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Abstract: This paper investigates the spatial dependency of job and worker densities for the
Minneapolis–St. Paul (Twin Cities) metropolitan area using census block level data from 2002 to 2017.
A spatial weight matrix is proposed, considering the statistical expression of data, referred to as the
correlation matrix, which detects the variations of dependencies among spatial units in both direction
and level. The superior performance of the correlation matrix is demonstrated through a series of
spatial regression models to predict land use patterns, in comparison with the conventionally used
adjacency matrix as well as the accessibility matrix.
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1. Introduction

To ensure the continuing adequacy of public services and infrastructure, it is im-
portant to have accurate estimates of short-term changes related to the population and
employment [1–5]. Although considerable efforts have been made [6–9], forecasts remain
unsatisfying. Historically, there has been a shortage of detailed data used for land use
pattern analysis due to the limited data collection and storage. It is especially difficult to
capture spatial interdependence between land uses because various factors affect land use
at different spatial scales with distinct temporal dynamics and interact with each other in
an intricate way [10–12].

Agent-based models or cell-based models have emerged within the past two decades
as increasingly attractive alternatives with which to estimate land use [13]. Grounded in
the systems and complexity theory, they represent a system from the bottom up, that is,
they account for an agent’s behavior in space and/or time, along with interactions among
agents [14]. Specifically, they predict future land use patterns from the initial states of land
use agents and the effects of neighboring land use agents by using transition rules. Although
diverse methods have been employed to describe the transition rules [3,4], these rules
typically extract information from immediate cells, ignoring more dispersed interactions.

Regression models can clearly explain the land use system and relate land use pat-
terns with their previous states and a variety of exogenous variables including location
characteristics [15], neighborhood effects [15,16], the effects of transport [17], and other
socioeconomic factors [18]. The levels of neighborhood effects in these models are usually
assumed to decline with distance based on Tobler’s first law of geography [19]; however,
directions, do not change, that is, the effects are always negative or positive. Given that
competitive and complementary relationships in space have been witnessed at the same
time [20–22], we considered whether job and worker densities compete and collaborate at
the same time to address the several questions specified below:

Is there spatial dependency between job density and worker density?
Does the spatial dependency of job and worker densities change in direction and level?
How can the spatial interaction of job and worker densities be captured?
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How helpful is information about changes elsewhere in predicting density here?
Because spatial weight matrices are used to express the changes of dependencies

between spatial units (places) in spatial regression models [23–25], we proposed a new
spatial weight matrix, named the correlation matrix, that can capture the variation of spatial
dependency in direction and strength and then compared it with two kinds of basic spatial
weight matrixes, i.e., an adjacency matrix and accessibility matrix, to corroborate if it shows
advantages when explaining the land use changes.

This paper is structured as follows: Section 2 discusses three spatial weight matrices,
including the adjacency, accessibility, and correlation matrices, that are able to capture
changes in spatial dependency. The land use spatial regression model and estimation
method are specified in Section 3. Section 4 presents all data resources, and the fitting
results are provided in Section 5. Section 6 applies the model to predict the land use
intensity for the Twin Cities in 2022. Section 7 concludes the paper.

2. Spatial Weight Matrix

Figure 1 summarizes the design idea of this research. As illustrated, we discuss three
spatial weight matrices, including the adjacency, accessibility, and correlation matrices,
and compare their performances in land use density regression models using indices,
e.g., R2 and mean absolute percentage error, based on the Twin Cities metropolitan area
census block data. The land use spatial model with a correlation matrix is further applied
to predict density in 2022 for the Twin Cities.
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Figure 1. Framework.

The spatial weight matrix is firstly discussed here, as it is the key element of a spatial
regression model. Data collections, model specifications, and applications can be found in
the following sections.
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Based on Tobler’s first law of geography [19], spatial analyzers widely assume that
levels of dependencies among spatial units decline with distance and propose boundary
based and distance-based spatial weight matrices. Later, an accessibility matrix is proposed
to develop a transport network that can eliminate the disutility of the distance [26]. How-
ever, the two matrices only include non-negative elements and cannot capture a change
in the direction of the spatial dependency. To compensate for the shortage, we propose
the construction of a correlation coefficient-based spatial weight matrix that has both posi-
tive and negative elements. In this section, we explore three spatial weight matrices and
compare them in detail.

