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Abstract: Much research has documented the contagiousness of violence. Some of this work has 

focused on contagiousness as operationalized by the spread across geographical space, while other 

work has examined the spread within social networks. While the latter body of work struggles with 

incomplete network data, the former constitutes a theoretical mismatch with how violence should 

spread. Theory instead strongly suggests that violence contagion should diffuse through everyday 

mobility networks rather than just adjacently through geographical space. Beyond contagion itself, 

I argue that neighborhoods connected through mobility networks should serve as useful short-term 

sensors in predicting imminent violence because these sets of residents tend to experience shared 

environmental exposures, which may induce synchrony in the likelihood of violence. I explore this 

topic and these relationships using violent crime data from the three largest U.S. cities: New York 

City, Los Angeles, and Chicago. Using two-way fixed effects models, I test whether or not violence 

in mobility-connected alter neighborhoods in the preceding hour predicts violence in an ego neigh-

borhood in the next hour. Across all three jurisdictions, I find that recent violence in the neighbor-

hoods to which a neighborhood is connected through mobility ties can strongly predict that neigh-

borhood’s odds of subsequent violence. Furthermore, spatial proximity has no significant effect on 

the likelihood of violent crime after controlling for mobility ties. I conclude by arguing that mobility 

patterns are an important pathway in the prediction of violence. 
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1. Introduction 

Urban violence in the United States is unevenly distributed and has adverse conse-

quences with unequal effects [1–6]. A substantial body of research has investigated vio-

lence as a contagion. On a large scale, early theories of gun violence, in particular, de-

scribed the proliferation of urban violence as a result of an arms race between young men 

[7]. In this sense, gun violence was argued to be contagious on a larger scale of time, where 

perceptions of gun proliferation drove further proliferation. 

More recent research has attempted to examine the contagion of violence on a smaller 

empirical time scale. For example, Cohen and Tita [8] found evidence that violence dif-

fuses from census tracts to adjacent census tracts. Similar research has relied on the as-

sumption that non-random space-time clustering constitutes a contagion effect. More re-

cent research by Loeffler and Flaxman [9] improved causal interpretation in estimating 

violence contagion by modeling complete gun violence data using a point process. They 

found that some diffusion in space and time exists but that it is very limited in scope (126 

m and 10 min). 

Ultimately, this body of research has been highly uniform in how it considers vio-

lence to diffuse. While some scholars have posited that gun violence spreads through so-

cial networks [10,11], many scholars have conceptualized and measured the diffusion of 

crime spatially. While such analyses are well-grounded in the fundamental concept of 

Tobler’s Law [12], spatial proximity is not all that matters. Instead, theories suggest that 
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the central diffusion mechanism is through intergroup exposure, such as retaliation for 

acts of violence [9]. Indeed, a model of violence diffusion that is based on the notion that 

actors spread violence suggests violence would not simply spread randomly across space 

but should instead follow patterns that align with how people move about urban areas. 

In this paper, I utilize mobility patterns and spatial proximity data to examine how 

the incidence of violent crime in census block groups in New York City, Los Angeles, and 

Chicago predict the subsequent incidence of violent crime in other census block groups. I 

choose to focus on these three cities because they constitute the three largest cities in the 

United States and vary substantially in geographic and demographic terms. 

Across all three cities, I find that the relationship between census block groups, as 

operationalized by mobility patterns but not spatial contiguity, predicts the acute diffu-

sion of violent crime. While the methodology does not justify causal claims of a contagion 

effect, this work does provide suggestive evidence regarding the types of neighborhood 

relationships that would constitute violence contagion if it were to exist and makes a sig-

nificant contribution to the literature in terms of how violent crime can be predicted before 

it happens. 

2. Literature Review 

Gun violence is generally theorized to act as a contagion on a short time scale, “with 

individual incidents leading to elevated risk of retaliatory shootings concentrated in the 

communities and lives of individuals connected to earlier incidents” [9]. The same has 

been argued for acts of violence in general [13]. Indeed, the notion that violence diffuses 

between people explains why recent research has studied the diffusion of gun violence 

within social networks [10,11]. However, a significant limitation of studies like this is that 

the social network data they rely on is based strictly on available co-offending networks. 

Thus, it is subsequently incomplete when measuring whom a person is actually socially 

or criminally connected to.  

