Multimodal Technologies K\
and Interaction MD\Pﬂ
F
Review

Deep Learning and Medical Diagnosis: A Review
of Literature

Mihalj Bakator *** and Dragica Radosav

Technical Faculty “Mihajlo Pupin” in Zrenjanin, University of Novi Sad, Djure Djakovica bb,
23000 Zrenjanin, Serbia; radosav@tfzr.uns.ac.rs
* Correspondence: mihaljbakator@gmail.com; Tel.: +381-61-180-6169

check for
Received: 20 June 2018; Accepted: 14 August 2018; Published: 17 August 2018 updates

Abstract: In this review the application of deep learning for medical diagnosis is addressed.
A thorough analysis of various scientific articles in the domain of deep neural networks application in
the medical field has been conducted. More than 300 research articles were obtained, and after several
selection steps, 46 articles were presented in more detail. The results indicate that convolutional neural
networks (CNN) are the most widely represented when it comes to deep learning and medical image
analysis. Furthermore, based on the findings of this article, it can be noted that the application of deep
learning technology is widespread, but the majority of applications are focused on bioinformatics,
medical diagnosis and other similar fields.
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1. Introduction

Neural networks have advanced at a remarkable rate, and they have found practical applications
in various industries [1]. Deep neural networks define inputs to outputs through a complex
composition of layers which present building blocks including transformations and nonlinear
functions [2]. Now, deep learning can solve problems which are hardly solvable with traditional
artificial intelligence [3]. Deep learning can utilize unlabeled information during training; it is
thus well-suited to addressing heterogeneous information and data, in order to learn and acquire
knowledge [4]. The applications of deep learning may lead to malicious actions, however the positive
use of this technology is much broader. Back in 2015, it was noted that deep learning has a clear
path towards operating with large data sets, and thus, the applications of deep learning are likely to
be broader in the future [3]. A large number of newer studies have highlighted the capabilities of
advanced deep learning technologies, including learning from complex data [5,6], image recognition [7],
text categorization [8] and others. One of the main applications of deep learning is for medical
diagnosis [9,10]. This includes but is not limited to health informatics [11], biomedicine [12], and
magnetic resonance image MRI analysis [13]. More specific uses of deep learning in the medical field
are segmentation, diagnosis, classification, prediction, and detection of various anatomical regions of
interest (ROI). Compared to traditional machine learning, deep learning is far superior as it can learn
from raw data, and has multiple hidden layers which allow it to learn abstractions based on inputs [5].
The key to deep learning capabilities lies in the capability of the neural networks to learn from data
through general purpose learning procedure [5].

The main goal of this review is to address the applications of deep learning in medical diagnosis
in a concise and simple manner. Why is this important? It was noticed that a large number of scientific
papers define various applications of deep learning in great detail. However, the number of papers
that actually provide a concise review of deep learning application in medical diagnosis are scarce.
Scientific terminology in the domain of deep learning can be confusing for researchers outside of this
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topic. This review paper provides a concise and simple approach to deep learning applications in
medical diagnosis, and it can moderately contribute to the existing body of literature. The following
research questions are used as guidelines for this article:

e How diverse is the application of deep learning in the field of medical diagnosis?
e Can deep learning substitute the role of doctors in the future?
e  Does deep learning have a future or will it become obsolete?

This paper includes three main sections. In the first section the research methodology is described.
Afterwards, the review of deep learning application in medical diagnosis is addressed. Finally, the
results are discussed, conclusions are drawn, and future research is suggested.

2. Method

2.1. Flow Diagram of the Research

The research process is in accordance with the PRISMA flow diagram and protocol [14], and
depicts the conducted steps from identifying articles to eligible articles for further analysis. The
mentioned flow diagram is shown in Figure 1.
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Figure 1. Flow diagram of the review process.

There are four main sections in the flow diagram. Firstly, article identification is conducted.
This includes acquiring articles from various sources. The next section of the diagram includes the
screening process. Article duplicates were excluded. Furthermore, the articles are screened once
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more and inadequate articles are removed. In the third section, full-articles were analyzed in order
to determine the eligibility of the articles for further review. Ineligible articles were excluded from
further review. The fourth and final section includes studies/articles that were thoroughly analyzed.