2.1. Adjacency Matrix

Several basic formats of boundary based and distance-based spatial weight matrices
have been provided by Anselin (1988) [27]; here, we introduce the most basic one, called the
adjacency matrix. The adjacency matrix only considers the interaction of adjacent places,
with an implicit assumption that a nearby place is more likely to have an effect than one
that is far away, as human activities are constrained by distance [19].

The adjacency matrix is an n ∗ n matrix, in which an element is 1 if two places presented
by the corresponding row and column are geographically adjacent; otherwise, it is 0. The
diagonal elements are recorded as 0 (spatial units are not adjacent to themselves).

2.2. Accessibility Matrix

The concept of accessibility is examined in two ways in land use models. On the
one hand, accessibility is generally considered as the distance of a spatial unit from the
road network in land use cover models [28–30]. On the other hand, in models exploring
land use and transport interactions, it is typically explained as opportunities of a place to
access various facilities, such as employment or shopping [26]. We aimed to model land
use intensity, considering the effect of the transport network. Therefore, the latter was
adopted here.

Conventionally, accessibility considers not only the changes of transport networks that
alter place-to-place travel times, but also the change of land use that alters the distribution
of opportunities, such as jobs or workers [31–33]. Because land use intensity data have
already expressed the opportunity features, the accessibility matrix here relies only on the
place-to-place travel time to represent the change in the spatial dependency level in land
use models. Specifically, as shown in Equation (1), it is constructed as an n ∗ n matrix, in
which an element is equal to 1 if the place, presented by the corresponding row, can access
another that is presented by the corresponding column by using the defined travel mode
within a predetermined travel time threshold; otherwise, it equals 0. The diagonal elements
are again set to 0.

Wa(i, j) =

{
0 i f Ci,j ≤ T

1 i f Ci,j > T
(1)

where:
Wa(i, j): accessibility between place i and j;
Ci,j: travel time between place i and j;
T: travel time threshold.

2.3. Correlation Matrix

Beyond geography and transport networks, there are other many factors that cause job
and worker densities at different spatial places to be correlated, including economic factors,
cultural networks, and policies [15]. The data reflect the effects of all these factors, therefore
the correlation reflected by it might disclose spatial dependency between densities after
temporal detrending. Hence, a correlation matrix is proposed.

The correlation matrix is an n ∗ n matrix in which each element shows the Pearson
correlation coefficient between two places, which are represented by the corresponding
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row and column; the inputs are two vectors of observations, such as job or worker densities
in every given year. Note that the temporal trend in the data must be eliminated. To do so,
the value of each spatial unit is normalized based on the regional value. Specifically, the
job density at each place is divided by the total number of jobs in the study area. The same
normalization process applies to the worker density.

Because the data are values rather than ordinals [34,35], the Pearson correlation coeffi-
cient is chosen. However, the problem is that it cannot be calculated when values of one or
both vectors are constant. When this situation occurs, we adhere to the following:

(1) set the Pearson correlation coefficient as 1 if the densities of both places remain the
same over the years (they are perfectly correlated);

(2) set the Pearson correlation coefficient as 0 if the density of the one place remains
unchanged, yet the other varies over the years (they are not correlated).

A positive value in the correlation matrix indicates that two spatial units are com-
plementary to each other, while a negative value indicates that they are competitive. We
believe that such a statistical expression of the data shows advantages over the adjacency
and accessibility matrices, as it can capture a complex spatial relationship, including one
that is complementary and competitive, at the same time [36].

