a semi-immersive adventure game played in front of
a power wall ([9] right).

Natural (human) behavior or rather interpersonal communication is context dependent.
Prior communication contents and especially the surrounding environment have to be taken into
account when interpreting multimodal utterances. The benefits of MMIs thus become especially
apparent if interactions are spatially and temporally grounded with an environment in which the user
is (physically) situated [10]. For example, it is easier to point at an object as part of a speech-gestural
instruction than to provide similar information via a keyboard, because it uses the natural spatial
referencing of interpersonal communication. Such situated human-computer interaction environments
range from physical spaces to so called virtual environments. Respective application areas range from
smart homes [11] and human-robot interaction [12] to mixed reality [8] and virtual reality [7] .

If MMIs are to be supported, input modalities have to be jointly analyzed at some point of
processing to derive a conjoint meaning [13,14]. This analysis has been given different names, ranging
from combining [15] to multimodal integration [16]. More widely the term fusion is used, e.g., multimodal
input fusion [17] or the more recently used multimodal fusion [18–20]. Multimodal fusion is applied for
a wide variety of scenarios. They range from analyzing intentionally performed communication based
on speech and gesture [7,8,12,21,22] to drawing conclusions on one’s intentions and feelings based on
unintentional (social) signals [23–26], like eye movements and changes in body posture.

The concrete mechanism of applying fusion is denoted as fusion method. There is a wide variety of
methods used for multimodal fusion. They range from frame-based [27,28], over unification-based [29,30],
symbolic-statistical [31–33], and procedural methods [15,16,34,35] to machine learning approaches [36–38].
An elaborated overview is given by [14,39]. Fusion methods can be categorized within a spectrum
that extends from early fusion, comprising low-level data stream-oriented approaches, to late fusion,
comprising high-level semantic inference-based approaches [4,40,41].

Early fusion requires tightly synchronized input, like audio-visual speech recognition [42].
Here, machine learning approaches exhibit great potential. It has been shown that deep learning
approaches significantly out-perform traditional approaches in challenging tasks, such as computer
vision, natural language processing, robotics, and information retrieval [43]. When building
multimodal systems, these approaches are predominantly used as a black box to interpret each
modality individually, i.e., transforming raw data to features (see Figure 2, left gray box).

For example, an infrared tracking system fuses gray scaled images and outputs positions and
orientations of reflective markers. These numerical features can be fused with other features, e.g., angles
obtained from a data glove, to provide symbolic features, like the type of performed gestures.

On the other end of this spectrum, a decision has to be made on what concrete system reactions are
to be derived from intentional multimodal commands (see Figure 2, right black box). This late fusion
process leads to the explicit combination of primarily semantic features from multiple modalities.
It is denoted as semantic fusion [44]. In contrast to early fusion, modalities at this level are typically
loosely coupled with respect to their temporal occurrence, e.g., detected gestures and speech tokens.



Multimodal Technologies and Interact. 2018, 2, 81 3 of 30

Late Fusion 

Numerical Data Numerical & Symbolic Data

Early Fusion 

A/D, Drivers, 
SDKs

A/D, Drivers, 
SDKs

Analysis

Analysis Fusion

AnalysisA/D, Drivers, 
SDKs

Analysis Fusion

Black Box Usage of Fusion Semantic Fusion for Multimodal Interaction

Figure 2. Multimodal fusion categorized in early and late fusion. Early fusion methods are usually used
as black boxes for MMIs. Late fusion is mostly realized by unification-based or procedural methods.

Semantic fusion methods started to be influenced by machine learning as well. In human–robot
interaction a suitably trained bayesian network has been successfully used as fusion method [12].
Support vector machines have been used to combine gaze movement and brain activity to provide
an interface for implicit selection in a graphical user interface [45]. It has been demonstrated that
a fusion method based on hidden Markov models (HMM) is more accurate than a classic frame-based
fusion algorithm by adapting to the user [33]. The members to teams to committee technique [31] increases
the overall robustness of semantic fusion methods by offering a preprocessing step based on the
empirical posterior distribution of co-occurring modality estimates.

However, machine learning is not without drawbacks. Respective approaches involve careful
tuning of learning parameters and model hyperparameters [46]. They also require the selection
of relevant features and oftentimes large corpora for training [47,48]. Building these corpora and
optimizing the algorithms requires a lot of effort and time. This, however, contradicts iterative
prototyping and evaluation commonly applied in interface design to produce suitable interfaces [49].

In contrast, descriptive fusion methods pose general-purpose approaches. In addition, they can be
altered and adapted more easily without the need for time costly training and optimization procedures.
This compatibility with typical interface development processes makes them the predominantly
utilized approach for semantic fusion. Moreover, they are open for supplementation with machine
learning, as shown by [12,31]. Descriptive fusion methods are thus also compatible with a possible
future increase in machine learning approaches for multimodal fusion.

The two most prominent classes thereof are unification-based and procedural methods [14].
Unification-based approaches, like [30], are highly expressive and support many interface types.
However, their computational complexity and their potential for mutual compensation amongst
modalities render procedural methods the better choice [34]. Traditional procedural methods, like
the augmented transition network (ATN) [50] and the finite-state transducer, are used but not
designed for multimodal fusion. Because of their simple comprehensibility, they have been extended
to meet more requirements of multimodal fusion. For instance, reference [16] present a temporal
Augmented Transition Network (tATN) that facilitates the consideration of temporal relations between
input. However, there is currently no solution on how to fulfill two fundamental semantic fusion
requirements (see Table 1): Handling probabilistic and chronologically unsorted input [14,16].

1.1. Research Question

The problem addressed by this article is thus formulated as follows.
How can a procedural fusion method satisfy all fundamental requirements for performing

semantic fusion, while maintaining the support of rapid MMI development processes?



Multimodal Technologies and Interact. 2018, 2, 81 4 of 30

Table 1. Finite State Automata (FSAs), Finite State Transducers (FSTs), Augmented Transition Networks
(ATNs), and Temporal Augmented Transition Networks (tATNs) rated with respect to fundamental
requirements (R). The Concurrent Augmented Transition Network (cATN) represents the contribution
of this article. Yellow Yes cells denote that the rated method allows the fulfillment of the requirement,
however there is no explicit support. Yellow No cells denote that the rated method theoretically
allows the fulfillment of the requirement, however a respective implementation is highly impractical.
The red frame highlights the identified shortcomings. Green Yes cells denote that the rated method
fulfills the requirement. Red No cells denote that the rated method does not fulfill the requirement.
Refer to Section 2 for details.

FSA FST ATN tATN cATN
Action Derivation Ract Yes Yes Yes Yes Yes

Continuous Feedback R f b No Yes Yes Yes Yes
Context-sensitive Rsyn No No Yes Yes Yes

Temporal Relation Support Rtmp No No Yes Yes Yes
Access to Interaction Context Rsem No No Yes Yes Yes

Chronologically Unsorted Input Runs No No No No Yes
Probabilistic Input Rprob No No No No Yes

1.2. Contribution

Targeting semantic fusion methods for natural and intentional multimodal interactions that
are compliant with rapid development cycles, we identify seven fundamental requirements:
Action derivation, continuous feedback, context-sensitivity, temporal relation support, access to
the interaction context, as well as the support of chronologically unsorted and probabilistic input.
Our main contribution, the Concurrent Cursor concept, provides a solution for fulfilling the latter
two requirements with procedural methods. In addition, we showcase a reference implementation,
the Concurrent Augmented Transition Network (CATN), that validates the concept’s feasibility in a series
of proof of concept demonstrations as well as through a comparative performance benchmark.
The CATN fulfills all identified requirements and fills a lack amongst previous solutions. It supports
the rapid prototyping of multimodal interfaces by means of five concrete traits: Its declarative nature,
the recursiveness of the underlying transition network, the network abstraction constructs of its
description language, the utilized semantic queries, and an abstraction layer for lexical information.
Our reference implementation is available for the research community [51].

1.3. Structure of the Paper

The remainder of this article is structured as follows. Section 2 introduces an interaction use
case and presents a requirement analysis for semantic fusion on the basis of a comprehensive review
of associated contributions. Existing procedural fusion methods are evaluated with regard to the
identified fundamental requirements. Section 3 presents our results: The Concurrent Cursor concept,
a reference implementation, as well as the comparative benchmark. Our validation activities by means
of proof of concept demonstration are reported in Section 4, followed by a discussion of results,
implications, and limitations. Section 5 concludes this article and points out promising future work.

2. Requirement Engineering

This section reports on a comprehensive review of associated contributions that identifies seven
fundamental requirements for semantic fusion. For that purpose, we introduce and analyze an example
use case. A review of procedural fusion methods reveals that there is no solution which fulfills all of
these requirements.



Multimodal Technologies and Interact. 2018, 2, 81 5 of 30

2.1. Use Case

A user furnishes a virtual room in an architectural modeling application. The user can give
intentional instructions to create, modify, and delete virtual furniture by means of combined speech
and gesture commands (see Figure 3). The commands are in the style of the pioneering Put that there
demonstration [21]. In contrast to Bolt’s work, this is an interface to a real-time interactive virtual
environment. That is, the user is (virtually) situated within the environment by means of a head
mounted display, not sitting in front of it. An exemplary interaction involving speech and a deictic
gesture looks like the following: ”Put [deictic gesture] that green chair near [deictic gesture] this table.”

Put [pointing] that green chair 
near [pointing] this table.

Figure 3. The user is fully immersed into a real-time interactive virtual environment. A multimodal,
speech and gesture, interface allows the user to furnish a virtual room.

2.2. Analysis

In order to create such an application, two primary tasks have to be fulfilled: The implementation
of the virtual environment and of the MMI. Real-time interactive systems (RISs) facilitate technical
realizations of such situated interaction environments [10]. These systems typically consist of
subsystems to capture and process relevant user behavior and physical environment changes,
to simulate a virtual environment, and to provide coherent rendering output to the user within soft
real-time constraints. In addition, performance is crucial to guarantee low system response times and
hence usability, immersion, and security. Conceptually, RIS applications comprise state and behavior.
The application state is made up of all meaningful objects including their properties. For example,
the object Table has a property Transformation representing its position, orientation, and scale in the
virtual environment. Actions describe operations that are invokable by the user via the interface and
that alter the application state in a way that can be perceived by the user. They are usually triggered
by user interactions or virtual agents. A possible action in our use case is placing the virtual object
Chair next to the Table.

Interface-wise the user’s communicative utterances, e.g., posture and spoken word, have to be
captured and processed. A typical approach to realize a respective MMI is as follows. Sensors provide
information via drivers or software development kits (SDKs) in different abstraction levels.
A microphone captures the user’s voice and an automated speech recognizer provides a text
representation of spoken words. The positions and orientations of a user’s head and hand movement is
tracked by means of a head-mounted display and controller setup. A trained neural network analyzes
the user’s motion patterns and detects gestures. The output data of both the speech and the gesture
recognizer are jointly analyzed by the fusion method implementation to derive a conjoint meaning.
A developer has to implement a semantic fusion method and configure it in a way it recognizes
desired interactions. To this end, the developer has to implement a multimodal processing pipeline
that communicates data from one processing step to the next. For instance, from a tracking system



Multimodal Technologies and Interact. 2018, 2, 81 6 of 30

to a gesture recognizer to a fusion method and finally to the application. Events or a shared state are
common mechanisms to communicate such data.

Considering this (real-time interactive) system setting, the following analysis focusses on three
essential aspects of semantic fusion: Input, context, and output. The fusion method has to analyze
data from different sources, i.e., input from a speech and a gesture recognition system. The user’s
interactions are highly dependent on the application’s context, like which chair has to be placed next to
what table in our use case. Further, the fusion method has to communicate feedback and its recognition
result. Based on its output, respective actions within the application have to be invoked.

