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Abstract: The relationship between urban mobility, social networks, and socioeconomic status is
complex and difficult to apprehend, notably due to the lack of data. Here we use mobile phone
data to analyze the socioeconomic structure of spatial and social interaction in the Chilean urban
system. Based on the concept of spatial and social events, we develop a methodology to assess the
level of spatial and social interactions between locations according to their socioeconomic status. We
demonstrate that people with the same socioeconomic status preferentially interact with locations
and people with a similar socioeconomic status. We also show that this proximity varies similarly for
both spatial and social interactions during the course of the week. Finally, we highlight that these
preferential interactions appear to hold when considering city–city interactions.

Keywords: human mobility; socio-spatial networks; urban system; mobile phone data;
urban computing; socio-informatics

1. Introduction

Securing equal opportunities to access public infrastructure is a major challenge in
urban planning [1], more so given the large concentration of wealth observed among
the increasingly urban economies worldwide [2]. While these issues have largely been
discussed in transportation [3], sociology [4], and physics [5] among other disciplines,
the current deluge of spatially contextual information regarding the mobility and social
interaction among humans is offering precise quantitative descriptions of emerging patterns
of spatial socio-economic mixing across cities [5–9].

The analysis of trace information generated by mobile phones, credit cards, and
transit cards, among others, has been shown to provide simple, synoptic, and near real-time
descriptions of urban mobility that have expanded our understanding of mobility strategies
towards fine-grained and contextual representations of how travel budgets are segmented
across the different dimensions of human life [10–14]. Its adoption for urban planning
and policy crafting, however, is still lagging, mostly due to the highly interdisciplinary
endeavor involved in understanding the role, and impact, of mobility across the social,
technological, and ecological fabric of urban life [15–17].

So far, different conclusions have emerged when describing the spatial context of
social interactions, and, while important strides have been made, explaining how urban
demographics and socioeconomic indicators relate to mobility still remains a challenge.
Early work explicitly shows that existing correlations between mobile phone usage and
wealth may be a starting point towards using information and communication technology
(ICT) data for planning, where sensitive data are available for research [18,19]. When the
spatial context is explicitly considered, mobility research, produced from different disci-
plines, seems to indicate that diversity of human trajectories across the city is a conserved
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trait among social groups sharing similar status (social, economic, etc.) [5,8,20–23], albeit
important differences exist across gender [20,24,25], income [21,26], residential location [16],
and other aspects of human life [27].

What is now accepted, despite early predictions of a decline in the importance of space
with the emergence of information and communications technologies in the sixties [28,29],
is that ’real’ social interactions connecting and exchanging wisdom, goods, and affection
are highly relevant to explain the hierarchical patterns of mobility [9]. In fact, recent studies
have shown the high predictive power of social ties to describe activities, interests, and
locations in ego networks [30,31]. Hence, the notion that functional relationships between
social networks and space are (strongly) mediated by the spatial opportunities available for
human interaction seem to prevail across the literature [32,33]. We also know, that while
social interactions are deeply associated with mobility, they only represent a limited fraction
of movements across the city [34], hinting towards the existence of other components
associated with mobility and social mixing. It is also becoming clear that multivariate
analyses of the factors linked to travel schedules, while important, often provide only
localized descriptions hampering generalizations of the phenomena compared to ICT traces
that explicitly measure how individuals use urban spaces during their daily journey [7,35].
This has made ICT tracers great candidates to deepen our understanding of the dynamics
of social mixing and the spatial environment in which they are embedded [36,37].

We here study the socioeconomic structure of spatial and social interactions using
mobile phone records of a major provider in Chile. We begin by extracting the spatial
and social networks of interactions. We then introduce an indicator, akin to an urban
pulse [38], to assess the weekly mobility patterns of every urban location in Chile. We
use this indicator to cluster the locations showing similar weekly mobility patterns. We
obtained four spatial clusters strongly correlated with the socioeconomic status of its
residents, which finally allow us to build and analyze coarse-grained spatial and social
interaction matrices showing the emergence of a preferential association in terms of spatial
and social interactions between people sharing similar socioeconomic status.