Tita and Greenbaum [14] argued that for an accurate model of violence contagion, 

“the appropriate unit of analysis must also consider the spatial dimensions of the social 

phenomena thought to be responsible for the spatial patterning”. Similarly, Loeffler and 

Flaxman [9] said, “Theoretically, diffusing gun violence would provide support for mod-

els of gun violence that emphasize its contagious/infectious features and suggest the need 

for additional studies focusing on the exact individual-level and mobility-based mecha-

nisms through which elevated risk is transmitted through space and time.” Thus, past 

work has called attention to and highlighted the need for models of violence contagion to 

utilize everyday mobility data. 

Beyond contagion being more likely to spread through mobility networks than 

simply through proximal space, neighborhoods connected through mobility network ties 

can serve as an important sensor for what goes on in a particular neighborhood [15]. 

Waves of violence tend to have common underlying causes, which is why the same sets 

of neighborhoods tend to experience upticks or reductions in violence together [16]. In-

deed, in the very short term, violence tends to correlate with certain days of the week, 

holidays, and weather conditions [17–19]. These shared causes highlight how synchrony 

in crime can arise from shared behaviors or cultural practices. 

Neighborhoods connected through mobility ties tend to be socially similar and share 

many of the same everyday environments and exposures. Specific patterns of mobility 

activity predict violent crime. For example, nightlife activities tend to predict violence 

[20]. Neighborhoods connected through mobility patterns may share common exposures 

such as this while causing violence in separate neighborhoods. Similarly, some evidence 

suggests that acute usage of drugs and alcohol causes violent behavior [21]. Since the use 

of drugs and alcohol may be facilitated by common environmental exposure, which mo-

bility ties would facilitate, mobility patterns may induce shared exposure which induces 

synchrony in violence [22]. Other common practices, such as synchronous engagement in 

watching sports, may also affect the incidence of violence [23]. 
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There are, of course, a multitude of environmental conditions that may induce or 

prevent violent crime. These varying environmental conditions constitute shared-expo-

sure bias, an important form of bias confounding results in causal peer effects analysis 

[24]. Shared-exposure bias is a main reason why neighborhoods connected through mo-

bility patterns may serve as valuable sensors to predict future violence, as well as why 

results interpreted from analyses like this (that cannot control away shared-exposure bias) 

cannot make causal claims regarding the contagiousness of a phenomenon. 

An additional reason why neighborhoods connected through mobility ties may serve 

as suitable sensors is because of network properties. In individual social networks, there 

are always more friends of friends than friends [25]. This principle has led to friends of 

individuals from a random population sample being useful sensors for various network 

phenomena. For example, Christakis and Fowler [26] found that friends of a random sam-

ple of university students tended to get the flu about two weeks before the individuals in 

the random sample themselves did. Notably, this phenomenon is not necessarily because 

friends spread the flu directly to the random sample but because friends are better con-

nected in general and thus are likely to be exposed to contagions ahead of the general 

population. The same properties must hold for mobility networks since mobility networks 

constitute a directed network, for which the friendship paradox still holds [27]. Alter 

neighborhoods connected through mobility ties inherently must, on average, be better 

connected and thus may be a valuable sensor of a coming violence wave. 

Ultimately, a more conceptually fitting model of violence diffusion would thus not 

simply consider geographical proximity but also human everyday mobility patterns. De-

spite much research being done on spatiotemporal analyses of violence diffusion, little 

has taken into account mobility patterns. Much of this is the result that detailed data meas-

uring everyday mobility patterns have historically been unavailable. Recently, this has 

changed, however. The advent of cell phones and software that tracks where people travel 

at scale has resulted in the public availability of datasets that map how neighborhood 

residents travel in their everyday lives. 

Mobility patterns have proven to be helpful in the analysis of violent crime. Looking 

at neighborhoods in Chicago, Graif and colleagues [15] found that homophily in violence 

patterns between neighborhoods predicted subsequent commuting tie formation between 

neighborhoods. Research has additionally found the qualities of neighborhood visitors to 

be a critical predictor of neighborhood violence. Levy and colleagues [28] found that the 

neighborhood disadvantage associated with a neighborhood’s visitors was a stronger pre-

dictor of homicide than the residential disadvantage of the neighborhood itself. Ulti-

mately, there exists a strong basis by which to hypothesize mobility patterns may better 

predict violence than spatial proximity. In the next section, I introduce the data I will use 

to empirically test this supposition. 