2.2.1. Input

Semantic fusion implementations receive input from early fusion systems, e.g., from a speech and
gesture recognizer. This input is commonly probabilistic, mostly due to the utilization of machine
learning approaches. This probabilistic character is quantified by confidence values typically ranging
from 0 to 1, e.g., obtained from the activation value of output layer neurons of a neural network.
In addition, early fusion systems often output several hypotheses for each analyzed time frame.
These sets of hypotheses are commonly called n-best guesses, where n denotes the number of alternatives
a system provides. For instance, a gesture recognizer outputs two guesses for one analyzed user motion
pattern and a speech recognizer outputs two guesses for one analyzed utterance (see Table 2). This data
is communicated to and analyzed by a semantic fusion system.

Table 2. Exemplary output of a speech and gesture recognizer. Both recognizer provide probabilistic
output in form of n-best guesses with a confidence value between 0 and 1. Simply combining the
best guess of each modality might not always produce the best result. The best guess of the speech
recognizer “Put that green chair” indicates an accompanying pointing gesture over a rotation.

Speech Recognizer Gesture Recognizer

Best Guess Put that green chair (0.9) rotating (0.8)

Second Best Guess Rotate the green chair (0.2) pointing (0.7)

Third Best Guess ... ...

The most simple way of analyzing the probabilistic input is to convert it to binary input by
picking only the most confident guess for each modality during semantic fusion. However, it has
been shown how the recognition results of one modality can "pull up" the confidence of other results
during multimodal fusion [3]. Simply fusing the best guesses “Put that green chair” with the rotating
gesture does not yield a semantically valid result (see Table 2). The semantics of the speech recognizer’s
best guess suggests that the user in fact performed a pointing gesture instead of a rotating gesture.
For that reason it is necessary that a fusion method is capable of processing probabilistic input. In other
words, it has to be able to process multiple hypothesis for each modality and check different possible
combinations between modalities to provide the most probable and semantically valid output.

Another common task is to define chronological sequences of possible inputs. This is
straightforward in unimodal interfaces. Input is received via only one channel in a clear order.
During multimodal interaction it is not always obvious which input precedes another. For example,
a deictic word occurs during or after the gesture in 97% of the cases [52]. It is thus particularly important
that a fusion method supports temporal relations between input, e.g., after, during, and before.

However, this presupposes that the fusion method processes input in the same order it has been
performed by the user. This might not always be the case since input does not necessarily arrive at
the fusion method implementation in that order. On the one hand, concurrently running recognizers
may take different processing times across modalities. For example, recognizing a gesture might take
longer than recognizing a spoken word. On the other hand, probabilistic output, as described before,
causes an issue as well. During a user interaction a recognizer can formulate different hypotheses



Multimodal Technologies and Interact. 2018, 2, 81 7 of 30

about the input. Alternative hypotheses about preceding parts of an interaction might occur and be
communicated to the fusion method. For instance, current speech recognizers like the Microsoft Speech
Recognition API provide hypotheses for preceding words even after the user uttered additional words.
This contributes to the problem of chronologically unsorted input. To this end, it is necessary to sort
inputs based on their time of occurrence before processing them.

In summary, a fusion method has to be able to analyze probabilistic input. If recognizers
provide output in form of n-best guesses, all hypotheses and all temporally valid combinations
of hypotheses have to be analyzed as well. The fusion method has to support different temporal
relations between inputs, and handle chronologically unsorted input. Issues concerning both
time and probabilistic input have been also identified by [14] and [16] before that. While [16]
describe it as the capability to process parallel incoming percepts and support for temporal relations,
reference [14] postulate the two requirements: multiple and temporal combinations & probabilistic
inputs. However, both scientific contributions do not address the issue of parsing n-best guesses
foreach input, i.e., how to handle different hypotheses.

2.2.2. Context

Besides time and confidence another important aspect is context. Putting a recognized user
command into context, i.e., performing semantic integration, can be accomplished during or after the
multimodal fusion. For instance, reference [53] describes an approach for the latter. A fusion method
checks for syntactic correctness of multimodal utterances. Parse results include the syntactic structure
of valid utterances, e.g., the subject “chair” and the verb “to put” as well as pointing directions mapped
to corresponding demonstratives. They are communicated to a semantic integration implementation
that is a subsystem of the RIS realizing the virtual environment. This subsystem has to check the
semantic correctness of the command and execute the respective action. For the introduced use case
“Put [deictic gesture] that green chair near [deictic gesture] this table.” this entails the following steps: It has
to determine if the object pointed at (deictic gesture) really denotes a green chair or table (speech).
The user command’s corresponding action has to be identified and retrieved. Before executing the
action, it’s parameters and preconditions have to be checked, e.g., is the object Chair movable. It has
to correctly parametrize the retrieved action and execute it if the preconditions are fulfilled.

However, performing semantic integration after fusion holds two disadvantages. Firstly, linguistic
knowledge about the syntactic structure of valid utterances is required, to resolve application
specific dependencies. For instance, how does the deictic gesture relate to the verb “to put” and
the subject “chair”. This information is already present in the fusion method implementation that
performs the syntactic check in the first place. Implementing semantic fusion as a subsystem of a RIS
avoids this redundancy and potentially decreases the end-to-end latency for action execution and
feedback provision. Secondly, semantic integration allows the fusion subsystem to check the semantic
validity of an interaction during fusion. For example, if there is no green chair present in the user’s
pointing direction, the fusion can discard this guess. This does not only improve the reliability of other
guesses but increases performance as well.

Either way, a suitable interface to state and behavior is required. The architecture of this interface
is highly dependent on whether a fusion method is integrated into a RIS platform or stand alone.
The latter include frameworks like OpenInterface [54], Mudra [40], or SSI [55]. They provide functionality
for integrating sensors and performing fusion with the goal to foster modularity and reusability.
However, they either rely on a time costly synchronization mechanism with a RIS, e.g., via sockets,
or have no access to an application’s context at all. Hence, they are less suited to perform semantic
integration. On the contrary, platforms with an integrated MMI framework, like SGIM and virtuelle
Werkstatt [56], ICare [57], and Simulator X [20], commonly provide a uniform access scheme to the
application’s context.

However, conceptualizing and implementing an appropriate interface is not without challenge.
This particularly effects the area of RIS where multiple subsystems have to collectively maintain



Multimodal Technologies and Interact. 2018, 2, 81 8 of 30

a real-time simulation of a coherent application state. On the one hand, this interdependencies
between individual state representations, mutual state access, overall synchronization, and flow
of control imply a conceptual close coupling. On the other hand, software quality asks for
a decoupling to develop maintainable solutions. This contradiction negatively effects the availability
of these frameworks [20,58]. This challenge is exacerbated by the integration of subsystems that
reflect the overall state and behavior, like a semantic fusion subsystem which performs semantic
integration [22,59,60].

An interface for performing semantic integration has to be able to access the application state and
behavior. Consider the first part of the introduced interaction: “Put [deictic gesture] that green chair ...”.
Words like “put”, “chair”, and “green" map to concrete actions, objects, and properties. Transformations
and directions are important to interpret the deictic gesture. The interface has to support access by
means of both symbolic and numerical values, e.g., to resolve a concrete entity reference.

The interface has to fulfill another requirement. Commonly the application state of a RIS is subject
to dynamic changes caused by, e.g., physic simulations. An application state history is required to
cope with the delay between performing an input and analyzing it. This delay is exacerbated by
chronologically unsorted input and general latency. For example, until a deictic gesture is recognized
and used to perform semantic integration a certain amount of time has passed. It is not ensured that
the chair has the same position as it did when the climax of the deictic gesture occurred. For that
reason, relevant application state histories shall be accessible.

In conclusion, context is essential when performing fusion to check semantic validity and to derive
actions. This has also been identified by [14] who state that multimodal commands can be interpreted
differently depending on the context of their use, e.g., in a car, at home or at work. Performing semantic
integration directly during fusion promises potential benefits in term of performance and the reliability
of recognition results. However, providing the fusion subsystem with a suitable access to the context
of an application is not without challenges. A well defined interface between fusion subsystem and
the application is required. For example, reference [16] describes a latching mechanism into real-time
applications to support for application context integration. The interface has to provide access to the
application state, executable actions, and application state history.

2.2.3. Output

A fusion method’s output can be categorized in actions and feedback. On the one hand,
the intention of a multimodal interaction is to trigger a certain action that ultimately alters the
application state, especially in instruction-based interfaces. To this end, the output of a multimodal
fusion method implementation has to be matched to a respective action. On the other hand, appropriate
feedback is crucial for all interfaces [61]. Multimodal interfaces introduce another layer of uncertainty
for the user, if an application does not behave in an expected fashion in response to an interaction.
Input does does not correspond to unambiguous events, like mouse clicks or keyboard presses, but is
inherently probabilistic. The fusion method should thus provide feedback about its current state after
each processed input. Action derivation and feedback provision can be implemented in two ways.
A fusion method implementation can communicate its parsing results to a semantic integration
subsystem, which performs actions and feedback. This can be achieved more efficiently, if the fusion
method is implemented as a RIS subsystem and can directly access state and behavior.

If a semantic fusion implementation shall properly consider input in form of n-best guesses,
providing feedback requires special consideration. The parsing result then can consist of n-best guesses
as well. The best guess can change upon new input. As a consequence, previously provided feedback
has to be revertible. Feedback can be presented to the developer or user in different ways. For example,
presented in form of simple debug print lines to the console. Especially for a user, situated in a virtual
environment, such feedback is not very helpful. More diegetic feedback grounded within the virtual
environment is desirable. For example, after the first half of the interaction “Put [deictic gesture]
that green chair ...” the respective entity could simply be visually highlighted. Even more natural



Multimodal Technologies and Interact. 2018, 2, 81 9 of 30

ways of feedback are conceivable, e.g., when interacting with a virtual (humanoid) agent. The agent
could move his head and look towards the referenced chair or affirmatively nod his head whenever
a dedicated part of a command has been recognized. With respect to changing best guesses of the
fusion method, highlighted objects might be unhighlighted or a virtual agent might change its gaze.

In conclusion, it is important that the fusion method is capable to provide feedback after each
processed input and trigger actions. This is a prerequisite to keep the user informed about the current
state of the semantic fusion and provide adequate insight in why a certain command has not been
successfully recognized. Lastly, the fusion method has to be able to revert previously given feedback
to perform proper error handling. This becomes essential if dealing with chronologically unsorted
input and multiple probabilistic hypotheses for each input.

2.3. Requirement Specification

The analysis derives fundamental requirements that a fusion method has to fulfill to perform
semantic fusion for intentional multimodal interactions (written bold in Section 2.2). In the following,
we summarize these requirements:

Ract The fusion method shall be able to trigger actions.

R f b The fusion method shall be able to provide feedback after each processed input.

• If multiple hypothesis are analyzed, previously given feedback shall be revertible.

Rsyn The fusion method shall analyze multimodal input with respect to a context-sensitive syntax.

Rtmp The fusion method shall support arbitrary temporal relations between input.

Rsem The fusion method shall be able to access the interaction context for semantic integration.

• The application state shall be accessible.
• Relevant application state histories shall be accessible.
• Actions shall be accessible.

Rprob The fusion method shall be able to analyze probabilistic input.

• If n-best guesses are provided by a recognizer, all hypothesis shall be analyzed.
• If multiple hypothesis are analyzed, all temporally valid combinations shall be considered.

Runs The fusion method shall be able to analyze chronologically unsorted input.

2.4. Procedural Fusion Methods

As argued in Section 1, procedural fusion methods are the most suitable method to perform
semantic fusion in RIS. In the following we analyze four commonly used procedural fusion
methods with regard to the introduced requirements: Finite-State Automata, Finite-State Transducers,
Augmented Transition Networks and the temporal Augmented Transition Networks.