2. Materials and Methods
2.1. From Data to Networks

Our datasets are composed of Data Detail Records (XDR) and Call Detail Records
(CDR) provided by Telefónica Chile, representing 37% share of the mobile phone market
in Chile. The XDR dataset consists of billions of cellphone pings made by 4 million
mobile phones during 3 weeks in March, May, and October 2015 in Chile. Each ping is
characterized by its location (i.e., cellphone tower) and a timestamp. Each week has been
divided into T = 168 h. We partitioned the country into L = 3876 locations following a
Voronoi tessellation based on the cell phone towers’ position. Data processing started by
identifying the mobile phone users’ home location for each week of observation [13]. We
finally selected 2.5 million of reliable users with a validated home location for at least one of
the three weeks. We removed users whose home locations were not possible to identify.
We were thus able to identify 360 million of spatial events defined as the presence of a
reliable user in a location at time t ∈ |[1, 168]|. This collection of spatial events has enabled
us to build 168 spatial networks, one for each hour t. These networks are weighted and
directed. A weight Gt

ij of a link between two locations was given by the number of users
living in location i and that were present in location j at time t (i.e., all weeks combined).
Similarly, we used the CDR dataset to identify 12.5 million of social events between reliable
users. We defined a social event as a directed interaction (through a phone call) between
two reliable users. In this case, we defined 168 social networks. The weight St

ij of a link
corresponds to the number of social interactions made by users living in location i with
users living in location j at time t for all weeks combined. More details regarding the data
cleaning process are available in the section Data preprocessing (Table A1, Figures A1–A4) in
Appendix A.
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2.2. Pulse of a Location

We characterize the weekly mobility pattern of a location with a spatio-temporal
indicator that we called the ’Pulse of a location’. We define such pulse Pi at location i
as the time-evolution of the average distance between the location i and the position of
its residents during a typical week. More specifically, the pulse Pt

i of location i at time
t ∈ |[1, 168]| corresponds to the average distance between the location i and the position of
its residents at time t (Equation (1)).

Pt
i =

1
Ai

1
Gt

i.

L

∑
j=1

Gt
ijdij (1)

where L is the total number of locations, dij the great circle distance between locations i
and j, and Gt

i. = ∑L
j=1 Gt

ij. The constant Ai is used as a normalization factor to ensure that

∑T
t=1 Pt

i = 1. Note that a large heterogeneity of location areas exists given the irregular
location of antennas across the study area. This prompted us to only consider pulses
associated with the 2294 locations having a surface area lower than 10 km2 in order to
compute pulses representative of the spatio-temporal status of the population.

2.3. Cluster Analysis

We rely on the ascending hierarchical clustering (AHC) method to identify different
profiles of the pulse across locations. Ward’s metric and Euclidean distances were taken
as agglomeration method and dissimilarity metric, respectively [39]. The number of
clusters was chosen by comparing the ratio between the within-group variance and the
total variance. The purpose of this cluster analysis is to identify meaningful profiles of
pulse that can be used as a proxy for the socio-economic structure of a location. Indeed,
we make the assumption that differences in mobility behaviors and particularly between
weekdays and weekends represent an important descriptor of the socioeconomic status of
the location.

2.4. Measuring Spatial and Social Interactions

We construct two coarse-grained spatial and social interaction matrices λ and γ based
on the aggregation of link weights, Gt

ij and St
ij, in space and time. More specifically, the

fraction of spatial interaction from a cluster c to a cluster c′ during a given time window ∆t
is defined as follows,

λcc′ =
1
Bc

∑
i∈c

∑
j∈c′
j 6=i

∑
t∈∆t

Gt
ij (2)

where ∆t is the set of hours contained in the time window. The constant Bc is used as the
normalization factor to ensure that the sum of interactions from a cluster c to the N clusters
is equal to one, ∑N

c′=1 λc,c′ = 1. The same formula is used to compute the social interactions
γcc′ between and within clusters based on St

ij instead of Gt
ij.

