Urban trees play a critical role in mitigating climate change by capturing atmospheric CO
2 and providing multiple co-benefits, including cooling urban environments, reducing building energy demand, and enhancing citizens’ physical and psychological well-being. This study presents the Co Carbon Trees Measurement project,
[...] Read more.
Urban trees play a critical role in mitigating climate change by capturing atmospheric CO
2 and providing multiple co-benefits, including cooling urban environments, reducing building energy demand, and enhancing citizens’ physical and psychological well-being. This study presents the Co Carbon Trees Measurement project, a citizen science initiative implemented in the city of Viladecans, Spain, involving 658 students, local administration, and academia, three components of the EU mission’s quadruple helix governance model. Over one year, 1274 urban trees were measured for trunk diameter and height to quantify annual CO
2 sequestration using a direct measurement approach combining field data collection with a mobile application for a height assessment and a flexible measuring tape for diameter. Results indicate that carbon fixation increases with tree size, displaying a parabolic function with larger trees sequestering significantly more CO
2. A range between 10 and 20 kg of CO
2 is sequestered by the urban trees in the period 2024–2025. The study also highlights the broader benefits of urban trees, including shading, mitigation of the urban heat island effect, and positive impacts on mental health and social cohesion. While the total CO
2 captured in Viladecans (≈810 tons/year) is small relative to city emissions (≈170,000 tons/year), the methodology demonstrates a scalable, replicable approach for monitoring progress toward climate neutrality and integrating urban trees into planning and climate action strategies. This approach positions green infrastructure as a central component of sustainable and resilient urban development.
Full article