Initially, finite-state automata have been used to parse natural language [62]. Later, they have
been adapted for multimodal fusion [63]. A finite state automaton consists of a finite set of states,
a transition function and a finite alphabet of input letters [64]. Usually a finite-state automaton is
visually represented as a transition graph. Figure 4 depicts an exemplary transition graph. There is
one dedicated start state (Start), at least one end state (End) and always one active state. States are
connected with each other by arcs. For example, state S1 is connected with S2 by arc B. A finite-state
automaton parses a finite string of symbols stored on a memory tape, i.e., input tape. The finite set
of symbols that can be parsed by an automaton is called the alphabet. The automaton sequentially
parses each symbol on the input tape. According to the transition function the automaton will
transition from state to state. If the end state becomes active (after the last symbol on the tape has been
processed) the input string is successfully parsed. A finite-state automaton can only parse context free



Multimodal Technologies and Interact. 2018, 2, 81 10 of 30

grammars whereas natural language, a commonly used modality in multimodal interfaces, consists
of a context sensitive grammar (Rsyn). Input is only processed in the order in which it is placed on
the tape (Runs) and only sequential temporal relations can be considered (Rtmp). It is not possible to
process multiple hypothesis (Rprob) since only one state can be active at any given time. Creating new
symbols, each annotated with every possible confidence value, for each symbol in the initial alphabet
could solve this issue. However, since confidence values are conceptually element of IR, this leads
to an infinite number of states and is thus disregarded. Lastly, the interaction context (Rsem) can also
only be considered, if it is encoded in the automaton’s alphabet in a similar fashion. A respective
implementation however is highly impractical. There is no possibility to provide feedback (R f b) since
finite state automaton only have one memory tape used for input. Altogether, finite-state automata are
less suited for semantic fusion (see Table 1).

Start S1

S2

EndS4

S3

End

S5 S6

A
B

C
D

E
F H

G

Figure 4. Illustration of a transition graph. The graph is composed of states (S1, S2, S3, etc.) and arcs
(A, B, C, etc). A dedicated start state Start represents the starting point while a dedicated end state End
represents a completely parsed input.

In contrast, a finite-state transducer is a finite-state automaton with two memory tapes: An input
and an output tape. It can map symbols of one alphabet to symbols of a second alphabet and store
them on its output tape. Thus a finite-state transducer is capable of providing continuous feedback
(R f b) in contrast to a finite-state automaton. Finite-state transducer have been used for multimodal
fusion in the past [34,35].

Augmented Transition Networks have been initially introduced to analyze natural language [50]
and later to perform multimodal fusion [15]. They inherently foresee data storage by introducing
state specific Registers. Primarily, registers were designed to move input throughout the graph in
order to be able to parse context-sensitive grammars (Rsyn). Arcs can be guarded with additional
conditions and can perform dedicated functionality when traversed. Arc functions can be used to
provide feedback after each processed input (R f b). They can also be used to implement semantic
integration (Rsem). Since, the ATN was not initially part of a RIS, it does not explicitly support it.
Conditions and registers are means to support different temporal relations between input (Rtmp),
by storing timestamps in registers and checking them with conditions. However, similar to the
finite-state automaton and transducer, there can only be one state active at once. Hence, it does not
support probabilistic input (Rprob). Additionally, there is no possibility to handle chronologically
unsorted input (Runs).

The temporal Augmented Transition Network [16] has been proposed as an extension to the ATN.
As such it fulfills the same requirements as the ATN. It has been introduced specifically for RIS and as
such implements an interface for performing semantic integration during fusion (Rsem). In addition,
it provides explicit support for defining temporal relations between inputs (Rtmp). However, it still
does not handle chronologically unsorted input (Runs) or supports multiple hypothesis (Rprob).

In conclusion, we identify a lack amongst procedural fusion methods with regard to handling
probabilistic and chronologically unsorted input (Rprob & Runs) which is highlighted with a red boarder
in Table 1.



Multimodal Technologies and Interact. 2018, 2, 81 11 of 30

3. Results

Our results are twofold. First, we present the Concurrent Cursor concept. It provides a solution
for the two major shortcomings of procedural fusion methods: the analysis of probabilistic (Rprob) and
chronologically unsorted input (Runs). These requirements presuppose that each input is annotated
with a respective confidence and timestamp value. Our concept also provides a solution to effectively
provide feedback (R f b) despite the challenging consequences of this kind of input. Second, we present
a reference implementation, the Concurrent Augmented Transition Network (CATN). It takes four design
decisions that are left open by the Concurrent Cursor concept: the choice of a procedural method,
the choice of a description language, a measure for handling temporal relations between input,
and an access scheme to the interaction context. Altogether, the CATN thus fulfills all identified
requirements. Finally, we show how the CATN utilizes the Concurrent Cursor concept to perform
semantic fusion using the example of the introduced use case and present a comparative benchmark.

3.1. Concurrent Cursors

The Concurrent Cursor concept introduces so called cursors. A cursor is a pointer indicating
a currently active state in a procedural fusion method. For example, C1 in Figure 5 represents a cursor
pointing to the currently active start state Start. Cursors do not move from one state to another,
but spawn a child that is positioned on the target state. The original cursor remains on its current state.
For instance, if a transition over A is performed, the child C1−1 of cursor C1 is created. The child is
positioned on state S1 while C1 remains on Start. As a result, multiple states can be active at once
and strands of cursors are created while processing input. A strand is interpreted as one viable path
throughout the graph. All possible strands form a tree representing all possible parsings. Its leafs
represent guesses of the fusion method. This way of copying cursors lays a foundation for interpreting
hypotheses and different combinations of hypotheses, since multiple states can be active at the
same time. In order to sort these n-best guesses by their confidence, every cursor has to store its
own confidence. This value is based on the confidences of a cursor’s processed inputs. Different
mathematical calculations can be used to calculate a cursor’s confidence, e.g., the median value of the
processed inputs’ confidences. In summary, each cursor is copied to the target state when performing
a transition and has its own confidence.

C1
Confidence: 0.0

Start S1

S2

S5

C1-1
Confidence: 0.6

C1-1-1
Confidence: 0.7

C1-1-2
Confidence: 0.8

G

A
B

C

. . .

. . .

C

Figure 5. C1, C1−1, C1−1−1, and C1−1−2 are cursor that each point to an active state. They hold
their own confidence. A cursor’s confidence depends on the input it has processed. In the depicted
graph, two cursor strands have been formed: C1−1−1 and C1−1−2. Each strand represents a possible
recognition result. They can be sorted by their confidence to get n-best guesses as output.

To illustrate the concept, consider the following example (see Figure 5): Four states (Start, S1,
S2, and S5) are active and two cursor strands have been formed: C1−1−1 represents the strand from



Multimodal Technologies and Interact. 2018, 2, 81 12 of 30

Start over S1 to S2 with a confidence of 0.7. C1−1−2 represents the strand from Start over S1 to S5

with a confidence of 0.8. Both cursors are sorted by their confidence. As a result, the most confident
recognition result would be the inputs processed by C1−1−2.

In the following we describe how the Concurrent Cursor concept allows to process chronologically
unsorted input and consider temporally valid combinations of hypotheses. To this end, cursors use
an extended two dimensional input tape. Recognizers usually provide timestamps indicating when
a specific event took place. For example, when a user uttered a word or performed a gesture. Input is
sorted on the tape depending on this timestamp instead of its arrival at the fusion method. In contrast
to traditional one dimensional input tapes, which only store input sequentially, our input tape can store
multiple inputs for one time cell in parallel to represent alternative hypotheses. Time cells represent
a specified time interval that further discretize timestamps to cluster hypothesis.

Figure 6 depicts such an input tape. At time cell T0 no input has been received by the fusion
method implementation while input I1 occurred at T1. Two hypothesis I2 and I3 have been recognized
at T2 and sorted into the tape. Cursors keep track of which inputs they already analyzed by pointing
to respective time cells on the input tape. For example, in Figure 6 cursor C1−1 points to state S1

and processed input I1 at time cell T1. Cursor C1−1−1 points to S2 and processed I1 at T1 and I2 at T2.
If a new input I4 is sorted into the tape at T1 (see Figure 6, red color) all cursors that already processed
input at or later then T1 do not have to process I4. For them it is not temporally valid to process
input which, from their point of view, occurred in the past. The only eligible cursor to process I4 is
C1. If I4 passes transition A’s conditions, a new child cursor C1−2 is created. C1−2 points to state S1

in the graph and to I4 at T1 on the tape. After processing this input the cursor has to check if newer
input is available on the tape which could form another valid multimodal command. In the example
of Figure 6, two newer inputs are available for the newly created cursor C1−2: I2 and I3 at T2. If these
inputs lead to new transitions, two new children are created from cursor C1−2: C1−2−1 and C1−2−2.

The described copying pattern of cursors in combination with the two dimensional input tape
provides the means to process probabilistic and chronologically unsorted input (Rprob & Runs). In
addition, it reduces the computational complexity by reducing the number of triggered transitions for
each new input by means of the described temporal validity check.

Providing proper feedback (R f b) is exacerbated since new hypotheses may cause the current best
guess to change. To cope with this issue, the concept defines dedicated feedback functions for each arc
(see Figure 7, green arrow). The arc’s condition determines if a transition will be performed while the
corresponding function is executed when it is performed. The feedback function will be executed after
a transition has been performed. Besides the time of execution, feedback and function differ in one
central aspect. Arcs might be traversed several times by different cursors resulting in multiple function
calls. The user would receive a large number of feedback about every possible guess a fusion method
is considering at the moment, if this function type is used for feedback. In contrast, feedback is only
executed if the arc is traversed by the current most confident cursor, i.e., the cursor with the highest
confidence. If the most confident cursor changes during processing previously executed feedback
has to be revertible (R f b). Reverting feedback can not be automatically performed by the fusion
method, since arbitrary functionality can be implemented in the feedback function. The developer
has to specify dedicated undo feedback functions which negate the respective feedback (see Figure 7,
red arrow). All transitions made by the old most confident cursor have to be traced back until the
first common parent between new and old most confident cursor. The feedback of these transitions has
to be undone by executing the respective undo feedback functions. Upon reaching the first common
parent, the feedback can be sequentially executed from the parent to the new most confident cursor.



Multimodal Technologies and Interact. 2018, 2, 81 13 of 30

Input Tape

{I1,I4} @ T1 {I2,I3} @ T2

C1-1 C1-1-1C1 I1 I1, I2

{ } @ T0

C1-1-2 I1, I3

C1-2 I4 C1-2-1

C1
Confidence: 0.0

Start S1

S2

S5

C1-1
Confidence: 0.6

C1-1-1
Confidence: 0.7

C1-1-2
Confidence: 0.8

G

A(threshold = 0.5)
B(threshold = 0.3)

C(threshold = 0.7)

. . .

. . .

C

C1-2-2I4, I2 I4, I3

C1-2
Confidence: 0.6

C1-2-2
Confidence: 0.6

C1-2-1
Confidence: 0.9

. . .

. . .

Figure 6. The extended two dimensional Input Tape (top) and a transition graph (bottom). The input
tape does not only store input in the chronological order in which it occurred, but is also capable of
storing multiple hypotheses for a single time cell. For example, a recognizer may have provided two
different hypothesis I2 and I3 for one input that is stored on the tape at time cell T2. Besides pointing
to a state in the transition graph, cursor point to time cells on the tape and store which input they
already processed. For instance, cursor C1−1−1 points to state S2 and to T2 on the input tape. It already
processed input I1 and I2.

Start S1 . . .A {Condition | Function}

A {Feedback}A {UndoFeedback}

Figure 7. Two states Start and S1 which are connected by arc A. The arc contains a guarding Condition
which determines if a certain input leads to a transition and a Function which is called during
the transition. The Concurrent Cursor concept introduces two additional functions for each arc:
Feedback and UndoFeedback. In contrast to Condition and Function, Feedback is not executed for
every transition but only for transitions made by the most confident cursor. This makes it especially
suitable to provide feedback. UndoFeedback can be used to revert previously given feedback.

Figure 8 depicts such a procedure. A new input has been processed by the fusion method
implementation. It leads to a change of the most confident cursor from C1−1−1 to C1−1−2.
Their common parent is C1−1. First, the undo feedback function of transition B is triggered. Second,
the transition C’s feedback function is executed for cursor C1−1−2.

In summary, the Concurrent Cursor concept provides effective means to analyze probabilistic
and chronologically unsorted input and satisfies Rprob and Runs. Cursors allow for multiple states to
be active at the same time and contain their own confidence. This is essential for the fusion method
to represent sorted n-best recognition results caused by analyzing multiple hypotheses and their



Multimodal Technologies and Interact. 2018, 2, 81 14 of 30

combinations. Cursors keep a reference to their processed input on a two dimensional, chronologically
sorted input tape. This enables cursors to properly parse new input in the correct order, independent
of their time of arrival. Providing proper feedback is supported by the Concurrent Cursor concept,
since the fusion methods best guess can be communicated to the application continuously and be
reverted (R f b), if the best guess changes.