To rigorously quantify the structure of these interactions, we use the index Φ proposed
in [40] to measure the hotspots’ hierarchical structure of cities. In our case, this index allows
us to quantify the importance of interactions between close clusters (i.e., |c− c′| ≤ 1) among
all interactions as the index relies on the tridiagonal trace of the matrix λ (Equation (3),
where δcc′ is the Kronecker delta). Such an approach provides a succinct representation of
the preferential relationships between locations across the study area. The same procedure
is used to compute the index, now associated with the social interactions, by using γ instead
of λ in the formula.

Φ =
∑N

c,c′=1 λcc′(δcc′ + δc(c′−1) + δ(c−1)c′)

∑N
c,c′=1 λcc′

(3)
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The values of Φ range from 0 to 1. A value of 1 means that all the elements of the
matrix that are not on the tridiagonal are equal to 0. In other words, all the interactions
occur within the same cluster or with the closest cluster. A value of 0 means that the
tridiagonal trace of the matrix is null, implying an absence of interactions within the same
cluster or with the closest cluster. However, this specific case is clearly unrealistic, so to
rescale the value of Φ in a relevant order of magnitude we proposed the following min-max
normalization to obtain the metric Φ̄ (Equation (4)).

Φ̄ =
Φh −Φ
Φh − 1

(4)

where Φh is the index obtained with a null model based on Equation (2), in which a cluster
is randomly assigned to every location (preserving the total number of locations per cluster).
The value of Φh is then averaged over 100 random reassignments. Φ̄ varies from 0, when
the proximity between clusters is equivalent to the one obtained with the null model, to 1,
when only interactions between nearby clusters occur. More details regarding the impact of
the number of random reassignments used to compute Φh on Φ̄ are available in Figure A10
in the section Null model in Appendix D.

3. Results
3.1. Pulse of a Location and Socioeconomic Structure

Based on the ratio between the within-group variance and the total variance (Figure A5
in Appendix C), 18 clusters were found. As can be seen in Figure A6 in Appendix C,
92 percent of the location is covered by four main clusters. The four average pulses
associated with these clusters are displayed in Figure A7 in Appendix C. The rest of the
locations are gathered into 3 small clusters (Figure A8 in Appendix C) and 11 outliers
(category Others in Figure A6) that we decided to discard because they contain too few
locations (or even one location for the outliers) to allow for a rigorous analysis.

Thus, we obtain four main pulse profiles, gathering 92% of the locations. Figure 1
shows a profile of the average pulse activity for each of these four clusters. Not surprisingly,
each profile exhibits a typical day–night temporal activity pattern where individuals are
moving, on average, further away from their residence during the day compared to night
hours. Some differences can nevertheless be observed between the different days of the
week. The average distance from home tends to increase from Wednesday to Saturday and
then decrease from Sunday to Tuesday. The difference between day and night is also more
pronounced on weekdays compared to weekends. The main difference between profiles is
mostly based on the difference in mobility behaviors between weekdays and weekends.
This difference is very pronounced for the locations belonging to cluster 1 (representing
25% of the locations). Indeed, people living in locations belonging to cluster 1 tend to
roam farther away from home during weekends compared to weekdays. This difference
slightly decreases for the 26% and 34% locations belonging to cluster 2 and 3, respectively.
The opposite behavior is observed for people living in cluster 4 (7% of locations) that tend
to be more or less at the same distance from their home irrespective of the day of the
week. This pattern is congruent with descriptions of individual mobility journeys in which
working-class groups tend to exhibit longer journeys to work compared with more affluent
sectors in Chile [24,41].
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Figure 1. Average pulse associated with the four clusters. Plots displaying the standard deviations
are available in Figures A7 and A8. It is worth noting that the fraction of reliable users (i.e., mobile
phone users with a validated home location) is stable between the different clusters (Figure A9 in
Appendix C).