2.4. An Illustration of Three Spatial Weight Matrices

To illustrate, we extracted nine census blocks from downtown Minneapolis (see
Figure 2) to further explain how to build the spatial weight matrices. Its adjacency matrix,
accessibility matrix (by walking within 10 min), and correlation matrix are displayed in
Equations (2)–(4), respectively.
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From Equation (2), we can observe that the adjacency matrix is symmetric. Its elements
consist of 0 and 1, where 1 denotes that two blocks are geographically connected, while
0 represents the opposite scenario. When used as a weight, the value reflects whether or not
two blocks have a spatial dependency. However, both levels and directions of dependencies
are treated the same for all adjacent blocks.
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Wn =

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 1 0 0 0 0
1 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 0 0
1 1 0 0 1 0 1 1 0
1 1 1 1 0 1 1 1 1
0 1 1 0 1 0 0 1 1
0 0 0 1 1 0 0 1 0
0 0 0 1 1 1 1 0 1
0 0 0 0 1 1 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

Wa =

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1 0 1 1
1 0 1 1 1 1 0 1 1
1 1 0 1 1 1 0 1 1
1 1 1 0 1 1 0 1 1
1 1 1 1 0 1 0 1 1
1 1 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 1
1 1 1 1 1 1 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3)

Wc =

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.13 0.00 0.27 0.26 −0.46 −0.43 0.48 0.42 −0.12
−0.23 −0.39 0.34 0.54 −0.51 0.17 0.28 −0.10 −0.17
0.72 −0.31 0.49 0.33 −0.34 −0.30 0.51 0.05 −0.18
−0.66 0.46 −0.77 −0.73 0.65 0.51 −0.73 0.08 0.26
−0.82 0.24 −0.41 −0.34 0.17 0.32 −0.39 −0.21 −0.13
−0.38 0.66 −0.49 −0.53 0.73 0.21 −0.54 −0.34 −0.29
0.21 0.22 −0.30 −0.27 −0.41 −0.02 −0.20 0.03 0.54
−0.48 0.70 −0.75 −0.74 0.88 0.35 −0.08 −0.33 0.51
−0.76 0.58 −0.37 −0.39 0.46 0.42 −0.48 −0.27 −0.16

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4)

Similarly, the accessibility matrix shown in Equation (3) comprises 0 and 1, demonstrat-
ing that it also determined the levels and directions of spatial dependencies to be the same.
However, it uses a different dependency judgement condition so that two nonadjacent
places can be spatially dependent, such as, for example, block 1 and block 7. This is caused
by traffic networks that eliminate disutility caused by distance. Note that the accessibility
matrix in this example is symmetric; however, in real-world cases, it can be asymmetric
when considering the directionalities of traffic networks.

Unlike the adjacency and accessibility matrices, there are negative values in the cor-
relation matrix shown in Equation (4), which reveals a change in the direction of the
dependencies between spatial units; that is, the complementary or competitive relation-
ships change. The matrix is asymmetric, and, more importantly, it has closely distinguished
values, demonstrating that the correlation matrix can reflect the specific dependent strength
between any two places.

According to the differences among those three spatial weight matrices, we postulate
that the correlation matrix can most effectively capture the spatial dependency when it is
applied to model land use intensity; the accessibility matrix second most effective, while
the adjacency matrix is the least effective.
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3. Model Specification and Statistical Technique

To validate the proposed correlation matrix, we applied spatial regression models,
including the correlation matrix and the other two spatial matrices mentioned above, to fit
land use intensity data. These spatial regression models and the respective estimator of
their parameters are discussed as follows.

3.1. Model Specification

The models were specified to predict job density and worker density, respectively.
Assuming that all else is equal, we would expect the density in each place to follow

the system trend: when the economy blooms, the total number of jobs increases, regional
density increases, and job density everywhere increases on average; when it withers, they
all decrease. Similarly, worker density in each place also has a positive relationship with
the total number of workers. As shown in Equation (5), to control the system trend, we
used a normalized density (job/worker density at a spatial unit over the total number of
jobs/workers in the study area), herein referred to as density, instead of the density value
itself as the dependent variable.

DU,i,t =
ρU,i,t

NU,t
(5)

where:
DU,i,t: normalized density, specifically, job (De,i,t) or worker (Dw,i,t), at place i in year t;
ρU,i,t: density at place i in year t;
NU,t: average density of jobs or workers in the study area in year t.
As the built environment changes slowly, we expect that the density (job and worker)

at one time can be largely explained by the density in the previous time period [17]. Thus,
we applied a lagged independent variable to the regression model.