3. Data 

This analysis covers the three largest U.S. cities: New York City, Los Angeles, and 

Chicago. Using violent crime data, I construct a long-form dataset where each observation 

represents a unique combination of census block group and one-hour period. I utilize two-

way fixed effects logit models to predict the odds of a violent crime occurring in a census 

block group in a particular one-hour period. The two-way fixed effects account for omit-

ted variable bias, which otherwise would be an issue given that violent crimes tend to be 

more concentrated in certain areas and at certain periods of time. I take advantage of mo-

bility data to estimate the number of visitors to a census block group in a given hour and 

the number of residents in a census block group at home at a given hour since these vari-

ables are important time-varying predictors of the acute likelihood of violent crime occur-

ring [29]. I estimate the effect of recent violent crime in a census block group’s mobility 

network through the inclusion of a time-varying covariate where a zero value indicates 

no violent crime occurred in the neighborhoods mobility network in the previous hour, 

while a larger value indicates one or more violent crimes occurred in neighborhood(s) that 
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are strongly connected through mobility ties. I similarly include a time-varying covariate 

operationalizing recent violent crime in a contiguous neighbor of a census block group. 

Greater detail on how these measures are calculated is included in the next section. 

3.1. Crime Data 

Crime data for this project comes from three sources. New York City crime data 

comes from the New York Open Data website’s “NYPD Complaint Data Historic” dataset. 

This dataset consists of records of all valid felony, misdemeanor, and violation crimes 

reported to the New York City Police Department between 2006 and 2019. All incidents 

in the dataset have a specific time and date they occurred and latitude and longitude of 

where they occurred. They also include an “Offense Description”, based on which I subset 

violent crimes. Based on the level of descriptions involved in the dataset, I code five types 

of complaints as violent crimes: Assault in the third degree, Felony Assault, Robbery, 

Rape, and Murder/Non-negligent manslaughter. 

Los Angeles crime data come from the Los Angeles Police Department’s “Crime Data 

from 2010 to 2019” dataset. This dataset consists of records of every recorded crime that 

occurred in Los Angeles between 2010 and 2019. The data originates from transcribed 

LAPD reports. All incidents in the dataset have a specific time and date they occurred and 

latitude and longitude of where they occurred. All incidents additionally include a crime 

code. Based on the level of description involved in the dataset, I code six types of crimes 

as violent crimes: Homicide, Robbery, Kidnapping, Rape, Assault (of any type), and Bat-

tery (of any type). 

Chicago crime data comes from the Chicago Data Portal “Crimes–2001 to Present” 

dataset. This dataset consists of records of every recorded crime that occurred in Chicago 

since 2001. The data originates from the Chicago Police Department’s Citizen Law En-

forcement Analysis and Reporting system. All incidents in the dataset have a specific time 

and date they occurred and latitude and longitude of where they occurred. They also in-

clude a “Primary Description” based on which I subset violent crimes. Based on the level 

of descriptions involved in the dataset, I code six types of incidents as violent crimes: Bat-

tery, Assault, Robbery, Criminal Sexual Assault, Homicide, and Kidnapping. Ultimately, 

the types of crimes included in the analyses for each of the three cities are in line with the 

Bureau of Justice Statistics definition [30]. Coding is just slightly different between the 

three cities in order to account for the fact that all three datasets use different offense ty-

pologies and have different state/local statutes by which they refer to certain crimes.  

The sets of neighborhoods involved in the dual analyses come from three sources. A 

list of 2010 Census Tracts located in the City of Chicago is obtained from the Chicago Data 

Portal. A similar list for New York City is obtained from NYC Open Data. A similar list is 

obtained from Los Angeles city website. For all three cities, I include all census block 

groups that compose the Census Tracts listed in the datasets, with the exception of census 

block groups that have fewer than 300 people based on the 2015–2019 American Commu-

nity Survey estimates. These exclusions make little difference, and census block groups 

included in the final analysis contain 99.6% of the city’s population in New York City and 

Los Angeles and 99.7% in Chicago. 