In order to understand the origin of the observed differences in mobility behavior
between weekdays and weekends, we investigated the relationship between the pulse of
a location and its socioeconomic status. To do so, we attach to each location the socioe-
conomic structure of its residents (when the information was available). The indicator
used is divided into five relevant socioeconomic categories labeled ABC1, C2, C3, D, and
E, with ABC1 as the most wealthy group and E as the group with the lowest income and
educational level. The socioeconomic structure of a location is based on the surface area
dedicated to the socioeconomic category of each census track intersecting the location (see
the section Socioeconomic structure of the locations in Appendix B for further details). The
relationship between these four clusters and the five socioeconomic categories is plotted in
Figure 2. We observe in Figure 2A how the fraction of the surface area of locations belonging
to a given cluster is distributed among the socioeconomic categories for the whole country.
It is worth noting that a socioeconomic gradient exists from cluster 1, characterized by an
over-representation of wealthy neighborhoods (i.e., comparatively larger red bars for the
categories ABC1 and C2), to cluster 4, which shows an over-representation of neighbor-
hoods with low incomes and educational levels (i.e., larger green bars for categories D and
E). The comparison of the spatial distribution of clusters (Figure 2B) and socioeconomic
categories (Figure 2C) in Gran Santiago (the largest city) confirms these results. Indeed, this
particular spatial pattern of socioeconomic distribution has been described in detail in the
literature, with a concentration of more affluent neighborhoods projected in a cone-shaped
area that starts at the center of the city and opens towards the east and northeast outskirts
of Santiago. This particular spatial segregation pattern has recently been corroborated by
newer research [7,42]. This pattern is particularly apparent while looking at the spatial
distribution of clusters 1 and 2 in Figure 2B.
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Figure 2. Socioeconomic characteristic of the clusters. (A) Fraction of surface area dedicated to each
socioeconomic category according to the cluster (colored bars) and in total (white bar) for the whole
country. (B) Maps of the four clusters in Gran Santiago (the largest city). (C) Spatial distribution of
socioeconomic categories in Gran Santiago (the largest city).

3.2. Socio-Spatial Interactions Analysis

The results obtained for a week window period (i.e., ∆t = |[1, 168]|) are presented
in Figure 3A,B. Each bar represents an element of the interaction matrices and can be
interpreted as the probability of spatial and social interactions between two clusters during
a typical week. The figures indicate that locations belonging to the same cluster—or similar
clusters—tend to mostly interact with each other compared to their interaction with other
locations, both spatially and socially. We also observe that these preferential interactions
are less marked for social interactions (Figure 3B) than for spatial ones (Figure 3B).

Our results show a Φ̄ value of 0.52 for the spatial interaction matrix (Figure 3A) and
0.44 for the social interaction matrices (Figure 3B). These values demonstrate that a clear
proximity exists in terms of spatial and social interactions between locations sharing similar
socioeconomic features. It also shows that such a pattern is not just driven by spatial
constraints. In other words, these results clearly show that people living in locations of
a given socioeconomic status tend to move in, and socially interact with, people living
in locations of the same, or similar, socioeconomic status. While slightly higher for the
spatial interactions than for the social ones, it is particularly remarkable that both Φ̄ values
are quite high, as this metric intrinsically considers a random model of interactions that
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effectively considers spatial autocorrelation. That is, it explicitly considers what could
happen in a random situation.
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Figure 3. Socio-spatial interactions analysis. (A,B) The fraction of spatial (A) and social (B) interaction
within and between clusters. The values of Φ̄ obtained with both matrices are displayed. (C) Temporal
evolution of Φ̄ across week hours for the spatial interactions (in pink) and social interactions (in green).