The spatial variables of both job and worker densities are incorporated in each model
as they are expected to mutually affect each other in space. The spatial variables are
specifically calculated as the spatial weight matrices defined in Section 2, multiplying by
vectors consisting of the state changes of each place that is lagged in order to disentangle
the causes and effects of the spatial influences between the job and worker densities.

Accordingly, the general model for the density is expressed as,

ln(DU,i,t) = θ0 + θ1 ln(DU,i,t−k) + θ2WM ln
(

De,i,t−k

De,i,t−2k

)
+ θ3WM ln

(
Dw,i,t−k

Dw,i,t−2k

)
(6)

where:
k: lag length;
WM: spatial weight matrix. Specifically, M can be adjacency (n), accessibility (a) or

correlation (c).

3.2. Statistical Technique

The feasible generalized least-squares (FGLS) estimator, panel-corrected standard
error (PCSE) estimator, and non-parametric covariance matrix estimator are widely used to
regress cross-sectional time-series (panel) data because they adjust the standard errors of
the estimated parameters for time and spatial dependencies in the residuals and can ensure
the validity of the statistical results [37,38]. The FGLS estimator has a poor performance for
panel data when the number of time periods is less than the number of places (observation
locations). The PCSE estimator requires an assumption of the spatial dependency correc-
tion’s form [38]. The non-parametric time-series covariance matrix estimator, proposed by
Driscoll and Kraay (1998) [39], applies a Newey–West-type correction to the sequence of
the cross-sectional averages of the moment conditions and is consistent independent of the
cross-sectional dimension [24,25]. For the sake of generality, we selected the nonparametric
time-series covariance matrix estimator to fit the land use intensity models. This was
performed using the Stata software program, specifically through the xtscc command.
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4. Data

This section introduces the data sources used to fit the land use regression models.
The longitudinal employer–household dynamic (LEHD) Origin–Destination Employ-

ment Statistics (LODESs) dataset, released by the U.S. Census Bureau (2017) [40], provides
state-based census block level employment statistics from 2002 to 2017, in which the Work-
place Area Characteristic (WAC) table reports the number of employees in each census
block; moreover, the Residence Area Characteristic (RAC) table shows the number of
workers living in each residential block.

Figure 3 shows the total number of jobs and workers in the Twin Cities. A general
uptrend can be clearly seen over the 14 years, indicating a growth in the economy and
population; however, the downtrend from 2007 to 2009, caused by the 2008 global financial
crisis, cannot be ignored. Overall, the number of jobs in the region exceeds the number of
workers, both because some workers hold multiple job positions (though this cannot be
told from the LEHD data) and some live outside of the Twin Cities while working inside.
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This data assists in developing the correlation matrix and are useful as dependent
variables in the land use regression models.

The TIGER/Line Shapefile, defined by the U.S. Census Bureau and the Metropolitan
Council (2012) [41], provides selected geographic and cartographic information. The
adjacency matrix can be constructed accordingly.

Further, we extracted the road network from OpenStreetMap [42], which was used to
calculate the walking travel time and then the walking accessibility matrix. Specifically, the
pedestrian network was constructed by eliminating the roads with “motorway”, “motorway
link”, “trunk”, and “trunk link” tags. Joining it with the centroids of the census blocks,
origin–destination (OD) matrix cost analysis in ArcGIS was applied to obtain the shortest
walking on-road travel time between any two blocks with an assumption that the walking
speed is 5 km/h [43].

The series of Access to Destinations studies provide the travel time by auto for any
two blocks in the Twin Cities metropolitan area [44], which was used to construct auto
accessibility matrices with different travel time thresholds.

5. Results

In this section, we display the estimation results of the land use models using data from
2002 to 2016 and discuss the performances of the three spatial weight matrices mentioned
in Section 2 as well as the spatial relationship between job and worker densities.