Cursor 1-1-2
New most 

confident cursor

1. Undo 
FeedbackC1

Start S1

S2

S5

C1-1

G

A(threshold = 0.5)
B(threshold = 0.3)

C(threshold = 0.7)

. . .

. . .

C

Cursor 1-1-1
Old most 

confident cursor

2. Feedback

Figure 8. Two cursors in a transition graph: C1−1−1 and C1−1−2. The fusion method’s most confident
cursor changes from C1−1−1 (red) to C1−1−2 (green), after processing an input. To this end the previously
provided feedback of C1−1−1 is reverted by means of the UndoFeedback function, and the feedback of
C1−1−2 is provided.

3.2. Reference Implementation

Our reference implementation is called Concurrent Augmented Transition Network (CATN).
In the following, we describe the implementation of the Concurrent Cursor concept and detail the
four design decisions that are left open by the Concurrent Cursor concept: The choice of a procedural
method, the choice of a description language, a measure for handling temporal relations between
input, and an access scheme to the interaction context. Altogether, the CATN thus fulfills all identified
requirements. Since the Concurrent Cursor concept is an extension to a procedural fusion method,
we first elaborate this decision.

3.2.1. Design Decision: Augmented Transition Network

We chose to base the CATN on an augmented transition network which receives input by means
of events. An ATN foresees data storage in form of state-specific registers. The CATN implements
registers cursor-specific to comply with the Concurrent Cursor concept. That is, each cursor comprises
its own set of registers. The content of a cursor’s register is copied to the register of its children.
A cursor’s registers can thus be used to fulfill two essential requirements. On the one hand, they can
store information about the syntactic structure of each particular guess, enabling the parsing of
context-sensitive grammars (Rsyn). On the other hand, they can store state and behavior references to
permit semantic integration during fusion (Rsem).

A further benefit of basing on an ATN is its inherent recursiveness. Reoccurring recognition
tasks, e.g., parsing a noun phrase, can be externalized into separate networks. These networks can
be integrated into the main network of the ATN by means of dedicated subroutine calls. A concrete
example of this functionality is provided in Section 3.3. Dividing a large network into several small
ones increases reusability and modifiability.



Multimodal Technologies and Interact. 2018, 2, 81 15 of 30

Besides normal and sub arcs, we implemented dedicated arcs for semantic integration called
EpsilonArcs. An epsilon arc is not triggered with new input, but is automatically triggered if a cursor
reaches its point of origin. While semantic integration can be performed in any arc, encapsulating this
functionality in dedicated reusable arcs proofed to be easier to maintain.

3.2.2. Concurrent Cursor Implementation

Both cursors and the two dimensional input tape are implemented according to the Concurrent
Cursor concept and utilized in the CATN’s parser. The parser, as well as noteworthy optimizations,
are described in the following. Figure 9 (top flow chart) depicts a flow chart illustrating the designed
algorithm. One processing loop is triggered by an input event, which is first sorted in the input tape
depending on its timestamp.

Start Event Is New 
Input

Process Inputno

Update 
Confidences

yes

Sort Cursor 
by 

Confidence

Compare 
new with old 

MCC
Execute 

Intermediate  
Feedback

Stopsame

is child

Undo Previous 
Feedback For 

Old MCC

not related Do Feedback 
For New MCC

Process 
Input For 
Cursors

Get 
Cursors 
For Input

Sort Input 
Into Tape

Newer 
Input On 
Tape?

Get Next 
Input From 
InputTape

Set As 
New Input

no

yes

……

Figure 9. An illustration of the concurrent Augmented Transition Network (CATN) parser’s algorithm.
The upper flow chart outlines the behavior of the CATN’s parser upon receiving input. The bottom
flow chart is a more in depth description of the Process Input step of the upper flow chart. The
abbreviation MCC stands for most confident cursor. For a more detailed description of the algorithm
refer to the text.

The parser checks if the respective time cell already contains an input with equal value. That is,
the confidence of a previously parsed input changed, e.g., the automated speech recognizer updated
the confidence for having recognized “chair” at a certain timestamp. If this is the case, the confidence
of all cursors that already processed this input is updated with the new input’s confidence. This step is
optional but aids to optimize performance by not unnecessarily introducing new cursors to the CATN.
It is based on the premise that later hypotheses are more reliable.

If the input is new, it is being processed. This may lead to the creation of multiple new
cursors. If new cursors are created, the new most confident cursor will be calculated. Three different
possibilities are considered. Firstly, the old most confident cursor remains the new most confident
cursor, in which case no feedback has to be provided. Secondly, the new most confident cursor is
a child of the old one. In this case, the feedback function of all arcs between the old most confident
cursor’s state and the new one’s has to be executed. Thirdly, the new most confident cursor is not
a child of the old one. In this case the previously provided feedback has to be undone by executing the
dedicated undo-feedback functions and the new feedback has to be provided.

As an additional optimization, the CATN can be reset, e.g, after a successfully parsed command
has been executed. A reset deletes all existing cursors and spawns a new cursor on the start state.
The parser waits for the next input. On top of that we implemented an auto reset for the CATN.
The auto reset is triggered if the CATN does not receive input in a configurable time frame. It avoids
that the CATN’s parser gets stuck in an incomplete command.



Multimodal Technologies and Interact. 2018, 2, 81 16 of 30

Figure 9 (bottom) illustrates the Process Input step in detail. The new input is sorted into the input
tape. Next, all eligible cursor are identified. A cursor is deemed eligible if its position on the input tape
precedes the new input. Additionally, we implemented a max time delta for how far in the past cursors
can be eligible. This is an optimization and not part of the concept. However, it reduces the number of
active cursors in practice which decreases processing time. It is based on the assumption that natural
input occurs within a certain time interval to each other. Eligible cursors process the new input by
checking the conditions of outgoing arcs from the states to which they are pointing to. If a condition
is satisfied, the arc’s function is executed. Its feedback functions will be collected in the parser and
maybe provided later depending on the new most confident cursor calculation step. A child of the
cursor is created by cloning it. The child’s confidence is calculated and its pointers updated to the new
state and position on the tape. Finally, the parser checks for newer input on the tape. If newer input
exists it will be processed by the newly created children, if not the Process Input step is finished.

3.2.3. Design Decision: The Programming Language Scala

The Scala programming language has been chosen as a description language for the CATN.
Scala combines both object-oriented and functional paradigms. This fosters the definition of concise
application programming interfaces (APIs), especially comprising callbacks, and is beneficial for
addressing a large number of developers. In addition, Scala’s syntax is very flexible which greatly
facilitates the use of a description languages. For example, Scala allows to omit the dot operator or the
parentheses in certain cases. Listing 1 showcases our Scala based description language for defining the
CATN’s transition graph. Line 1–3 define the transition graph’s composition. A dedicated start state
Start is connected with arc A to the state S1 (line 1). S1 is connected with arc B to the end state End
(line 2). The end state is defined in line 3 while line 4 depicts the definition of the arc A. It’s condition
isA, function doA and feedback feedbackA are Scala functions which can directly be passed to the
description language. This description language fosters rapid prototyping and helps non-experts to
effectively design multimodal interfaces.

Listing 1. Example of a concurrent Augmented Transition Network (CATN) defined with our
description language. By omitting the dot operator and parentheses, the CATN can be defined
in an easily readable manner. For example, the StartState method of the object create in line 1
accepts a string as parameter and yields an object with a method withArc.

1 create StartState "Start" withArc "A" toTargetState "S1"
2 create State "S1" withArc "B" toTargetState "End"
3 create EndState "End"
4 create Arc "A" withCondition isA andFunction doA provideFeedback feedbackA
5 create Arc "B" withCondition isB andFunction doB provideFeedback feedbackB

3.2.4. Design Decision: Network Abstraction Constructs

We include network abstraction constructs in the definition language to provide a convenient
measure for handling temporal relations between input. An ATN’s conditions and registers already
provide means to support this requirement, by storing timestamps in registers and checking them
with conditions. However, the repeated definition of such constructs is cumbersome. Thus we utilize
constructs in our description language to abstract this kind of reoccurring network configurations.

Split-Merge is an example of an network abstraction construct in our description language.
It allows the definition of more complex temporal relations between input (Rtmp). Special Split and
Merge states can be defined. A split state has to be connected to a merge state with at least two transitions
in parallel. In order for a cursor to transition to the merge state, all transitions from split to merge
have to be performed. These transitions have to satisfy an additional Merge-Condition, e.g., a temporal
condition. Listing 2 illustrates the description language for defining a split-merge. Both arcs A and



Multimodal Technologies and Interact. 2018, 2, 81 17 of 30

B have to be traversed within the maxTimeDelta(500L) condition. In other words, the CATN has to
receive appropriate input within 500 milliseconds next to each other. A dedicated merge function
can be freely implemented (line 4). The merge function is automatically executed if both A and B are
traversed in the maxTimeDelta(500L) condition. This function can be used, for example, to clean the
cursor’s registers or perform semantic integration. The temporal condition for the split-merge can be
freely chosen. Allen’s interval algebra for representing relation between time intervals [65] provides
helpful guidelines for defining suitable conditions. The CATN processes a split merge by mapping
this high level definition to the low level functionality of the ATN.

Listing 2. An example code excerpt showcasing our network abstraction design decision Split-Merge.
A dedicated split state Split is defined in line 1. Two arcs, A and B, connect Split with state Merge in
line 2 and 3. Line 4 defines the dedicated merge state Merge with the on merge function merge.

1 create SplitState "Split" withCondition maxTimeDelta(500L)
2 andArc "A" toTargetState "Merge"
3 andArc "B" toTargetState "Merge"
4 create MergeState "Merge" withOnMergeFunction merge

Figure 10 illustrates this mapping. The left transition graph represents the in Listing 2 defined
network. In a preprocessing step it is mapped to the transition graph on the right. Two new states
AS1 and AS2 are automatically generated by the CATN and placed between Split and Merge.
All permutations of the two transitions A and B are thus represented. The time condition is added to
the conditions of all arcs between Split and Merge. Similarly, a function is added to the respective
arcs that automatically stores the inputs’ timestamps in the cursors’ registers. These timestamps can
then be evaluated by the time condition to conclude a successful split-merge. Utilizing the network
abstraction design decision the Split-Merge construct provides a solution for defining more complex
temporal relations between input (Rtmp).

A

B

Split Merge

Temporal Condition

A

B
Split Merge

AS1

AS2

B

A
Mapped To

Figure 10. The left transition graph visualizes the network abstraction for supporting different temporal
relations between input. A temporal condition checks if both transitions A and B are performed within
a predefined temporal relation between each other. The CATN maps this abstraction to a parsable
transition graph depicted on the right.

3.2.5. Design Decision: Semantics-based State- and Behavior-Management Techniques

We utilize semantics-based state- and behavior-management techniques [10,20] to realize our
access scheme to the interaction context. Entities are used as state representing objects containing
a set of numerical and symbolic properties that are semantically grounded and can dynamically change
during simulation. The chair in the running use case, for example, would be represented as such
a semantic entity [20,56], containing grounded properties like type, color, position, and orientation.
The user and its position in the virtual environment or environmental information, such as the
surrounding light level, can be represented with semantic entities as well. Most importantly however,
these techniques incorporate a concept to semantically describe behavior as complement to the
application state representation. State and behavior queries can be performed by means of semantic
descriptions called semantic queries. They support the resolution of references to (virtual) objects by
permitting to query the application state for entities by a logical combination of desired present and



Multimodal Technologies and Interact. 2018, 2, 81 18 of 30

past properties and property values. After “... [deictic gesture] that green chair ...” has been analyzed
an entity could be queried for that is a chair, has a color property that equals green, and is located
within a certain area. Such a query would yield the above described semantic entity representing the
chair in the virtual environment. This entity can also be altered by the CATN during input analysis if
required. Semantic queries likewise foster semantic integration. Since the goal of many multimodal
user interactions is to trigger a certain action the application can perform, semantic-level fusion has
to match uttered multimodal commands to available actions. Behavior queries support in exactly
this task and yield so called grounded actions that consist of a set of preconditions, a set of parameters,
and a set of effects. A semantic validation can be performed using the action’s meta data by checking
if the information contained in the multimodal utterance fulfills the action’s preconditions and covers
the action’s parameters. In the use case, the analysis of the utterance “Put ...” could query a respective
grounded action collocate that takes an object as well as a destination (parameters) and requires the
object to be moveable (preconditions).