In order to deepen the socio-spatial interaction analysis, we plot in Figure 3C the
temporal evolution of Φ̄ during a typical week using a time window of one hour (see
Equation (2)). As expected, the value of Φ̄ varies greatly according to the day of the week
and the hour of the day. A greater variation is observed for the spatial interactions compared
to the social ones. During weekdays, the spatial proximity between clusters is higher during
the night with a Φ̄ value going from 0.75 to 0.8 compared to the 0.35 observed during the
11–19 h span. The variations decrease during weekend days with less proximity during
night hours (Φ̄ = 0.7) and more during the day (Φ̄ = 0.6). This result also suggests that
structural dependence between clusters, revealed by Φ̄, is more relevant when everybody
is at home, confined to their individual socio-economic groups. Social interactions, in turn,
show more nuanced and noisy results, presumably due to the comparatively lower number
of social events during the night (see Figure A4). Nevertheless, we also observe that Φ̄
decreases during weekdays. In such a time span, particularly during the morning, people
tend to interact less with people living in a similar cluster, a pattern that increases during
the evening hours. However, it is interesting to note that this increase in social interactions
with people living in a similar cluster starts earlier over the course of the day. It is also
characterized by two peaks, one halfway through the day and another one around 6 pm.
During weekend days, Φ̄ is quite stable with a value fluctuating around 0.5.

Finally, Figure 4 shows the Φ̄ index for intra- and inter-city interactions. In this case,
an additional constraint is added in Equation (2) to only consider interactions between
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locations that belong to cluster c in one city with locations belonging to cluster c′ in the
same or in another city, hence highlighting same-cluster interaction. We focus here on
the three largest cities in terms of population in Chile. As it can be observed in Figure 4,
the values of Φ̄ capturing spatial (Figure 4A) and social interactions (Figure 4B) between
locations in the same city are in line with Φ̄ values obtained for the whole country. We
also note that these preferential spatial and social interactions hold for several pairs of
cities such as the people living in Concepción interacting with locations and people living
in Santiago.
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Figure 4. Intra-city and inter-cities socio-spatial interactions analysis. The index values are based on
spatial (A) and social (B) interactions between locations in the same city (diagonal) or from one city
to another. There were not enough data available (NA) to measure the spatial interactions between
Concepción and Valparaíso.

4. Discussion

This study not only concurs with other studies showing how mobile phone data may
aid in shaping a better understanding of the socioeconomic structure of spatial and social
interactions in urban systems, but it also proposes a methodological approach to assess
the hierarchical structure of spatiotemporal interactions across the city. By defining two
temporal networks representing interactions stemming from highly resolved spatial and
social events, we are able to describe how people ascribed to a particular socioeconomic
level within the city interact with their environment and with people living in other
locations across weekly hours. Similarly to [43], the net result here shows that people living
in locations of a given socioeconomic status preferentially interact with locations and people
sharing similar socioeconomic levels. Additionally, while this proximity varies similarly
for both spatial and social interactions during the course of the week, social interactions
measured by the voice calls between users exhibit a more nuanced association between
socioeconomic status, much like what has recently been described in the literature [44].
This may be the product of a combination of factors, including the fact that the events
captured by our voice call dataset are composed of a combination of professional, personal,
and leisure interactions that may increase social mixing.

Our study sheds new light on the understanding of social mixing using large datasets.
In fact, the mounting availability of such types of information is contributing to making
large strides to describe the effect of segregation on the various realms of our
society [5,25,45,46]. While our results contribute to the analysis and understanding of
the relationship between urban mobility, social networks, and socioeconomic status, they
also raise a number of new questions with regard to their generalization. In this regard,
we will argue that the large sample used in this analysis, in terms of spatial and social
events attached to a substantial number of mobile phones users in Chile (see Table A1 in
Appendix A.2) provides an empirical description of how socioeconomic status relates to
spatial and social interactions at several levels.
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For instance, the role of space has been a central topic in understanding social tie
formation. At the local scale, space has been described to determine interactions through
distance, urban configuration [47,48], and specific locations fostering social interactions [49].
These studies highlight not only the importance of space-mediated interactions but also the
relevance of social interactions such as relationship maintenance among friends [36]. While
these conclusions go beyond this particular work, we envisage that ongoing improvements
in the identification of residences [50] and transportation modes [51], among others, will
clearly foster more granular descriptions of urban dynamics. In fact, they may even shift the
focus to more localized descriptions of social and transportation behavior, as has recently
been seen by the analysis of the ongoing COVID-19 pandemic in Chile [45,52]. At broader
scales, spatial limitations (e.g., the modifiable areal unit problem) have recently been
invoked to highlight the difficulties describing spatial aspects of segregation [42]. While
this old geographic issue may certainly hamper the possibility to inform social mixing from
mobile phone datasets, other equally important aspects of areal distributions may acquire
relevance in the spatially explicit descriptions of cities. For instance, the definition of urban
entities may also concur with the MAUP to describe the correct functional extension to
which urban descriptions should be attached [8,53]. In spite of this, it is interesting to
note that the preferential interactions among socioeconomic status in Chile, as described
here, appear to hold even when considering interactions between cities hinting towards
an intrinsic property of social systems as opposed to a particular constraint (e.g., spatial)
imposed on the interaction network [54].