3.2. Daily Mobility Data 

The mobility data used in this work comes from SafeGraph’s “Social Distancing Met-

rics” dataset. SafeGraph is a U.S. company that aggregates anonymized, repeatedly meas-

ured location data from a nationally representative sample of 45 million smartphone de-

vices provided by Veraset. SafeGraph’s “Social Distance Metrics” dataset provides daily 

updated information on individuals’ visits to and from census block groups for every day 

in 2019. A visit is defined here as a cluster of proximal location pings with duration longer 

than one minute. Individual devices may not count for multiple visitors to the same neigh-

borhood on the same day. The home location for a device is determined by SafeGraph 

using machine learning as the common nighttime (6:00 p.m. to 7:00 a.m.) location of the 
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device. For each unique directed combination of census block groups, i and j in the United 

States and for each unique day, Safegraph sums up the number of unique devices that 

reside in neighborhood i and make at least one visit to neighborhood j on that given day. 

Notably, this data has been used substantially in recent research [31], and my usage of the 

data follows precisely from this recent research. 

Using SafeGraph’s data, I calculate the number of visitors neighborhood i receives 

from neighborhood j at hour t using the following formula: 

����� =
����� ∗ (1 − �ℎ��) ∗ ����

∑ �����
 

where ����� represents the number of visitors from neighborhood i to neighborhood j on 

day d (where hour t is part of day d), �ℎ�� is the percent of residents of neighborhood i 

that are home at hour t, ���� is the residential population of neighborhood i, and ∑����� 

represents the total number of visitors to neighborhood j across all neighborhoods on day 

d. This formula was devised based off of daily visitor patterns being aggregated to the 

daily level while volume of mobility data is available at the hourly level. This formula 

essentially estimates the number of visitors from one neighborhood to another for a par-

ticular hour.  

I additionally construct a year-long aggregated weighted directed network between 

census block groups by aggregating these hour-level visitor counts. Subsequently, I con-

ceive of the set of census block groups in each of the three cities as three networks, where 

the directed relationship between neighborhood i and neighborhood j, represents the total 

number of visitor-hours residents in neighborhood i spent in neighborhood j. This for-

mula follows identically from recent research [31]. 

��� =����� 

I additionally calculate the population of people at home in a neighborhood during 

a particular hour using the following formula. 

����� = �ℎ�� ∗ ���� 

4. Methods 

I manipulate data to fit into a long-form, where each observation represents a unique 

combination of census block group, hour, and day. I operationalize the dependent varia-

ble, “violent crime” as a binary variable, with a 1 indicating one or more violent crimes 

were reported in the given census block group at the given hour on the given day and a 0 

indicating no violent crimes were reported. 

For each given observation, I calculate an in-degree of violent crime-hours in the pre-

vious hour using the following formula: 

����� =
∑��� ∗ ����
∑ ����

 

Here, ��� corresponds to the level of violence in neighborhood i, at time t, in the pre-

vious one hour. 

I additionally calculate an out-degree of violent crime-hours in the previous T hours 

using the following formula: 

����� =
∑��� ∗ ����
∑ ����

 

Notably, the formulas for these measures follow similar formulas from recent re-

search on neighborhood mobility networks [31]. I subsequently operationalize mobility 

lag as the sum of in-degree violence and out-degree violence in the previous hour. Con-

ceptually, mobility lag can be thought of as the preceding level of violence in alter 
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neighborhoods that an ego neighborhood is connected to through mobility patterns. As 

an example, if a neighborhood X received 2.5% of its visitors from neighborhood Y and 

sent 2.5% of the visitors that visited neighborhood Y, and neighborhood Y was the only 

neighborhood connected to neighborhood X where a violent crime occurred at a particular 

time, the mobility lag for neighborhood X in the next hour would 0.025 + 0.025, which is 

0.05. Mobility lag may range from 0 to 2. 

Figure 1 compares the geographical distribution of yearly summed violent crimes 

with yearly summed mobility lag in Chicago. The left figure depicts simply the number 

of violent crimes in each census block group in 2019. Distinctly, the right figure shows the 

aggregated number of violent crimes in each census block group’s mobility network, 

weighting by the strength of the tie and summing across all hours in 2019. This visualiza-

tion reveals violent crimes being concentrated mostly in the western and southern areas 

of the city. The areas where violent crime tends to be highest or lowest are not necessarily 

mirrored by mobility lag. Indeed, many of the safer neighborhoods on the west and south 

sides have far above-average mobility lag, while the most dangerous neighborhoods on 

the north side have far below-average mobility lag. While mobility lag appears to be much 

smoother spatially compared to violent crime, notable exceptions exist. While spatial 

proximity tends to predict mobility patterns, the two are not duplicitous [32]. The figure 

visually depicts substantial exceptions. Figures S1–S6 in the Supplementary Materials 

provide similar visualizations for New York City and Los Angeles. 