2.2. Literature Sources

In order to investigate the applications of deep learning in medical diagnosis, 263 articles
published in the domain were analyzed. The main sources of these articles are presented in Table 1.

Table 1. Literature sources.

Literature Source ISSN
Briefings in Bioinformatics 1477-4054
Expert Systems with Application 0957-4174
IEEE Transactions Medical Imaging 1558-254X
Medical Image Analysis 1361-8423
Molecular Pharmaceutics 1543-8392
Nature 1476-4687
Neural Computing and Applications 0941-0643
Neurocomputing 0925-2312

These journals were chosen so that the credibility of this review paper is not compromised.
However, there is a wide variety of other literature sources that are also adequate for this review.

2.3. Data Collection Process

The data collection process included extensive research of articles that addressed the applications
of deep learning in the medical field. These articles were downloaded and analyzed in order to acquire
sufficient theoretical information on the subject. The results in this paper are qualitative in nature, and
the main focus is to review the applications of deep learning, and to answer the research questions
which were outlined in the introduction section of this paper. In sum, the data collection process was
conducted in four main phases:

e Phase 1: Searching articles in credible journals. This included the use of keywords presented
under the Section 2.4 of this paper. At this point the articles were thoroughly analyzed.

e Phase 2: Analyzing the literature and excluding articles that do not fit the eligibility criteria.
As there was no special screening during the search process, at this point the articles were
analyzed and selected for further analysis.

e Phase 3: Thorough analysis of eligible articles conducted and the qualitative data classified in
accordance with the aim of the review. At this stage there was a possibility of bias towards clearly
written and conducted research articles.

e  Phase 4: Qualitative data obtained and notes taken in order to concisely present the data in the
results section of this paper. Data was collected in the form remarks and notes of what type of
data and methods were used, and on what applications.

2.4. Obtained Literature and Eligibility Criteria

When the necessary literature for this systematic review was gathered, it was important to include
various fields where deep learning is practically used. Therefore, the following keywords were used in
the search engine:

e  deep learning practical applications
e deep learning and medical diagnosis
e deep learning and MRI

e deep learning CT



Multimodal Technologies and Interact. 2018, 2, 47 40f12

e deep learning segmentation in medicine
e  deep learning classification in medicine
e  deep learning diagnosis medicine

e  deep learning application medicine

This way it was ensured that a wide variety of articles will be included in the review. The year of
article publication was also considered; the earliest article dates from 2014, while the majority of other
reviewed articles are from 2016, 2017 and 2018. However, for the introduction section of this review,
earlier articles were also addressed.

2.5. Risk of Bias in Individual Studies

There was no major bias during the data analysis. However, if an article was not about the
application of deep learning in the field of medical diagnosis or medicine in general, it was then
excluded from further analysis. This type of review paper allows the inclusion of articles, regardless
of sample size, location, and data. There may seem to be a minor bias towards articles that address
deep learning applications in medicine, particularly in cancer detection. However, this is due to the
sheer number of articles that is much higher in this specific domain, as compared to other diseases.
Therefore, this minor bias does not have a major impact, or indeed, any impact, on the obtained results.

3. Results

When it comes to deep learning and its application for medical diagnosis, there are two main
approaches. The first approach is classification that includes reducing potential outcomes (diagnosis)
by mapping data to specific outcomes. The second approach is physiological data which includes
medical images and data from other sources are used to identify and diagnose tumors, or other
diseases [15]. In addition, deep learning can be used for dietary assessment support [16]. For a
certainty, deep learning is applied in various ways when it comes to medical diagnosis.

Brief reviews of individual articles in the domain of deep learning and medical diagnosis are
given in Table 2.

Table 2. Results of individual articles in the domain of deep learning and medical diagnosis.