Finally, it is also worth noting that the usage of the hierarchy index proposed in [40]
used here provides a simple conceptual means to compare both social and spatial networks
across the whole country that is independent of urban shape, while still capturing the
spatial hierarchy of mobility within and between cities [55].

Author Contributions: Conceptualization, M.L. and H.S.; methodology, M.L. and H.S.; software,
M.L. and H.S.; validation, M.L. and H.S.; formal analysis, M.L. and H.S.; investigation, M.L. and H.S.;
resources, M.L. and H.S.; data curation, M.L. and H.S.; writing—original draft preparation, M.L. and
H.S.; writing—review and editing, M.L. and H.S.; visualization, M.L. and H.S.; supervision, M.L. and
H.S.; project administration, M.L. and H.S.; funding acquisition, M.L. and H.S. All authors have read
and agreed to the published version of the manuscript.

Funding: The work of M.L. was supported by a grant from the French National Research Agency
(project NetCost, ANR-17-CE03-0003 grant). H.S. was supported by the Chilean Agency of Research
and Development ANID (FONDECYT Regular grant #1211490).

Data Availability Statement: The mobile phone datasets used in this study are available on request
from the corresponding author.

Acknowledgments: Thanks to Isidro Puig from the OCUC for his help on census data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Data Preprocessing

Appendix A.1. Call and Location History

The data used in this study consists of Call Detail Records (CDR) and Data Detail
Records (XDR) provided by Telefónica Chile representing 37% share of the mobile phone
market in Chile.

Our first dataset is composed of billions of cellphone pings made by 4 million mobile
phones during 3 weeks in March, May, and October 2015 in Chile. Each ping is characterized
by its location (i.e., Voronoi cell) and a timestamp informing us of the hour, the day of
the week, and the week when the ping has occurred. We structured the dataset in a four-
column location history table (week, hour, user, location). Each line represents a spatial
event informing us of the presence of a user in a location during a given week at a given
time. If the presence of a user was detected in several locations during the same hour, we
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chose the location with the highest number of events. In the event of a tie, one of them was
drawn at random.

In addition, we relied on a second dataset to compute the history of calls between
mobile phone users. This dataset was structured into a four-column call history table (week,
hour, caller, callee). Each line represents a social event. A social event is characterized by a
phone call made by a caller to a callee during a given hour and a given week. This means
that if a caller called several times the same callee during a given hour, only one social
event has been considered.

Appendix A.2. Identification of the Users’ Place of Residence

The first step consisted in identifying the users’ place of residence to filter out users
with a low number of spatial events and/or exhibiting irregular mobility patterns. For each
of the three weeks periods and for each user, we applied the following procedure to extract
the home locations:

• First, we focused on the user’s spatial events occurring during nighttime hours (be-
tween 9 pm and 8 am included). Only days of the week from Monday to Thursday
were considered (N = 48 h in total). We note that Nu is the number of events occurring
during nighttime hours.

• We applied here a first filter by considering only users with a number of spatial events
higher than a fraction δA = Nu/N of the total number of nighttime hours.

• We identified the location in which the user has localized the highest number of spatial
events during nighttime hours. We define this location as her or his home location.