We propose to integrate this semantics-based state- and behavior-management into procedural
fusion as follows: Registers are realized as semantically grounded property sets just like semantic
entities. Thus transition-conditions and -functions can exploit introspection. Semantic entities,
grounded actions, as well as semantic queries complement the means for the implementation of
transition. They are highly beneficial for resolving references to (virtual) objects and for realizing
semantic integration. Transition functions can map input to semantic entities, grounded actions,
and semantic queries to store them in their register.

Listing 3. An example code excerpt for an arc’s function which performs semantic integration after the
user uttered the word “chair” with a preceding deictic gesture. A semantic query is used for identifying
and subsequent accessing entities in the application state. In this example, the query returns an entity,
if one exists, which possess a Semantics property with value Chair and intersects with the user’s
pointing Ray at a specified time. Grounded properties are highlighted in blue.

1 def resolveNP(input: Event, register: SValSet) {
2 val ray = register.get(Ray).value
3 val timestamp = register.get(Timestamp).value
4 val word = input.get(Token).value // "chair"
5 val noun = Lexicon.nouns(word)
6 val pointedAtChair = HasProperty(Semantics(noun.assocEntity)) and
7 PointedAt(ray) at timestamp
8 val entity = Get the pointedAtChair
9 if(entity.isDefined) register.put(entity)
10 }

Listing 3 depicts an arc’s function which resolves a noun phrase accompanied with a deictic
gesture using a semantic query. The goal of this function is to find the semantic entity Chair. Both the
direction ray of the pointing gesture and the timestamp at which the user performed the gesture can
be retrieved from the register (line 2–3). The uttered word "chair" is retrieved from the event that
triggered the transition (input) (line 4). We use a Lexicon [66] to map the word "chair" to a respective
noun which is associated with a type of entity (line 5). This data is used to parameterize the query
(line 7–8) which is then executed (line 9). The timestamp is of particular importance for identifying the
respective entity in a dynamically changing environment. The PointedAt(ray) at timestamp part of
the query performs a lookup in the application state history to check if the ray intersected an entity at
timestamp. If the query yields a result, the entity is stored in the register (line 10) and can later be used
to invoke a resolved action.

The semantics-based state- and behavior-management design decision allows multimodal systems
to use entities and actions without requiring explicit references (Rsem). This decouples in terms of



Multimodal Technologies and Interact. 2018, 2, 81 19 of 30

data sinks and sources as well as of utilization of application and system functionality. It facilitates
the reuse of fusion method configurations in other contexts or applications, as long as the required
application state and behavior representation elements exist. Thus an universal multimodal interface,
comprised of basic commands like creation, collocation, and deletion, could be rapidly added to any
application that is realized with an interactive system supporting this design decision.

3.3. Use Case Implementation

In this section, we present a concrete CATN configuration capable of recognizing the example
interaction introduced in Section 2.1: “Put [deictic gesture] that green chair near [deictic gesture] this table.”
Figure 11 illustrates the respective CATN’s transition graphs. To represent parts of speech we use the
Penn Treebank POS tagset [67]. The primary transition graph (see Figure 11, top transition graph)
recognizes a verb (VB), a noun-phrase (NP), a preposition (IN), and another noun-phrase (NP) in
a sequential order. A transition of the final arc CMD implies that the command has been successfully
recognized and executes the respective action. The NP arc is a sub arc which points to the secondary
transition graph (see Figure 11, bottom transition graph). In order for a cursor to traverse from S1 to
S2 or S3 to S4, it has to traverse through the entire secondary graph first. A noun phrase starts with
a split-merge consisting of a demonstrative (DT) and a deictic gesture (dG). The merge is followed
by a noun (NN) and finally a dedicated arc for semantic integration (resolveNP). resolveNP provides
feedback by visually highlighting the resolved entity. Additionally the arc ADJ allows for an optional
number (0-n) of adjectives.

Start S1 S2 EndS4S3 EndVB NP IN NP CMD

NP S5

ADJ

dG

DT

S6 EndEnd 
NP

resolve NPNN

unhighlight highlight

Figure 11. Two CATN transition graphs for recognizing the multimodal command introduced in
Section 2.1. The upper graph defines the overall structure of the command. The lower graph is
a dedicated sub graph for recognizing noun phrases accompanied by a deictic gesture. The lower graph
is utilized twice in the upper graph, between S1 and S2, and S3 and S4. Arcs are named after the input
they process and include a respective condition and function, e.g., VB accepts a verb. The resolveNP arc
performs semantic integration and provides revertible feedback in form of a visual highlighting effect.

Listing 4 showcases the description language code to define the introduced CATN configuration.
Line 1–6 define the upper graph in Figure 11, while line 8–15 define the lower graph. The Arc VB is
created in line 17–18. Since the description language is internal, Scala functions can be directly passed
to it. VB’s condition isPartOfSpeech[Verb] firstly verifies whether the input is an input from the
speech recognizer. Secondly, it checks if the recognized token is of a certain part of speech, i.e., a verb.
The arcs function saveAs[Verb] stores the verb in the cursor’s register for future reference. Arcs for
recognizing the remaining speech tokens, i.e., VB, IN, DT, ADJ, and NN are all defined similarly. Line 21.
illustrates how the dG arc for parsing a pointing gesture is defined. Its condition isGesture[Pointing]
verifies whether the input is a pointing gesture. The saveAs[Pointing] function stores the pointing
ray semantically annotated in the cursors register.



Multimodal Technologies and Interact. 2018, 2, 81 20 of 30

If a cursor reaches S6 in the NP graph (line 14), a noun phrase accompanied with a gesture has
been successfully recognized. Relevant information is stored in the cursor’s registers and can be
retrieved from it in the resolveNP epsilon arc. Its condition entityExists (line 24) checks if an entity
described by the parsed noun-phrase and accompanying deictic gesture exists using semantic queries.
If such an entity exists in the application state, the arc’s function resolveNP (line 25) stores a reference
to the entity in the cursor’s register. Finally, the resolveNP arc’s feedback function (line 26) highlights
the entity if the cursor currently is the most confident one. An additional undo feedback is defined
in case the most confident cursor changes during fusion and the wrong entity has been highlighted
(line 27). The CMD arc (line 29) is implemented as an epsilon arc as well. It does not need a condition
or function. If a cursor reaches state S4 (line 5) a command has been successfully recognized and
all necessary information is stored in the cursor’s registers. It retrieves the appropriate action, i.e.,
colocate from the application’s behavior by means of a semantic query. The action is parameterized
with the content of the cursor’s register, i.e., the semantic entity Chair and Table, and is executed.

This generalized approach to multimodal interface design leads to easy extensibility. Simply
adding more determiner, adjectives, nouns and verbs to the lexicon is sufficient to recognize a multitude
of commands, e.g., “Move [deictic gesture] that big vase to [deictic gesture] this counter.” or “Place [deictic
gesture] that small yellow thing under [deictic gesture] that table.”.

Listing 4. A description language excerpt for creating the CATN depicted in Figure 11.

1 create StartState "Start" withArc "VB" toTargetState "S1"
2 create State "S1" withSubArc "NP" toTargetState "S2"
3 create State "S2" withArc "IN" toTargetState "S3"
4 create State "S3" withSubArc "NP" toTargetState "S4"
5 create State "S4" withEpsilonArc "CMD" toTargetState "End"
6 create EndState "End"
7

8 create SplitState "NP" withCondition maxTimeDelta(500L)
9 andArc "DT" toTargetState "S5"
10 andArc "dG" toTargetState "S5"
11 create MergeState "S5" withOnMergeFunction merge
12 withArc "NN" toTargetState "S6"
13 andArc "ADJ" toTargetState "S5"
14 create State "S6" withEpsilonArc "resolveNP" toTargetState "EndNP"
15 create EndState "EndNP"
16

17 create Arc "VB" withCondition isPartOfSpeech[Verb]
18 andFunction saveAs[Verb]
19 /*...*/
20

21 create Arc "dG" withCondition isGesture[Pointing]
22 andFunction saveAs[Pointing]
23

24 create Arc "resolveNP" withCondition entityExists
25 andFunction resolveNP
26 provideFeedback highlight
27 withUndoFeedback unhighlight
28

29 create ARC "CMD" withFeeedback executeCommand



Multimodal Technologies and Interact. 2018, 2, 81 21 of 30

3.4. Benchmark

The Concurrent Cursor concept provides an extension to procedural semantic fusion methods.
It fulfills the two fundamental requirements handling probabilistic (Rprob) and chronologically unsorted
input (Runs). The concept introduces concurrent cursors and a two dimensional input tape that could
introduce a performance overhead. This section presents a fundamental comparative benchmark that
provides basic insights into the impact of the Concurrent Cursor concept on the performance of ATNs
and thus into the practicability of our contribution.

3.4.1. Concept

The benchmark measures and compares the mean processing time of both the CATN and a state
of the art ATN-based approach implemented without the Concurrent Cursor concept (GENERIC ATN)
on a fabricated dataset D. D consists of two different types of inputs A and B, e.g., speech tokens and
recognized gestures. The benchmark generates n guesses for each input, e.g., A1, A2 as two guesses
for A, to consider probabilistic input (Rprob). Timestamp ta is assigned to inputs of type A and tb to B,
with ta < tb. Additionally, a randomly generated confidence is assigned to each input.

The benchmark samples the mean processing time of the CATN and GENERIC ATN
for n ∈ [1, 2, ..., 25]. For n = 2, for example, the following input dataset is constructed:
D2 = [A1, A2, B1, B2]. The input dataset is randomized before it is passed to the fusion methods,
to simulate chronologically unsorted input (Runs). The CATN natively supports this kind of input.
The GENERIC ATN approach is required to chronologically sort the passed list again before processing.

Figure 12 illustrates the networks that the benchmark uses for parsing D. The main difference
between the CATN and the GENERIC ATN approach is that the CATN can process all Dn using one
configuration due to the Concurrent Cursor concept. A single GENERIC ATN, however, conceptually
provides only one active state and is thus incapable of considering chronologically plausible
combinations of guesses. To be nevertheless able to consider probabilistic input, a set of artificially
constructed networks is generated: [(A1, B1), (A1, B2), ..., (An, Bn)].

Start A BS1 End

Start A1 B1S1 End Start A2 B1S1 End

Start A1 B2S1 End Start A2 B2S1 End

Figure 12. The CATN utilized for all Dn is illustrated on the left. The GENERIC ATN approach requires
to create a network for each permutation of guesses. The four GENERIC ATNs that are generated to
process D2 = [A1, A2, B1, B2] are depicted on the right.

Each network (CATN and GENERIC ATN) consists of three states and two arcs. The arcs’ conditions
are setup to accept the guesses, while the arcs’ function store the value, timestamp, and confidence of
each input in their registers. In the case of the CATN, this information about all parsed inputs are thus
available in registers that belong to cursors on the end state. To mimic this behavior with the GENERIC

ATN, the GENERIC ATN’s arc functions have to retrieve value, timestamp, and confidence from the
previous state’s register and add them to the current state’s register.

The benchmark has been performed on a Windows 10 workstation with an Intel Core I7-8700k @
3700GHz processor, 16GB DDR3 ram, and an Nvidia Geforce GTX 1080Ti graphics card. Both fusion
methods have been implemented with the programming language Scala v. 2.11.8 and ran in the Java
Virtual Machine(JVM) v. 1.8.0_181. For each n ∈ [1, 2, ..., 25] 50,000 warm up cycles have been run before
a total of 10,000 measurement cycles. The warm up cycles reduce the impact of the JVM’s runtime
optimizations on the measurement cycles.