Reference Method Data Source Application/Remarks
17 CNN Computed Anatomical localization; the results indicate that 3D localization of
tomography (CT) anatomical regions is possible with 2D images.
Automated segmentation; liver, heart and great vessels segmentation; it
[18] CNN MRI was concluded that this approach has great potential for
clinical applications.
[19] CNN MRI ?Sram tumor grading; a 3-layer?d CNN has a 18% performance
improvement over to the baseline neural network.
Glaucoma detection; the experiments were performed on SCES and ORIGA
[20] CNN Fundus images datasets; further, it was noted that this approach may be great for
glaucoma detection.
1] CNN MRI Alzhe}mer s disease prediction; the accuracy of this approach is far
superior compared to 2D methods
Automatic breast tissue classification; the pectoral muscles were detected
(22] CNN Mammography with high accuracy (0.83) while nipple detection had lower accuracy (0.56).
Automatic detection of myocardial infarction; average accuracy was 93.53%
23] CNN ECG with noise and 95.22% without noise.
[24] CNN CT Automated segmentation of human brain structures.
Automatic diagnosis for detecting breast cancer; the accuracy of the overall
[25] DBN-NN Mammography neural network was 99.68%, the sensitivity was 100%, and the specificity
was 99.47%.
Breast lesion and pulmonary nodule detection/diagnosis; the results
126] SDAE Ultrasound of indicated that there is a significant increase in performance. In addition, it

breasts, and lung CT

was noted that deep learning techniques have the potential to change CAD
systems, with ease, and without the need for structural redesign.
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Table 2. Cont.

Reference Method Data Source Application/Remarks
Classification of skin cancer; the results of the study were satisfactory, as
the deep convolutional neural networks achieve performance similar to the
[27] CNN Clinical images expertise of 21 board-certified dermatologist. This can lead to mobile
dermatology diagnosis, providing millions of people with universal
diagnostic care.
Drug-induced liver injury (DILI) prediction. The model had an accuracy of
Various medical 86.9%, sensitivity of 82.5%, and specificity of 92.9%. Overall, deep learning
[28] UGRNN gave significantly better results in opposite to other DILI prediction models.
data sets . . .
In sum, deep learning can lower the health risk for humans when it comes
to DILL
Automatic grading system for nuclear cataracts; this method improved the
[29] CRNN Fundus images clinical management of this cataract disease, and it has a potential for other
eye disease diagnosis.
Chest pathology identification; the area under the curve for heart detection
was 0.89, for right pleural effusion detection 0.93, and for the classification
[30] CNN X-ray between a healthy and an abnormal chest X-ray was 0.79. It was concluded
that it is possible for non-medical images, and datasets to be sufficient for
recognition of medical images.
Skin cancer diagnosis; the results were promising, and there is a possibility
[31] SA-SVM Dermoscopic images  to use this type of self -advised SVM method in cases where is limited
labeled data.
[32] CSDCNN Mammography Multl-clfismflcanon of breast cancer; a great performance of 93.2% accuracy
was achieved on large-scale datasets
Brain tumor segmentation; with this method the whole brain can be
53] DNN MRI segmented in 25 s to 3 min, thus making it a great segmentation tool.
[34] CNN MRI Brain lesion segmentation; this approach produced great results.
Breast density classification; Radiologist have a problem to differentiate
between the two types of density. A learning model was developed that
35 . L . . .
351 CNN Mammography helped radiologist in the diagnosis process. Deep learning was found to be
useful when it comes to realistic diagnosis, and overall clinical needs.
Shear-wave Breast tumor classification; the results indicated that the deep learning
[36] RBM elastography SWE model achieved a remarkable accuracy rate of 93.4%, with 88.6% sensitivity,
sraphy and 97.1% specificity.
Urinary bladder segmentation; this method can overcome strong
1371 DL-CNN CT urography boundaries between two regions that have large differences of gray levels.
Glioblastoma segmentation; this approach allowed a large U-Net training
[38] U-Net MRI w1th.small.datasets, W}thout &gmﬁcapt overfitting. Tak'en into
consideration that patients move during the segmentation process, there
may be performance increase switching to 3D convolutions.
[39] CNN cT Disease ‘st;?glng and prognosis of smokers; this type of chronic lung illness
prognosis is powerful for risk assessment.
Various medical Cancer detection from gene data; the study was successful as this method
[40] SDAE images managed to extract genes that are helpful when it comes to
& cancer prediction.
. Ultrasound segmentation of first trimester placenta; it was noted that this
) The 3D volumetric L .
[41] CNN approach had similar performance compared to results that were acquired
ultrasound data
through MRI data.
Segmentation of the striatum; two serial CNN architectures were used; the
[42] CNN MRI speed and accuracy of this approach makes it adequate for application in
neuroscience and other clinical fields.
[43] CNN Images produced Lymph node metastases detection in breast cancer; the best performing
N with a digital slider  algorithm achieved performance comparable to a pathologist.
[44] CNN MRI Brain segmentation; the results are comparable of other
state-of-the-art performance.
CAD classifier with Lung nodule classification; this approach resulted an accuracy of 75.01%
[45] deep features from CT and sensitivity of 83.35%; false positive was 0.39 per patient over 10
autoencoder cross validations.
[46] CNN, DBN, SDAE CT Lung cancer diagnosis; highest accuracy was achieved with DBN (0.8119).
[47] CNN MRI Breast cancer diagnosis; with this approach the achieved accuracy was
96.39%, the sensitivity was 97.73%, and the specificity was 94.87%.
Lung nodule detection; the network was trained with weak label
[48] CNN CT information; 3D segmentation could exclude air tracts in the lungs, thus
reducing false positives.
[49] DLCNN Planar projection Microcalcifications detection in digital breast tomosynthesis; the best