• A second filter was also implemented to select only users whose fraction of events
occurring at their home location during nighttime is larger than a fraction δR of the
total number of events during nighttime.

As explained in [13], the first filter δA is applied to discard users having too low a
number of spatial events. The last filter allowed us to adjust the degree of confidence in
the identification of the home location. We chose to fix δA to 0.3 and δR to 0.3 which seems
to be a good interplay, allowing us to remove users not active enough and/or exhibiting
irregular mobility patterns during the time period (Figure A1) while preserving the spatial
distribution of inhabitants observed in Chile (Figure A2). The number of reliable users (i.e.,
with a validated home location) is available in Table A1.
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Figure A1. Influence of the parameters. Number of reliable users during the first (a), second (b), and
third (c) week as a function of δR and for different values of δA. The vertical bars indicate the value
δR = 0.3.

Table A1. Number of users (all) and reliable users according to the week of observation and in total.

Date # Users (All) # Reliable Users

15 to 21 March 2015 3,292,923 1,657,048
10 to 16 May 2015 3,292,647 1,598,571
2 to 8 August 2015 3,236,122 1,539,621

Total 4,064,476 2,565,365
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As mentioned in the previous section, there are some holes in the user history location
with hours with no events. Nevertheless, we observe in Figure A3 that, during each
week of observation, 75% of the reliable users have at least 100 spatial events (60% of the
maximum value).

Census

0

10

20

30

40

50

0 100 200 300 400 500
0

10

20

30

40

0 10 20 30 40 50

0.94

Week 1

0.94

1.00

Week 2

0 10 20 30 40 50

0 10 20 30 40

0

100

200

300

400

500

0.94

1.00

0

10

20

30

40

50

1.00

Week 3

Figure A2. Comparison between census and XDR data. Each scatter plot and its associated Pearson
correlation coefficient represents a comparison between the number of inhabitants (expressed in
thousands of individuals) in the census and the number of inhabitants (expressed in thousands of
individuals) estimated with XDR data (i.e., reliable users) during the three weeks of observation.
Each point represents one municipality of Chile.

Figure A3. Boxplots of the number of events per reliable user according to the week of observation.
The dashed grey line represents the minimum value (15 is the minimum value required to pass the
first filter in the home identification). The dash-dotted line represents the limit of 100 events. The
maximum value is 168 (number of hours in the week). Each boxplot is composed of the first decile,
the lower hinge, the median, the upper hinge, and the last decile. The blue dots represent the outliers.
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Appendix A.3. From Events to Networks

A table summarizing the number of reliable users and their associated numbers of
spatial and social events is available in Table A2. The associated temporal evolution is
available in Figure A4. Finally, the collections of spatial and social events have enabled us
to construct 168 spatial networks and 168 social networks. The weight Gt

ij of a link between
two locations i and j at time t is equal to the number of users living in location i that were
present in location j at time t (all weeks combined). Similarly, the link weight St

ij of a social
network is equal to the number of social interactions made by users living in location i with
users living in location j at time t (all weeks combined).

Table A2. Number of reliable users, spatial and social events per week and in total.

Date #Reliable Users #Spatial Events #Social Events

15 to 21 March 2015 1,657,048 129,760,887 4,433,505
10 to 16 May 2015 1,598,571 126,359,359 4,207,538
2 to 8 August 2015 1,539,621 120,960,807 3,905,935

Total 3,023,946 377,081,053 12,546,978
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Figure A4. Number of spatial events (in pink) and social events (in green) according to the hour of
the day. Each line represents a week of observation.

Appendix B. Socioeconomic Structure of the Locations

As mentioned in the main text, we attached to each of the 3876 locations some in-
formation regarding the socioeconomic level of their residents when the information was
available. To do so, we relied on the socioeconomic map of Chile proposed by Adi-
mark [7,56]. These maps are available from the Observatorio de Ciudades UC (OCUC) website
(https://ideocuc-ocuc.hub.arcgis.com/, last accessed 6 December 2022) in Shapefile format
for five major Chilean cities.