It is worth noting that blocks with a number of jobs or workers higher than 0 for
every year are selected to fit the regression models. Accessibility in different time thresh-
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olds by walking and by auto were tested, in which 30 min walking accessibility had the
best fit; therefore, it was selected for comparison with the other two alternative spatial
weight matrices.

The final regression results of the job and worker densities are shown in Tables 1 and 2,
respectively, in which model 1 and model 5 are the base scenarios where no spatial interac-
tion is considered. Table 3 summarizes the elasticities calculated following Equation (7).

E =
∆Y/Y
∆X/X

=
dY
dX

× X
Y

× 100% (7)

where:
X is an independent variable;
Y is a dependent variable.
Models that incorporate the spatial effects of the densities have a better fit than those

that do not, demonstrating that the spatial interactions between densities play a role in their
short-run changes. Moreover, we observed that the models which capture the spatial effects
based on the correlation matrix explain the job density (model 4) and the worker density
(model 8) the best; the accessibility matrix is slightly better than the adjacency matrix.

To further validate the performance of the correlation matrix, we used the three models
to predict densities in 2017 and measured their predictive performances using the mean
absolute percentage error (MAPE), the results of which are shown in Table 4. As expected,
the models based on the correlation matrix have the highest prediction accuracy (MAPE is
6.46% for job density and 4.06% for worker density) and the lowest variation (variations of
MAPE for the job and worker densities are 127.79 and 12.19, respectively). Moreover, the
predictive differences among the three models are significant for job and worker densities
(Friedman tests show that p = 0.000 at the 95% confidence level). Both results suggest that
the land use intensity econometric model, using the correlation matrix, should be used to
capture the spatial effect of land use.

The result is not surprising because the correlation matrix reflects the co-influence of
various factors, including the transport network, the geographical limitations, and other
factors driving the interaction of land use intensity in an implicit way, while the accessibility
matrix incorporates the adjustment of the transport network to the geographical limitations,
which is the only factor considered by the adjacency matrix. Note that, with regard to the
computation time, the correlation matrix takes the longest, the accessibility matrix takes
less, and the adjacent matrix takes the least.

An implication from the result is that micro-level land use simulation models should
thoroughly consider the use of spatial interaction to describe the process of land develop-
ment more precisely. A useful way to achieve this is to incorporate the correlation-based
spatial weight matrix to construct transition rules describing the spatial effect.

Regarding the spatial relationships between densities, we can observe the following:
(1) job density is positively associated with the lagged change in accessible job densities,

which supports the economies of agglomeration;
(2) there is a positive relationship between the worker density and the lagged changes

in the adjacent and accessible job densities, demonstrating that jobs appeal to workers. This
is likely because workers want to be near their work locations for a shorter commute;

(3) the effects of the lagged changes on the worker densities in the current stage of the
worker density are negative and significant, both for adjacent and accessible neighbors.
This means that the greater the increase in the nearby workers, the more workers move out
from the location. One explanation for this is that workers want to move away from each
other to reduce their fixed investment in the land.
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Table 1. Predicting job density based on three different spatial matrices.

Variables

ln(De,i,t)

Model 1 Model 2 Model 3 Model 4

Coef. Drisc/Kraay
Std. Err. Sig. Coef. Drisc/Kraay

Std. Err. Sig. Coef. Drisc/Kraay
Std. Err. Sig. Coef. Drisc/Kraay

Std. Err. Sig.

ln(De,i,t−5) 9.12 × 10−01 2.61 × 10−03 *** 9.12 × 10−01 2.32 × 10−03 *** 9.11 × 10−01 2.81 × 10−03 *** 9.42 × 10−01 1.13 × 10−02 ***