 

Figure 1. Chicago Violent Crimes and Mobility Lag. 

To operationalize spatial lag, I look at the census block groups that are contiguous 

with a given census block group. This approach aligns with past research [8]. Subse-

quently, I specifically operationalize spatial lag as the proportion of contiguous tracts that 
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experienced a violent crime in the previous hour. As an example, if a given neighborhood 

was contiguous with five other neighborhoods and exactly one of them experienced a vi-

olent crime, the spatial lag for the given neighborhood in the next hour would be 0.2. 

Spatial lag, as I conceptualize it here, effectively refers to the level of violence in spatially 

proximal neighborhoods in the preceding hour. This measure of spatial lag provides a 

variable by which to test if spatial pathways predict the diffusion of violent crime. 

I estimate a two-way fixed effects model for all three cities in the exact same form. 

For New York City, 309 census block groups and 28 h of the year were dropped because 

no violent crimes were reported there or then. For Los Angeles, 73 census block groups 

and 162 h of the year were dropped because no violent crimes were reported there or then. 

For Chicago, 21 census block groups and 55 h of the year were dropped because no violent 

crimes were reported there or then.  

Tables 1–3 contain summary statistics for New York City, Los Angeles and Chicago, 

respectively.  

Table 1. Summary statistics for New York City. 

Variable Mean Sd Min 25th % 75th % Max 

Violent Crime 0 0.039 0 0 0 1 

Mobility Lag 0 0.01 0 0.001 0.004 0.769 

Spatial Lag 0 0.017 0 0 0 1 

Logged Visitors 6.2 0.871 0.448 5.622 6.704 10.815 

Logged Population 6.3 0.578 1.041 5.943 6.681 8.868 

Table 2. Summary statistics for Los Angeles. 

Variable Mean Sd Min 25th % 75th % Max 

Violent Crime 0 0.05 0 0 0 1 

Mobility Lag 0 0.014 0 0.001 0.009 0.614 

Spatial Lag 0 0.022 0 0 0 1 

Logged Visitors 6.3 0.93 −0.603 5.663 6.891 10.523 

Logged Population 6.4 0.622 1.956 6.047 6.86 9.035 

Table 3. Summary statistics for Chicago. 

Variable Mean Sd Min 25th % 75th % Max 

Violent Crime 0 0.064 0 0 0 1 

Mobility Lag 0 0.018 0 0.002 0.016 0.595 

Spatial Lag 0 0.028 0 0 0 1 

Logged Visitors 6.1 0.869 0.564 5.536 6.594 11.169 

Logged Population 6.2 0.59 1.309 5.787 6.556 8.891 

My preferred model specification can be written as follows: 

logit[P(Y�� = 1)] = Y�(���) ∗ �� + ����� ∗ �� + ����� ∗ �� +����(���) ∗ �� + �����(���) ∗ �� + ∆� + ∇� + � 

where Y�� is an indicator variable denoting whether or not CBG i experienced any violent 

crimes in hour t. ����� represents the natural log of the number of visitors to CBG i in 

hour t. ����� represents the natural log of the number of residents of CBG i at home in 

hour t. ����(���) represents the sum of In-degree violence and out-degree violence for 

CBG i in hour t−1. �����(���) represents the spatial lag for CBG i in hour t−1. ∆� repre-

sents fixed effects for all CBGs. ∇� represents fixed effects for all hours in 2019. � is an 

error term with the assumed statistical properties for a two-way fixed effect logit model. 