• Antofagasta in 2002 available at https://ideocuc-ocuc.hub.arcgis.com/datasets/fbde6
8b6c3d547c8adfcc17d196e1e88_0, last accessed 6 December 2022.

• Coquimbo y La Serena in 2002 available at https://ideocuc-ocuc.hub.arcgis.com/, last
accessed 6 December 2022.

• Gran Concepción in 2002 available at https://ideocuc-ocuc.hub.arcgis.com/datasets/
f62f12fae97548fd8c71cb405d40e5f2_0, last accessed 6 December 2022.

• Gran Santiago in 2012 available at https://ideocuc-ocuc.hub.arcgis.com/datasets/c2
64bc8bca7f45bc8ae74329557628b2_0, last accessed 6 December 2022.

• Puerto Montt and Puerto Varas in 2002 available at https://ideocuc-ocuc.hub.arcgis.
com/datasets/91deae3707ff447f961b4e2a5cf2300d_0, last accessed 6 December 2022.

https://ideocuc-ocuc.hub.arcgis.com/
https://ideocuc-ocuc.hub.arcgis.com/datasets/fbde68b6c3d547c8adfcc17d196e1e88_0
https://ideocuc-ocuc.hub.arcgis.com/datasets/fbde68b6c3d547c8adfcc17d196e1e88_0
https://ideocuc-ocuc.hub.arcgis.com/
https://ideocuc-ocuc.hub.arcgis.com/datasets/f62f12fae97548fd8c71cb405d40e5f2_0
https://ideocuc-ocuc.hub.arcgis.com/datasets/f62f12fae97548fd8c71cb405d40e5f2_0
https://ideocuc-ocuc.hub.arcgis.com/datasets/c264bc8bca7f45bc8ae74329557628b2_0
https://ideocuc-ocuc.hub.arcgis.com/datasets/c264bc8bca7f45bc8ae74329557628b2_0
https://ideocuc-ocuc.hub.arcgis.com/datasets/91deae3707ff447f961b4e2a5cf2300d_0
https://ideocuc-ocuc.hub.arcgis.com/datasets/91deae3707ff447f961b4e2a5cf2300d_0
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• Valparaíso in 2002 available at https://ideocuc-ocuc.hub.arcgis.com/datasets/b945
8dbbc94343e58ea5fc9c5def03f9_0, last accessed 6 December 2022.

These data inform us of the dominant socioeconomic categories of the resident of each
‘manzana’ (i.e., census block). There are five categories labeled ABC1, C2, C3, D, and E with
ABC1 as the most wealthy group and E as the group with the lowest income and educational
level. For each location, we computed the area of the intersection between the Voronoi cell
and the census blocks (if any) for each category. To identify the socioeconomic structure
of each cluster, we computed the fraction of surface area (of the locations composing this
cluster) dedicated to each socioeconomic category.

Appendix C. Clustering Analysis
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Figure A5. Ratio between the within-group variance and the total variance as a function of the
number of clusters. The red line represents the selected number of clusters.
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Figure A6. Percentage of locations by cluster.

https://ideocuc-ocuc.hub.arcgis.com/datasets/b9458dbbc94343e58ea5fc9c5def03f9_0
https://ideocuc-ocuc.hub.arcgis.com/datasets/b9458dbbc94343e58ea5fc9c5def03f9_0
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Figure A7. Pulses associated with the four main clusters. The solid lines represent the average pulse,
while the dashed lines represent one standard deviation.
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Figure A9. Boxplots of the fraction of reliable users per cluster. Each boxplot is composed of the
minimum value, the first quartile, the median, the third quartile, and the maximal value.

Appendix D. Null Model
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Figure A10. Boxplots of Φ̄ for the spatial and social interaction matrices. Each boxplot is composed
of 100 Φ̄ values, each of them obtained with a Φh value based on one random assignment. Each
boxplot is composed of the minimum value, the first quartile, the median, the third quartile, and the
maximal value.
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