(PP]) image

obtained AUC was 0.933.




Multimodal Technologies and Interact. 2018, 2, 47

6 of 12

Table 2. Cont.

Reference Method Data Source Application/Remarks
[50] CNN CT Pancreas segmentation; average dice scores were from 46.6% to 68.8%.
. Diagnosis of diabetic retinopathy; on a dataset of 80,000 images the

1511 CNN Fundus images accuracy was 75% and the sensitivity is 95%.

Breast and fibroglandular tissue segmentation; average Dice Similarity

[52] U-Net MRI Coefficients (DSC) were 0.850 for 3C U-net, 0.811 for 2C U-net, and 0.671
for atlas-based method.

Histopatholo Breast cancer histopathology classification; average recognition rate was

[53] CNN irI;a os gy 82.13% for classification tasks, and 80.10% accuracy when it comes to

& magnification estimation.
[54] CNN Fundus images Retina vessel segmentation; this method reduces the number of
: false-positives.
5] CNN MRI Brain segmentation; the performance is dependent of several factors such
o as initialization, preprocessing, and post-processing.

156] CNN MRI Aut'omatlc bram' segmentation; this approach can be used for accurate
brain segmentation results.

Identifying and classifying tumor-associated stroma from breast biopsies;

[57] CNN Digital images the study revealed that this deep learning approach was able to define
stromal features of ductal carcinoma in situ grade.

[58] CNN Gastric images Gastric cancer identification; the accuracy of classification was 97.93%.
Lytic and sclerotic metastatic spinal lesion detection, segmentation and
classification; the obtained results were quantitatively compared to other

[59] CNN CT methods and it was concluded that this approach can provide better
accuracy even for small lesions (greater than 1.4 mm?3 and diameter greater
than 0.7 mm).

In this study the predictive test was conducted both with deep learning

[60] DCNN MRI ansi non-c.lez.eli)-learnlngl; The deep .le.a.rmng app:oach had an accuracy f)f
84%, sensitivity of 69.6% and specificity of 83.9%. The non-deep-learning
approach had 70% accuracy, 49.4% sensitivity, and 81.7% specificity.
Lung cancer nodule malignancy classification; with this approach a high

[61] CNN CT level of accuracy was achieved 99%. This is proportionate to the accuracy
of an experienced radiologist.

[62] SSAE Digital pathology Nuclei detection of breast cancer; the stacked sparse autoencoder (SSAE)

> images approach can outperform state of the art nuclear detection strategies.

Furthermore, the synthesis of the results is presented in Table 3.

Table 3. Synthesis of articles by type of deep learning method, data source and application.