Wn ln
(

De,i,t−5
De,i,t−10

)
3.68 × 10−03 5.46 × 10−03

Wn ln
(

Dw,i,t−5
Dw,i,t−10

)
1.32 × 10−03 1.22 × 10−02

Wa ln
(

De,i,t−5
De,i,t−10

)
3.22 × 10−03 4.59 × 10−04 **

Wa ln
(

Dw,i,t−5
Dw,i,t−10

)
−1.00 × 10−03 8.26 × 10−04

Wc ln
(

De,i,t−5
De,i,t−10

)
4.08 × 10−04 1.29 × 10−05 ***

Wc ln
(

Dw,i,t−5
Dw,i,t−10

)
2.98 × 10−05 2.88 × 10−05

Const. 9.12 × 10−01 2.61 × 10−03 *** 9.12 × 10−01 2.32 × 10−03 *** 9.11 × 10−01 2.81 × 10−03 *** 9.42 × 10−01 1.13 × 10−02 ***

Obs. 49,260 49,260 49,260 49,260
Group 8210 8210 8210 8210

Prob > F 0.000 0.000 0.000 0.000
R2 0.7943 0.7943 0.7944 0.8969

*** p < 0.001, ** p < 0.01, * p < 0.05.

Table 2. Predicting worker density based on three different spatial matrices.

Variables

ln(Dw,i,t)

Model 5 Model 6 Model 7 Model 8

Coef. Drisc/Kraay
Std. Err. Sig. Coef. Drisc/Kraay

Std. Err. Sig. Coef. Drisc/Kraay
Std. Err. Sig. Coef. Drisc/Kraay

Std. Err. Sig.

ln(Dw,i,t−5) 8.94 × 10−01 1.54 × 10−02 *** 8.93 × 10−01 1.67 × 10−02 *** 8.84 × 10−01 1.33 × 10−02 *** 9.36 × 10−01 8.70 × 10−03 ***

Wn ln
(

De,i,t−5
De,i,t−10

)
9.75 × 10−03 3.68 × 10−03 *

Wn ln
(

Dw,i,t−5
Dw,i,t−10

)
−2.82 × 10−02 4.33 × 10−03 **

Wa ln
(

De,i,t−5
De,i,t−10

)
2.18 × 10−03 3.60 × 10−04 **
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Table 2. Cont.

Variables

ln(Dw,i,t)

Model 5 Model 6 Model 7 Model 8

Coef. Drisc/Kraay
Std. Err. Sig. Coef. Drisc/Kraay

Std. Err. Sig. Coef. Drisc/Kraay
Std. Err. Sig. Coef. Drisc/Kraay

Std. Err. Sig.

Wa ln
(

Dw,i,t−5
Dw,i,t−10

)
−3.86 × 10−03 1.64 × 10−04 ***

Wc ln
(

De,i,t−5
De,i,t−10

)
2.80 × 10−04 1.97 × 10−05 ***

Wc ln
(

Dw,i,t−5
Dw,i,t−10

)
1.26 × 10−05 3.86 × 10−05

Const. −8.36 × 10−01 1.52 × 10−01 ** −8.53 × 10−01 1.59 × 10−01 ** −9.46 × 10−01 1.26 × 10−01 ** −4.45 × 10−01 8.08 × 10−02 **
Obs. 49,260 202,230 202,230 202,230

Group 8210 33,705 33,705 33,705
Prob > F 0.000 0.000 0.000 0.000

R2 0.8035 0.8045 0.8058 0.9027

*** p < 0.001, ** p < 0.01, * p < 0.05.
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Table 3. Elasticities for job and worker densities.

Variables

De,i,t

25 Percentile 50 Percentile 75 Percentile

−9.730 −7.764 −6.453

Value Elasticity Value Elasticity Value Elasticity

Wa ln
(

De,i,t−5
De,i,t−10

)
2.631 0.003 −0.087 2.796 0.003 −0.116

Wc ln
(

De,i,t−5
De,i,t−10

)
−1274.180 0.000 5.344 −1752.130 0.000 9.210

Variables

Dw,i,t

25 Percentile 50 Percentile 75 Percentile

−8.113 −7.437 −6.974

Value Elasticity Value Elasticity Value Elasticity

Wn ln
(

De,i,t−5
De,i,t−10

)
0.061 0.010 −0.007 −0.182 0.010 0.024

Wn ln
(

Dw,i,t−5
Dw,i,t−10

)
−0.132 −0.028 −0.046 −0.389 −0.028 −0.147

Wa ln
(

De,i,t−5
De,i,t−10

)
−0.058 0.002 0.002 3.309 0.002 −0.097

Wa ln
(

Dw,i,t−5
Dw,i,t−10

)
−1.091 −0.004 −0.052 −0.055 −0.004 −0.003

Wc ln
(

De,i,t−5
De,i,t−10

)
−826.985 0.000 2.856 −5.490 0.000 0.021

Table 4. Predictive performances of three different spatial matrices.