Multimodal Technologies and Interact. 2018, 2, 81 22 of 30

3.4.2. Results

The obtained results are presented in Figure 13. They show that the CATN is comparable in
performance to state of the art ATN-based approaches until n = 12, with a peek difference at n = 8 of
0.099 milliseconds. For high numbers of n the CATN outperforms its comparison partner. At n = 25
the CATN is in average 2.830 milliseconds faster than the ATN.

Du
ra

tio
n 

in
 M

illi
se

co
nd

s

0

0,1

0,2

0,3

0,4

0,5

0,6

Number of Guesses per Input
1 2 3 4 5 6 7 8 9 10

cATN generic ATN

Du
ra

tio
n 

in
 M

illi
se

co
nd

s
0

1

2

3

4

5

6

7

Number of Guesses per Input
1 3 5 7 9 11 13 15 17 19 21 23 25

cATN generic ATN

Figure 13. The results of the comparative benchmark. The graphs on the left depict the mean processing
duration for n ∈ [1, 2, ..., 10] guesses per input type A and B. The graphs on the right depict the mean
processing duration for n ∈ [1, 2, ..., 25] guesses per input type A and B. At n = 13 guesses per input
the CATN outperforms the GENERIC ATN approach.

These results are in line with our expectations. The Concurrent Cursor concept introduces a small
performance overhead, which can be observed for n <= 12. Eligible cursors have to be identified
before they can process the input and children of cursors have to be created, while the GENERIC ATN
can directly process all inputs. However, as n increases this overhead is negligible in comparison to the
number of arcs tested and transitions made by the GENERIC ATN. Before any input has been processed
there are n2 active states for the GENERIC ATN approach, since there are constantly n2 networks. In the
CATN there is only one active cursor. After Dn has been processed, there are still n2 active states for
the GENERIC ATN approach. In the CATN there are ∑2

i=0 ni cursors, since one cursor remains at the
start state, n cursors represent Ai with i ∈ [1, 2, ..., n] at ta, and at tb all combinations of Ai × Bi with
i ∈ [1, 2, ..., n] are considered. In total, both fusion approaches exhibit a quadratic growth of active
states (O(n2)). However, in terms of processing time the GENERIC ATN tests more arcs and makes
more transitions per input. Each input triggers a test for all n2 active states right from the beginning.
The CATN only processes input for eligible cursors. The number of such cursors starts with one and
increases depending on the randomization of inputs.

In conclusion, the presented benchmark results support the fundamental practicability of our
contribution. To make measurements comparable the GENERIC ATN approach sorts chronologically
unsorted input before the actual processing, artificially constructs a set of single ATNs, and copies
register contents to the end state. The benchmark showcases that the GENERIC ATN approach can
not handle chronologically unsorted dynamically, since it has to wait until all guesses are provided.
Further, the processing of probabilistic input is merely possible due to the artificial construction of
networks, which impacts the clarity and conciseness of network definitions in realistic use cases.

4. Discussion

The Concurrent Cursor concept enables to process probabilistic (Rprob) and chronologically
unsorted input (Runs) typically provided to semantic-level fusion methods. At the same time it supports
the provision of continuous and revertible feedback to inform the user about the current state of the
semantic fusion and to provide insight in why a certain command has not been successfully recognized



Multimodal Technologies and Interact. 2018, 2, 81 23 of 30

(R f b). Unification as used in Quickset [30] also meets Rprob and Runs. However, the system has to wait
for the user to finish the interaction before analyzing it. This restriction renders the fusion method
unable to provide continuous feedback during interaction. Our reference implementation, the CATN,
builds upon four design decisions to jointly fulfill all identified fundamental requirements: An ATN,
the Scala programming language, network abstraction constructs, and semantics-based state- and
behavior-management techniques.

The CATN is set out to facilitate rapid prototyping of MMIs. Five characteristics concretely
contribute to this trait. (1) The declarative nature of the CATN’s procedural approach avoids the time
costly training required by machine-learning based approaches. (2) The recursiveness of the underlying
transition network permits the reuse of substructures, like the dedicated subgraph for recognizing
noun phrases shown in the use case implementation. (3) The network abstraction constructs of our
description language complement this reuse by abstracting repeatedly required network configurations.
Finally, the concrete state and behavior elements of the application are decoupled from (4) the semantic
integration process, by means of semantic queries, and from (5) lexical information, i.e., from the
tokens of the interface’s multimodal grammar, by means of the lexicon. Altogether, the options of
reuse save time and thus foster rapid development cycles. Moreover, the achieved level of decoupling
puts an „universal multimodal interface”, comprised of basic commands that can be readily added to
any application, close at hand. Ultimately, it shows how a procedural fusion method can satisfy all
fundamental requirements for performing semantic fusion, while maintaining the support of rapid
MMI development processes and thus answers the research question.

This facilitation of development and the completeness of captured requirements has been
validated by a series of proof of concept demonstrations. Their implementation guided the concept
development process and provided a basis for assessment and improvements. In the following,
the most relevant proof of concept demonstrations for our CATN are briefly presented (see Figure 14).
They comprise various student projects, theses, as well as results of a master-level Multimodal
Interface course. It shows that non-experts can effectively implement MMIs even for non-trivial
application areas like virtual and mixed reality. This is in line with the general benefits of procedural
fusion methods identified in literature, i.e., simple comprehensibility and compatibility with typical
interface development processes. Figure 14 showcases a few of these applications and demonstrations.
More details can be found on our project page [51]. SiXton’s Curse [9] is a semi immersive,
multimodal adventure game in which a user has to defend a town from AI controlled virtual ghosts.
For this purpose, the user has several spells at his disposal that can be cast by the combined use
of speech and gestures. The demonstration by [8] is a multimodal, mixed reality, real-time strategy
game on a digital surface. Players can command their forces by speaking, touching, and gesturing.
More recently, a cherry picking approach [68] has been applied to allow the exploitation of the
simulation and rendering capacities of game engines. Space Tentacle [7] and Robot Museum [69] have
been developed with the Unity 3D game engine. Space Tentacle is a VR adventure game in which
the user has to multimodally communicate with an artificial intelligence on a space ship to solve
puzzles. Robot Museum is a student project which explores multimodal communication with a virtual
companion in a museums context. Big Bang [70] is a VR universe builder implemented with the
Unreal 4 game engine.

The general feasibility of the Concurrent Cursor concept and the CATN has further been
validated through a comparative performance benchmark. The presented benchmark results support
the fundamental practicability of our contribution. They show that the CATN is comparable in
performance to state of the art ATN-based approaches. Apart from the raw performance comparison,
the benchmark showcases that the comparison partner can not handle chronologically unsorted input
dynamically. Further, the processing of probabilistic input is merely possible due to the artificial
construction of an exponentially growing set of single ATN configurations (as a function of the number
of n-best guesses). While this high number of networks makes the generic ATN approach impractical
with respect to the definition of valid multimodal utterance, the concise description language of the



Multimodal Technologies and Interact. 2018, 2, 81 24 of 30

CATN has been perceived to be usable during the development of the presented proof of concept
demonstrations. For high numbers of n-best guesses the CATN outperforms its comparison partner.
Thus, it may also prove effective in earlier stages of the input processing pipeline as well as in (future)
use cases that consider a considerably higher number of modalities for fusion than just speech and
gesture.

Figure 14. Illustration of student projects using the CATN. (1)–(3) are results of a master-level
Multimodal Interface course. Students implemented virtual environments with Unity 3D and designed
instruction-based multimodal interfaces. Example interactions comprise commands like: “Put [pointing]
that firewood [pointing] there.” (1), “Select [pointing] that white chess piece.” (2), “Delete [pointing] that
box.” (3). (4) showcases a comparison of a multimodal- with a menu-based interface for interactive
surfaces. (5) illustrates the Big Bang demonstration that is implemented with the Unreal 4 engine.

The main limitations of our contribution are twofold and indicate canonical future research. Firstly,
an elaborated formal performance analysis that especially considers typical real-time constraints of RIS
has not been conducted. Yet, the fundamental benchmark and the development of the presented proof
of concept demonstrations indicate a principal suitability and revealed further insight. Conditions
should check inputs in terms of their temporal, syntactical, and semantical validity early on, to avoid
the creation of cursor strands for false guesses. In addition, it has proven to be advantages to model high
frequency data sources as context, i.e., in the application state. They can thus be polled on demand
instead of being pushed to the fusion method in large numbers, where they would substantially
increase the number of active cursors. For instance, in case of the mixed reality board-game [8],
the detected positions of the users’ hands touching the interactive surface are represented as properties
of a semantic entity TouchInput. In response to an uttered demonstrative key word, i.e., “that” or
“there”, a dedicated arc condition checks if touches occurred during the speech input by means of
semantic queries and the application state history. Both of these best practices, representing high
frequency data sources as context and defining restrictive arc conditions, led to proof of concept
demonstrations with no noticeable performance impact regarding the flow of interaction. Secondly,
the CATN’s description language and its network abstraction constructs are designed to facilitate
development, however its effectiveness in this regard has solely been controlled by the application of
an API peer review method [20]. The usability of a system’s programming interface for developers, i.e.,



Multimodal Technologies and Interact. 2018, 2, 81 25 of 30

its API usability [71] includes its learnability, the efficiency and correctness with which a developer
can use it, its quality to prevent errors, its consistency, and its matching to the developers’ mental
models. API usability is paramount for facilitating a rapid prototyping process (of MMIs). However,
properly assessing or even comparing API usability is a delicate endeavor with a limited number of
methods and no obvious choices [72,73]. Subjective methods are the primary choice for API usability
assessment and comprise expert reviews based on guidelines and user studies, such as think-aloud
usability evaluation, API peer reviews [71,74], or questionnaires based on programming tasks [72,73].

5. Conclusions

This article targets semantic fusion methods for natural, synergistic, and intentional multimodal
interactions that are compliant with rapid development cycles. On the basis of a comprehensive review
of associated contributions and with the help of an interaction use case, we identify seven fundamental
requirements: Action derivation, continuous feedback, context-sensitivity, temporal relation support,
access to the interaction context, as well as the support of chronologically unsorted and probabilistic
input. The Concurrent Cursors concept provides a solution for fulfilling the latter two requirements and
is proposed as the main contribution of this paper. The feasibility of the Concurrent Cursors concept is
validated by our reference implementation the CATN in a series of proof of concept demonstrations as
well as through a comparative performance benchmark. The CATN bases on four design decisions:
An ATN, the Scala programming language, network abstraction constructs, and semantics-based state-
and behavior-management techniques. Altogether, the CATN thus fulfills all identified requirements
and—to our best knowledge—fills a lack amongst previous solutions. The CATN supports rapid
prototyping of MMIs by means of five concrete traits: its declarative nature, the recursiveness of
the underlying transition network, the network abstraction constructs of its description language,
the utilized semantic queries, and the utilized lexicon. Our reference implementation is used in
various student projects as well as master-level courses and shows that non-experts can effectively
implement MMIs for non-trivial application areas like virtual and mixed reality. The CATN is available
for researchers [51].

In our ongoing research we plan to further formally analyze the performance of the proposed
concept under realistic conditions with respect to typical real-time constraints of interactive systems.
Moreover, we intend to evaluate the API usability of the CATN’s description language and its network
abstraction constructs. Finally, we aim to research the practical limitations of a universal multimodal
interface that is theoretically supported by the abstraction layers utilized in the CATN.

Author Contributions: All authors contributed equally to this work.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MMI Multimodal Interaction
MMS Multimodal System
RIS Real-time Interactive System
ATN Augmented Transition Network
tATN temporal Augmented Transition Network
cATN concurrent Augmented Transition Network
FSA Finite-State Automaton
FST Finite-State Transducer
SDK Software Development Kit
SGIM Speech and Gesture Interfaces for Multimedia
API Application Programming Interface



Multimodal Technologies and Interact. 2018, 2, 81 26 of 30

References

1. Oviatt, S.; Cohen, P. Perceptual User Interfaces: Multimodal Interfaces That Process What Comes Naturally.
Commun. ACM 2000, 43, 45–53. doi:10.1145/330534.330538.