The intuition behind the model is that the incidence of violence may vary substan-

tially between certain neighborhoods and certain periods of time. Conditioning on the 
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neighborhood and time period, I expect time-varying covariates for the number of people 

in the neighborhood to be a significant predictor of the incidence of violence. I also expect 

mobility lag to be a significant predictor of violent crime [33]. While I do not necessarily 

expect spatial lag to be significant, I do expect any significant effect that is to occur to be 

minute in comparison the effect size for mobility lag. Interpretation-wise, a positive and 

significant coefficient for mobility lag suggests that mobility pathways can predict the dif-

fusion of violent crime between neighborhoods, while a positive and significant coeffi-

cient for spatial lag suggests that pathways related simply to spatial proximity can predict 

the diffusion of violent crime between neighborhoods. Ultimately, I believe the model I 

use here is quite parsimonious and aligns with past criminological research by taking ad-

vantage of two-way fixed effects and including the most theoretically meaningful time-

varying covariates. 

5. Results 

Table 4 presents the main model results for New York City. Model one estimates the 

presence of hourly violence based on logged visitors and logged population at home that 

hour. Visitors are a strong predictor of the likelihood of violence, while population at 

home makes a more modest contribution. This aligns with recent research, which has 

found the volume and composition of visitors to an area to predict violence [29,28]. Model 

two adds in lagged violent crime, a dichotomous variable indicating whether or not a 

violent crime was reported in the census block group in the previous hour. Interpreting 

these results as a risk ratio, which is reasonable given the rarity of the outcome, the pres-

ence of violent crime in the prior hour increases the risk of a violent crime in the current 

hour by 116.4%. 

Table 4. New York City Hourly Violent Crime Models. 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Lagged Depend-

ent Variable 
 0.772 *** 0.772 *** 0.773 *** 0.773 *** 

   (0.042) (0.042) (0.042) (0.042) 

Logged Visitors 0.193 *** 0.192 *** 0.192 *** 0.192 *** 0.192 *** 

  (0.016) (0.016) (0.016) (0.016) (0.016) 

Logged Popula-

tion 
0.064 ** 0.064 ** 0.064 **  0.064 ** 0.064 ** 

  (0.020) (0.020) (0.020) (0.020) (0.020) 

Mobility Lag    1.708 *** 2.313 *** 

     (0.289) (0.417) 

Spatial Lag   0.457 **  −0.459 

    (0.160)  (0.235) 

CBG and Hour 

Fixed Effects 
X X X X X 

N 50799923 50799923 50799923 50799923 50799923 

AIC 1112129.164 1111824.572 1111818.811 1111793.986 1111792.228 

BIC 1341101.253 1340812.403 1340822.386 1340797.561 1340811.547 

Pseudo R2 0.080 0.080 0.080 0.080 0.080 
*** p < 0.001; ** p < 0.01 

Model three adds spatial lag, which is operationalized here as the fraction of spatially 

contiguous neighborhoods that experienced a violent crime in the previous hour. The es-

timates reveal a positive effect of spatial lag on the odds of a violent crime, significant at 

p < 0.01. Assuming a neighborhood is bordered by five neighborhoods, and one of them 

experiences a violent crime in the previous hour, the risk of a violent crime in the 
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subsequent hour would be increased by 9.6% relative to if none of the contiguous neigh-

borhoods had experienced any violent crime. 

Model four excludes spatial lag but includes mobility lag. Mobility lag is operation-

alized here as the sum of all neighborhoods that experienced a violent crime in the previ-

ous hour, weighting by the percent of visits made by residents of the target neighborhood 

to those neighborhoods and by the percent of visitors to the target neighborhood that are 

from those neighborhoods. The coefficient estimate reveals this is a strong predictor of the 

risk of violent crime, significant at p < 0.001. For example, if a neighborhood that sends 

and receives 2.5% of the visitors to another neighborhood experiences a crime in a partic-

ular hour, the risk of the other neighborhood experiencing a neighborhood increases by 

8.9%. 

Model five includes both spatial lag and mobility lag. The effect of spatial lag be-

comes negative here but is not statistically significant. The effect of mobility lag actually 

slightly increases. Ultimately, the results indicate that any effect of spatial lag in New York 

City can be explained by mobility lag. Mobility lag appears to be an essential form of re-

lation through which violence in one hour can predict violence in the next. 

Tables 5 and 6 present the results of models for Los Angeles and Chicago. The results 

mostly follow those of New York City. Visitors and population at home are important 

predictors of violent crime, with visitors being a dominant driver. Lagged violent crime is 

a consistently strong predictor, although slightly less so in Los Angeles and Chicago 

(73.7% and 55.7% increase in risk) compared to New York City (116.4%). 

Table 5. Los Angeles Hourly Violent Crime Models. 