Spatial Matrices
Job Density Worker Density

MAPE Variance Friedman Test MAPE Variance Friedman Test

Adjacency 8.10 190.48
0.000

4.27 15.22
0.000Accessibility 8.09 190.82 4.16 15.00

Correlation 6.46 127.79 4.06 12.19

Based on the concept of Granger-causality, i.e., that a time-series variable provides
statistically significant information about another variable [45], these results indicate that
a growth in jobs in nearby blocks Granger-causes a growth in the workers and jobs in
the block, and that an increase in worker densities in nearby blocks Granger-causes a
decrease in the worker density in the block. We imagine a scenario in which a firm has
been established in a place and where other relevant firms have followed to reduce the cost
of an interfirm interaction. Resident workers also followed, we suppose, to reduce their
commute time. These are consistent with some of our observations about the history of
the spatial development, namely, that firms arrive first, and that people follow jobs [46],
suggesting a strategy with which to lower (raise) density in a region, such as, for example,
for migrating firms out (in). In addition, we can infer that a city has the natural ability to
overlook the fact that workers want to live away from each other.

6. Application

The change in land use intensity can be detected using the spatial regression model
with the correlation matrix proposed above, which provides information on public services
and infrastructure deployment. The distributions of the changes in densities from 2017
to 2022, for jobs and workers, are displayed in Table 5, in which the change is written
as Equation (8).

pDU =
DU,i,2022 − DU,i,2017

DU,i,2017
× 100% (8)

From Table 5, we can see that more than half of the blocks (56.3%) are predicted to
have job density drops in 2022 compared to 2017, and that fewer (31.2%) have worker
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density declines. The spatial distributions of the changes are visualized in Figure 4. This
information about land use intensity changes can help to determine where and how many
public services or related infrastructures should be further offered so that the needs of
citizens can be satisfied.

Table 5. The distribution of density changes between 2017 and 2022.

Density

Change (%)
−100–−50 −50–0 0–50 50–100

Job 0.000 0.563 0.422 0.015
Worker 0.000 0.312 0.671 0.017
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7. Conclusions

This research study aimed to determine the best way to express the variation of spatial
dependency and to capture the spatial effect of land use intensity by investigating three
spatial weight matrices, including the adjacency, accessibility, and correlation matrices.

The correlation matrix was calculated based on real data after temporal detrending.
From this data, we found that the spatial dependencies of the job and worker densities are
complementary but also competitive, similar to previous observations on traffic links [47].
Then, we validated its great performance to capture the spatial effects of densities using
land use data in the Minneapolis–St. Paul region from 2002 and 2017. We also found that
the accessibility matrix ranks second and that the adjacency matrix is the least helpful.

This research also discloses the cause and effect of the spatial interactions of the job and
worker densities by using lagging spatial variables in regression models. The growth in jobs
in nearby neighboring blocks Granger-causes the growth of workers and jobs; moreover, an
increase in workers in nearby neighbor blocks Granger-causes a decrease in workers. These
demonstrate the development process of a city in which some firms are established, as well
as the other associated firms and workers which follow. Moreover, with an accumulation
in workers in the region, some of them will move out to decrease the personal real estate
costs and attain more living space. This mechanism provides insights for land use policies
and can provide useful guidance for policymakers, such as suggesting the migration of
firms out of (into) the region as a way to lower (raise) the density.

This study validates the good performance of a correlation matrix for land use data in
a case study set in the Minneapolis–St. Paul region. In the future, data from other fields and
regions can be used to further demonstrate its performance. Moreover, another direction
worthy of exploration is a comparison between the performances of a machine learning
model and a spatial regression model in predicting land use intensity.
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