Type of Deep Learning Method Number of Articles
CNN 32
RBM 1
SA-SVM 1
CRNN 1
Other 3
DBN 1
SDAE 2
UGRNN 1
Multiple 1
U-Net 2
CSDCNN 1
Type of Data Source Number of Articles
X-ray 1
Ultrasound 2
CT 10
MRI 13
Fundus photography 4
Mammography 4
Other data 12
Application Type Number of Articles
Localization 1
Segmentation 14
Grading 2
Detection 8
Prediction 4
Classification 8
Diagnosis 6
Identification 2
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In the next section the results are discussed.
4. Discussion

Discussing the Results

The main goal of this paper was to review various articles in the domain of deep learning
application in medical diagnosis. After analyzing more than 300 articles, 46 were further examined,
and the individual results of each article were presented. There was no need for quantitative data
analysis, as the nature of this review was to present the variety of deep learning uses in the medical
field. The synthesis of data was conducted in a simple way. Some of the methods used for synthesis
were in accordance with other similar studies [63—-65]. According to the gathered data, the most
widely used deep learning method is convolutional neural networks (CNNs). In addition, MRI was
most frequently used as training data. When it comes to the specific use, segmentation is the most
represented. It is important to note, that the article review and analysis was biased towards newer
(published 2015 and later) articles, and articles that included “deep learning” in the title. It can be seen
that there is a large variety in the type of data that is used to train and apply deep neural networks.
CT scan images, MRIs, fundus photography and other types of data can be used for expert-level
diagnosis. However, as noted in other studies, neural networks use energy to activate neurons. With
the human brain, during the thought process only a small number of neurons are active, while the
neighboring neurons are shut down until needed. Communication “costs” are reduced through
single-task allocation for neighboring neurons [65]. It is expected that artificial neural networks will
further develop in the future, thus managing to complete more complex tasks.

The concise nature of this review can moderately contribute to the existing body of literature.
The aim was to provide an objective, simple and a concise article. The individual research results
provide sufficient information and insight into the applications of deep learning for detecting,
classifying, segmenting and diagnosing various diseases and abnormalities in specific anatomical
regions of interest (ROI). Without a doubt deep learning application in the medical field will further
develop as it has already achieved remarkable results in medical image analysis [66], and more
precisely, in image-based cancer detection and diagnosis [67]. This may increase the efficiency and
quality of healthcare in the long-run, thus reducing the risk of late-diagnosis of serious diseases.
However, as mentioned before, there is still a long way to go before general purpose neural networks
will be commercially relevant. Finally, it is expected that artificial intelligence will “rise” through the
combination of representation learning and complex reasoning [3].

5. Conclusions

5.1. Research Questions
In the introduction section of this review, three main research questions were investigated:
e How diverse is the application of deep learning in the field of medical diagnosis?

Deep learning methods have a wide application in the medical field. In this case, medical
diagnosis is conducted through use-cases of deep learning networks. As mentioned before, these
include detection, segmentation, classification, prediction and other. The results of the reviewed
studies indicate that deep learning methods can be far superior in comparison to other high-performing
algorithms. Therefore, it is safe to assume that deep learning is and will continue to diversify its uses.

e Can deep learning substitute the role of doctors in the future?

The future development of deep learning promises more applications in various fields of medicine,
particularly in the domain of medical diagnosis. However, in the current state, it is not evident that
deep learning can substitute the role of doctors/clinicians in medical diagnosis. So far, deep learning
can provide good support for experts in the medical field.



Multimodal Technologies and Interact. 2018, 2, 47 8 of 12

e Does deep learning have a future or will it become obsolete?

All indicators point towards an even wider use of deep learning in various fields. Deep learning
has already found its application in transportation and greenhouse-gas emission control [68], traffic
control [69], text classification [8,70], object detection [71], speech detection [72,73], translation [74]
and in other fields. These applications were not so represented in the past. Traditional approaches
to various similarity measures are ineffective when compared to deep learning [63]. Based on these
findings, it can be suggested that deep learning and deep neural networks will prevail, and that they
will find many other uses in the near future.

5.2. Limitations and Future Research

The main limitation of this paper is the absence of meta-analysis of quantitative data. However,
considering the main goal of this paper, this limitation does not devalue the contribution of the review.
For future research, a more categorized review should be conducted. In addition, the development
and application of deep learning through defined periods of time could be added. A theoretical
introduction to future reviews is also recommended. In this case, the theoretical background did not
contain a detailed explanation of how deep neural networks function. However, given the nature
of the review, and the target audience (researchers whose domain of expertise is not deep learning
focused), such a theoretical approach was not deemed necessary.
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contributed in the form of supervision, conceptualization, and methodology.
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