2. Nigay, L.; Coutaz, J. A design space for multimodal systems: Concurrent processing and data fusion.
In Proceedings of the INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems,
Amsterdam, The Netherlands, 24–29 April 1993; pp. 172–178.

3. Kaiser, E.; Olwal, A.; McGee, D.; Benko, H.; Corradini, A.; Li, X.; Cohen, P.; Feiner, S. Mutual Disambiguation
of 3D Multimodal Interaction in Augmented and Virtual Reality. In Proceedings of the 5th International
Conference on Multimodal Interfaces (ICMI ’03), Vancouver, BC, Canada, 5–7 November 2003; ACM: New
York, NY, USA, 2003; pp. 12–19. doi:10.1145/958432.958438.

4. Sharma, R.; Pavlovic, V.I.; Huang, T.S. Toward multimodal human-computer interface. Proc. IEEE 1998,
86, 853–869. doi:10.1109/5.664275.

5. Oviatt, S.; Coulston, R.; Lunsford, R. When do we interact multimodally?: Cognitive load and multimodal
communication patterns. In Proceedings of the 6th International Conference on Multimodal Interfaces,
State College, PA, USA, 13–15 October 2004; pp. 129–136.

6. Oviatt, S. Multimodal interfaces. In The Human-Computer Interaction Handbook: Fundamentals, Evolving
Technologies and Emerging Applications, 3rd ed.; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 2012;
pp. 405–430.

7. Zimmerer, C.; Fischbach, M.; Latoschik, M.E. Space Tentacles—Integrating Multimodal Input into a VR
Adventure Game. In Proceedings of the 25th IEEE Virtual Reality (VR) Conference, Tuebingen/Reutlingen,
Germany, 18–22 March 2018; pp. 745-746.

8. Link, S.; Barkschat, B.; Zimmerer, C.; Fischbach, M.; Wiebusch, D.; Lugrin, J.L.; Latoschik, M.E. An Intelligent
Multimodal Mixed Reality Real-Time Strategy Game. In Proceedings of the 23rd IEEE Virtual Reality
(IEEE VR) Conference, Greenville, SC, USA, 19–23 March, 2016.

9. Fischbach, M.; Wiebusch, D.; Giebler-Schubert, A.; Latoschik, M.E.; Rehfeld, S.; Tramberend, H. SiXton’s
curse—Simulator X demonstration. In Proceedings of the Virtual Reality Conference (VR), Singapore,
19–23 March 2011; pp. 255–256.

10. Fischbach, M.W. Enhancing Software Quality of Multimodal Interactive Systems. Ph.D. Thesis, Universität
Würzburg, Würzburg, Germany, 2017.

11. Peters, S.; Johanssen, J.O.; Bruegge, B. An IDE for Multimodal Controls in Smart Buildings. In Proceedings
of the 18th ACM International Conference on Multimodal Interaction (ICMI), Tokyo, Japan, 12–16 November
2016; ACM: New York, NY, USA, 2016; pp. 61–65. doi:10.1145/2993148.2993162.

12. Cacace, J.; Finzi, A.; Lippiello, V. A robust multimodal fusion framework for command interpretation in
human-robot cooperation. In Proceedings of the 2017 26th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 372–377.
doi:10.1109/ROMAN.2017.8172329.

13. Pfleger, N. Context Based Multimodal Fusion. In Proceedings of the 6th International Conference on
Multimodal Interfaces (ICMI ’04), State College, PA, USA, 13–15 October 2004; ACM: New York, NY, USA,
2004; pp. 265–272. doi:10.1145/1027933.1027977.

14. Lalanne, D.; Nigay, L.; Palanque, P.; Robinson, P.; Vanderdonckt, J.; Ladry, J.F. Fusion Engines for Multimodal
Input: A Survey. In Proceedings of the 2009 International Conference on Multimodal Interfaces, Cambridge,
MA, USA, 2–4 November 2009; pp. 153–160.

15. Neal, J.G.; Thielman, C.Y.; Dobes, Z.; Haller, S.M.; Shapiro, S.C. Natural Language with Integrated Deictic and
Graphic Gestures. In Proceedings of the Workshop on Speech and Natural Language (HLT ’89), Cape Cod,
MA, USA, 15–18 October 1989; Association for Computational Linguistics: Stroudsburg, PA, USA, 1989;
pp. 410–423. doi:10.3115/1075434.1075499.

16. Latoschik, M.E. Designing Transition Networks for Multimodal VR-Interactions Using a Markup
Language. In Proceedings of the 4th IEEE International Conference on Multimodal Interfaces (ICMI ’02),
Pittsburgh, PA, USA, 14–16 October 2002; IEEE Computer Society: Washington, DC, USA, 2002; p. 411.
doi:10.1109/ICMI.2002.1167030.

https://doi.org/10.1145/330534.330538
https://doi.org/10.1145/958432.958438
https://doi.org/10.1109/5.664275
https://doi.org/10.1145/2993148.2993162
https://doi.org/10.1109/ROMAN.2017.8172329
https://doi.org/10.1145/1027933.1027977
https://doi.org/10.3115/1075434.1075499
https://doi.org/10.1109/ICMI.2002.1167030


Multimodal Technologies and Interact. 2018, 2, 81 27 of 30

17. Nigay, L.; Coutaz, J. A generic platform for addressing the multimodal challenge. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 7–11 May 1995;
ACM Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1995, pp. 98–105.

18. Duarte, C.; Carriço, L. A Conceptual Framework for Developing Adaptive Multimodal Applications.
In Proceedings of the 11th International Conference on Intelligent User Interfaces (IUI ’06), Sydney, Australia,
29 January–1 February 2006; ACM: New York, NY, USA, 2006; pp. 132–139. doi:10.1145/1111449.1111481.

19. Holzapfel, H.; Nickel, K.; Stiefelhagen, R. Implementation and Evaluation of a Constraint-based Multimodal
Fusion System for Speech and 3D Pointing Gestures. In Proceedings of the 6th International Conference on
Multimodal Interfaces (ICMI ’04), State College, PA, USA, 13–15 October 2004; ACM: New York, NY, USA,
2004; pp. 175–182. doi:10.1145/1027933.1027964.

20. Fischbach, M.; Wiebusch, D.; Latoschik, M.E. Semantic Entity-Component State Management Techniques to
Enhance Software Quality for Multimodal VR-Systems. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1342–1351.
doi:10.1109/TVCG.2017.2657098.

21. Bolt, R.A. Put-that-there: Voice and Gesture at the Graphics Interface. In Proceedings of the 7th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’80), Seattle, WA, USA, 14–18 July
1980; ACM: New York, NY, USA, 1980; pp. 262–270. doi:10.1145/800250.807503.

22. Latoschik, M.E. A User Interface Framework for Multimodal VR Interactions. In Proceedings of the 7th
International Conference on Multimodal Interfaces, Torento, Italy, 4–6 October 2005; pp. 76–83.

23. Zhang, B.; Essl, G.; Mower Provost, E. Automatic Recognition of Self-reported and Perceived Emotion:
Does Joint Modeling Help? In Proceedings of the 18th ACM International Conference on Multimodal
Interaction (ICMI 2016), Tokyo, Japan, 12–16 November 2016; ACM: New York, NY, USA, 2016; pp. 217–224.
doi:10.1145/2993148.2993173.

24. Kalimeri, K.; Saitis, C. Exploring Multimodal Biosignal Features for Stress Detection During Indoor Mobility.
In Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI 2016), Tokyo,
Japan, 12–16 November 2016; ACM: New York, NY, USA, 2016; pp. 53–60. doi:10.1145/2993148.2993159.

25. Dibeklioğlu, H.; Hammal, Z.; Yang, Y.; Cohn, J.F Multimodal Detection of Depression in Clinical
Interviews. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction
(ICMI ’15), Seattle, WA, USA, 9–13 November 2015; ACM: New York, NY, USA, 2015; pp. 307–310.
doi:10.1145/2818346.2820776.

26. Pérez-Rosas, V.; Abouelenien, M.; Mihalcea, R.; Burzo, M. Deception Detection Using Real-life Trial Data.
In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), Seattle,
WA, USA, 9–13 November 2015; ACM: New York, NY, USA, 2015; pp. 59–66. doi:10.1145/2818346.2820758.

27. Koons, D.B.; Sparrell, C.J. Iconic: Speech and Depictive Gestures at the Human-machine Interface.
In Proceedings of the Conference Companion on Human Factors in Computing Systems, Boston, MA,
USA, 24–28 April 1994; pp. 453–454.

28. Dumas, B.; Lalanne, D.; Ingold, R. HephaisTK: A Toolkit for Rapid Prototyping of Multimodal
Interfaces. In Proceedings of the 2009 International Conference on Multimodal Interfaces (ICMI-MLMI ’09),
Cambridge, Massachusetts, USA, 2–4 November 2009; ACM: New York, NY, USA, 2009; pp. 231–232.
doi:10.1145/1647314.1647360.

29. Cohen, P.R.; Johnston, M.; McGee, D.; Oviatt, S.; Pittman, J.; Smith, I.; Chen, L.; Clow, J. QuickSet: Multimodal
Interaction for Distributed Applications. In Proceedings of the Fifth International Conference on Multimedia,
Seattle, WA, USA, 9–13 November 1997; pp. 31–40.

30. Johnston, M.; Cohen, P.R.; McGee, D.; Oviatt, S.L.; Pittman, J.A.; Smith, I. Unification-based Multimodal
Integration. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics
and Eighth Conference of the European Chapter of the Association for Computational Linguistics (ACL ’98),
Madrid, Spain, 7–12 July 1997; Association for Computational Linguistics: Stroudsburg, PA, USA, 1997;
pp. 281–288. doi:10.3115/976909.979653.

31. Wu, L.; Oviatt, S.L.; Cohen, P.R. From members to teams to committee-a robust approach to gestural and
multimodal recognition. IEEE Trans. Neural Netw. 2002, 13, 972–982. doi:10.1109/TNN.2002.1021897.

32. Chai, J.Y.; Hong, P.; Zhou, M.X. A Probabilistic Approach to Reference Resolution in Multimodal
User Interfaces. In Proceedings of the 9th International Conference on Intelligent User Interfaces
(IUI ’04), Funchal, Madeira, Portugal, 13–16 January 2004; ACM: New York, NY, USA, 2004; pp. 70–77.
doi:10.1145/964442.964457.

https://doi.org/10.1145/1111449.1111481
https://doi.org/10.1145/1027933.1027964
https://doi.org/10.1145/800250.807503
https://doi.org/10.1145/2993148.2993173
https://doi.org/10.1145/2993148.2993159
https://doi.org/10.1145/2818346.2820776
https://doi.org/10.1145/2818346.2820758
https://doi.org/10.1145/1647314.1647360
https://doi.org/10.3115/976909.979653
https://doi.org/10.1109/TNN.2002.1021897
https://doi.org/10.1145/964442.964457


Multimodal Technologies and Interact. 2018, 2, 81 28 of 30

33. Dumas, B.; Signer, B.; Lalanne, D. Fusion in Multimodal Interactive Systems: An HMM-based Algorithm for
User-induced Adaptation. In Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS ’12), Copenhagen, Denmark, 25–26 June 2012; ACM: New York, NY, USA, 2012;
pp. 15–24. doi:10.1145/2305484.2305490.

34. Johnston, M.; Bangalore, S. Finite-state multimodal parsing and understanding. In Proceedings of the 18th
Conference on Computational Linguistics, Saarbrücken, Germany, 31 July–4 August 2000; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2000; Volume 1, pp. 369–375.

35. Johnston, M.; Bangalore, S. Finite-state Multimodal Integration and Understanding. Nat. Lang. Eng. 2005,
11, 159–187. doi:10.1017/S1351324904003572.

36. Adams, W.H.; Iyengar, G.; Lin, C.Y.; Naphade, M.R.; Neti, C.; Nock, H.J.; Smith, J.R. Semantic Indexing of
Multimedia Content Using Visual, Audio, and Text Cues. EURASIP J. Adv. Signal Process. 2003, 2003, 987184.
doi:10.1155/S1110865703211173.

37. Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal deep learning. In Proceedings of the
28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011;
pp. 689–696.

38. Martínez, H.P.; Yannakakis, G.N. Deep multimodal fusion: Combining discrete events and continuous
signals. In Proceedings of the 16th International Conference on Multimodal Interaction, Istanbul, Turkey,
12–16 November 2014; pp. 34–41.

39. Atrey, P.K.; Hossain, M.A.; El Saddik, A.; Kankanhalli, M.S. Multimodal fusion for multimedia analysis:
A survey. Multimed. Syst. 2010, 16, 345–379. doi:10.1007/s00530-010-0182-0.

40. Hoste, L.; Dumas, B.; Signer, B. Mudra: A Unified Multimodal Interaction Framework. In Proceedings of
the 13th International Conference on Multimodal Interfaces (ICMI ’11), Alicante, Spain, 14–18 November
2011; ACM: New York, NY, USA, 2011; pp. 97–104. doi:10.1145/2070481.2070500.

41. Dumas, B.; Lalanne, D.; Oviatt, S. Multimodal Interfaces: A Survey of Principles, Models and
Frameworks. In Human Machine Interaction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–26.
doi:10.1007/978-3-642-00437-7_1.

42. Potamianos, G.; Marcheret, E.; Mroueh, Y.; Goel, V.; Koumbaroulis, A.; Vartholomaios, A.; Thermos, S.
Audio and Visual Modality Combination in Speech Processing Applications. In The Handbook of
Multimodal-Multisensor Interfaces; Association for Computing Machinery and Morgan & Claypool: New York,
NY, USA, 2017; pp. 489–543. doi:10.1145/3015783.3015797.

43. Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.A.; Vincent, P.; Bengio, S. Why Does Unsupervised
Pre-training Help Deep Learning? J. Mach. Learn. Res. 2010, 11, 625–660.

44. Oviatt, S.; Cohen, P.R. The Paradigm Shift to Multimodality in Contemporary Computer Interfaces; Morgan &
Claypool Publishers: San Rafael, CA, USA, 2015.

45. Putze, F.; Popp, J.; Hild, J.; Beyerer, J.; Schultz, T. Intervention-free Selection Using EEG and Eye Tracking.
In Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI 2016), Tokyo,
Japan, 12–16 November 2016; ACM: New York, NY, USA, 2016; pp. 153–160. doi:10.1145/2993148.2993199.

46. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms.
In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12),
Lake Tahoe, Nevada, 3–6 December 2012; pp. 2951–2959.

47. Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997,
97, 245–271.

48. Oviatt, S.; Schuller, B.; Cohen, P.R.; Sonntag, D.; Potamianos, G.; Krüger, A. (Eds.) The Handbook of
Multimodal-Multisensor Interfaces: Foundations, User Modeling, and Common Modality Combinations—Volume 1;
Association for Computing Machinery and Morgan & Claypool: New York, NY, USA, 2017.

49. Mayhew, D.J. The Usability Engineering Lifecycle. In Proceedings of the CHI ’99 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’99), Pittsburgh, PA, USA, 15–20 May 1999; ACM: New York,
NY, USA, 1999; pp. 147–148. doi:10.1145/632716.632805.

50. Woods, W.A. Transition Network Grammars for Natural Language Analysis. Commun. ACM 1970, 13, 591–606.
doi:10.1145/355598.362773.

51. Zimmerer, C.; Fischbach, M.; Latoschik, M.E. Concurrent Augmented Transition Network—Project Page.
2018. Available online: https://www.hci.uni-wuerzburg.de/projects/mmi/ (accessed on 22 August 2018).

https://doi.org/10.1145/2305484.2305490
https://doi.org/10.1017/S1351324904003572
https://doi.org/10.1155/S1110865703211173
https://doi.org/10.1007/s00530-010-0182-0
https://doi.org/10.1145/2070481.2070500
https://doi.org/10.1007/978-3-642-00437-7_1
https://doi.org/10.1145/3015783.3015797
https://doi.org/10.1145/2993148.2993199
https://doi.org/10.1145/632716.632805
https://doi.org/10.1145/355598.362773
https://www.hci.uni-wuerzburg.de/projects/mmi/


Multimodal Technologies and Interact. 2018, 2, 81 29 of 30

52. Poddar, I.; Sethi, Y.; Ozyildiz, E.; Sharma, R. Toward natural gesture/speech HCI: A case study of weather
narration. In Proceedings of the Workshop on Perceptual User Interfaces (PUI98), San Francisco, CA, USA,
5–6 November 1998; pp. 1–6.

53. Krahnstoever, N.; Kettebekov, S.; Yeasin, M.; Sharma, R. A Real-Time Framework for Natural Multimodal
Interaction with Large Screen Displays. In Proceedings of the 4th IEEE International Conference
on Multimodal Interfaces (ICMI ’02), Pittsburgh, PA, USA, 14–16 October 2002; IEEE Computer
Society: Washington, DC, USA, 2002; p. 349. doi:10.1109/ICMI.2002.1167020.

54. Serrano, M.; Nigay, L.; Lawson, J.Y.L.; Ramsay, A.; Murray-Smith, R.; Denef, S. The Openinterface Framework:
A Tool for Multimodal Interaction. In Proceedings of the Extended Abstracts on Human Factors in Computing
Systems, Florence, Italy, 5–10 April 2008; pp. 3501–3506.

55. Wagner, J.; Lingenfelser, F.; Baur, T.; Damian, I.; Kistler, F.; André, E. The Social Signal Interpretation (SSI)
Framework: Multimodal Signal Processing and Recognition in Real-time. In Proceedings of the 21st ACM
International Conference on Multimedia (MM ’13), Barcelona, Spain, 21–25 October 2013; ACM: New York,
NY, USA, 2013; pp. 831–834. doi:10.1145/2502081.2502223.

56. Latoschik, M.E. A general framework for multimodal interaction in virtual reality systems: PrOSA.
In Proceedings of the Future of VR and AR Interfaces-Multimodal, Humanoid, Adaptive and
Intelligent—Workshop at IEEE Virtual Reality, Yokohama, Japan, 14 March, 2001; No. 138, pp. 21–25.

57. Bouchet, J.; Nigay, L.; Ganille, T. ICARE Software Components for Rapidly Developing Multimodal
Interfaces. In Proceedings of the 6th International Conference on Multimodal Interfaces, State College, PA,
USA, 13–15 October 2004; pp. 251–258.

58. Latoschik, M.E.; Tramberend, H. Short Paper: Engineering Realtime Interactive Systems: Coupling &
Cohesion of Architecture Mechanisms. In Proceedings of the 16th Eurographics Conference
on Virtual Environments & Second Joint Virtual Reality (EGVE—JVRC’10), Stuttgart, Germany,
27 September–1 October 2010; Eurographics Association: Aire-la-Ville, Switzerland, 2010; pp. 25–28.
doi:10.2312/EGVE/JVRC10/025-028.

59. Latoschik, M.E.; Fischbach, M. Engineering variance: Software techniques for scalable, customizable,
and reusable multimodal processing. In Proceedings of the International Conference on Human-Computer
Interaction, Heraklion, Crete, Greece, 22–27 June 2014; Springer: Cham, Switzerland, 2014, pp. 308–319.

60. Fischbach, M. Software Techniques for Multimodal Input Processing in Realtime Interactive Systems.
In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), Seattle,
WA, USA, 9–13 November 2015; ACM: New York, NY, USA, 2015; pp. 623–627. doi:10.1145/2818346.2823308.

61. Molich, R.; Nielsen, J. Improving a Human-computer Dialogue. Commun. ACM 1990, 33, 338–348.
doi:10.1145/77481.77486.

62. Roche, E. Transducer Parsing of Free and Frozen Sentences. Nat. Lang. Eng. 1996, 2, 345–350.
doi:10.1017/S1351324997001605.

63. Bourguet, M.L. A toolkit for creating and testing multimodal interface designs. Companion Proc. UIST 2002,
2, 29–30.

64. Hopcroft, J.E.; Ullman, J.D. Introduction To Automata Theory, Languages, And Computation, 1st ed.;
Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1990.

65. Allen, J.F. Maintaining Knowledge About Temporal Intervals. Commun. ACM 1983, 26, 832–843.
doi:10.1145/182.358434.

66. Zimmerer, C.; Fischbach, M.; Latoschik, M.E. Maintainable Management and Access of Lexical Knowledge
for Multimodal Virtual Reality Interfaces. In Proceeding of the 22nd ACM Symposium on Virtual Reality
Software and Technology (VRST), Munich, Germany, 2–4 November 2016; pp. 347–348.

67. Marcus, M.P.; Marcinkiewicz, M.A.; Santorini, B. Building a Large Annotated Corpus of English: The Penn
Treebank. Comput. Linguist. 1993, 19, 313–330.

68. Wiebusch, D.; Zimmerer, C.; Latoschik, M.E. Cherry-Picking RIS Functionality—Integration of Game and
VR Engine Sub-Systems based on Entities and Events. In Proceeding of the 10th Workshop on Software
Engineering and Architectures for Realtime Interactive Systems (SEARIS), Los Angeles, CA, USA, 19 March
2017; IEEE Computer Society: Los Alamitos, CA, USA, 2017.

69. Heidrich, D.; Zimmerer, C.; Fischbach, M.; Latoschik, M.E. Robot Museum. 2018. Available online: https:
//www.hci.uni-wuerzburg.de/2018/06/12/robot-museum-demo/ (accessed on 22 August 2018).

https://doi.org/10.1109/ICMI.2002.1167020
https://doi.org/10.1145/2502081.2502223
https://doi.org/10.2312/EGVE/JVRC10/025-028
https://doi.org/10.1145/2818346.2823308
https://doi.org/10.1145/77481.77486
https://doi.org/10.1017/S1351324997001605
https://doi.org/10.1145/182.358434
https://www.hci.uni-wuerzburg.de/2018/06/12/robot-museum-demo/
https://www.hci.uni-wuerzburg.de/2018/06/12/robot-museum-demo/


Multimodal Technologies and Interact. 2018, 2, 81 30 of 30

70. Zimmerer, C.; Fischbach, M.; Latoschik, M.E. Big Bang. 2016. Available online: https://www.hci.uni-
wuerzburg.de/2016/10/11/planetarium/ (accessed on 22 August 2018).

71. McLellan, S.G.; Roesler, A.W.; Tempest, J.T.; Spinuzzi, C.I. Building more usable APIs. IEEE Softw. 1998,
15, 78–86.

72. Piccioni, M.; Furia, C.A.; Meyer, B. An Empirical Study of API Usability. In Proceeding of the 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, USA,
10–11 October 2013; pp. 5–14. doi:10.1109/ESEM.2013.14.

73. Myers, B.A.; Stylos, J. Improving API Usability. Commun. ACM 2016, 59, 62–69. doi:10.1145/2896587.
74. Ruiz, N.; Chen, F.; Oviatt, S. Chapter 12—Multimodal Input. In Multimodal Signal Processing;

Thiran, J.P., Marqués, F., Bourlard, H., Eds.; Academic Press: Oxford, UK, 2010; pp. 231–255.
doi:10.1016/B978-0-12-374825-6.00010-1.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.hci.uni-wuerzburg.de/2016/10/11/planetarium/
https://www.hci.uni-wuerzburg.de/2016/10/11/planetarium/
https://doi.org/10.1109/ESEM.2013.14
https://doi.org/10.1145/2896587
https://doi.org/10.1016/B978-0-12-374825-6.00010-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Research Question
	Contribution
	Structure of the Paper

	Requirement Engineering
	Use Case
	Analysis
	Input
	Context
	Output

	Requirement Specification
	Procedural Fusion Methods

	Results
	Concurrent Cursors
	Reference Implementation
	Design Decision: Augmented Transition Network
	Concurrent Cursor Implementation
	Design Decision: The Programming Language Scala
	Design Decision: Network Abstraction Constructs
	Design Decision: Semantics-based State- and Behavior-Management Techniques

	Use Case Implementation
	Benchmark
	Concept
	Results


	Discussion
	Conclusions
	References