  Model 1 Model 2 Model 3 Model 4 Model 5 

Lagged Depend-

ent Variable 
 0.552 *** 0.553 *** 0.555 *** 0.555 *** 

   (0.059) (0.059) (0.058) (0.058) 

Logged Visitors 0.087 *** 0.086 *** 0.086 *** 0.087 *** 0.087 *** 

  (0.018) (0.018) (0.018) (0.018) (0.018) 

Logged Popula-

tion 
0.048 * 0.047 * 0.047 * 0.047 * 0.047 * 

  (0.024) (0.023) (0.023) (0.023) (0.023) 

Mobility Lag    0.723 ** 0.903 ** 

     (0.250) (0.346) 

Spatial Lag   0.179  −0.153 

    (0.149)  (0.208) 

CBG and Hour 

Fixed Effects 
X X X X X 

N 20915534 20915534 20915534 20915534 20915534 

AIC 696083.743 695916.218 695916.786 695910.849 695912.250 

BIC 859707.757 859555.088 859570.511 859564.575 859580.832 

Pseudo R2 0.092 0.092 0.092 0.092 0.092 
*** p < 0.001; ** p < 0.01; * p < 0.05. 
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Table 6. Chicago Hourly Violent Crime Models. 

  Model 1 Model 2 Model 3 Model 4 Model 5 

Lagged De-

pendent Vari-

able 

 0.443 *** 0.443 *** 0.445 *** 0.445 *** 

   (0.033) (0.033) (0.033) (0.033) 

Logged Visi-

tors 
0.237 *** 0.236 *** 0.236 *** 0.236 *** 0.236 *** 

  (0.018) (0.018) (0.018) (0.018) (0.018) 

Logged Popu-

lation 
0.054 ** 0.053 ** 0.053 ** 0.053 ** 0.053 ** 

  (0.021) (0.020) (0.020) (0.020) (0.020) 

Mobility Lag    0.561 * 0.825 ** 

     (0.220) (0.286) 

Spatial Lag   0.056  −0.203 

    (0.107)  (0.138) 

CBG and 

Hour Fixed 

Effects 

X X X X X 

N 18539449 18539449 18539449 18539449 18539449 

AIC 941836.133 941651.888 941653.596 941646.874 941646.626 

BIC 1101229.078 1101059.569 1101076.012 1101069.290 1101083.778 

Pseudo R2 0.082 0.082 0.082 0.082 0.082 

*** p < 0.001; ** p < 0.01; * p < 0.05. 

Notably, spatial lag is not a significant predictor of violent crime in Los Angeles or 

Chicago. Both coefficients are positive, however, suggesting the substantially smaller 

number of observations in Los Angeles and Chicago (and subsequent reduced statistical 

power) may be responsible for why spatial lag is not significant in either city. In either 

case though, mobility lag is a significant predictor. Again, the effect is smaller in Los An-

geles or Chicago versus New York City. If a neighborhood that sends and receives 2.5% 

of the visitors to another neighborhood experiences a violent crime in a particular hour, 

the risk of the other neighborhood experiencing a violent crime increases by 8.9% in New 

York City, 3.7% in Los Angeles, and 2.8% in Chicago. In all three cases, when spatial lag 

and mobility lag are included in a model, the effect of spatial lag is negative and non-

significant, while the effect of mobility lag is positive and significant. 

6. Discussion 

The diffusion of gun violence has been well-studied within criminology. Most re-

cently, a spatiotemporal test found that while gun violence is contagious, diffusion is lim-

ited to short distances, 126 m, and short times, 10 min [9]. While this research makes a 

cogent argument, spatiotemporal tests are useless when theory suggests that violence 

does not spread randomly across space. Indeed, in this research, I find that spatial path-

ways are insignificant in predicting the diffusion of violent crime between census block 

groups, while mobility pathways are significant across all three jurisdictions examined. 

Notably, these three jurisdictions constitute the three largest cities in the United States and 

vary substantially in geographic and demographic terms. 

A notable shortfall of this work is the inability to draw causal inferences from these 

empirical analyses. A standard method for causal inference in work like this is to utilize 

weather conditions as an instrumental variable and analyze diffusion between distant 

people or places. However, this type of analysis necessitates people or places be distant 

enough that weather conditions may vary substantially, which tends not to be the case 
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with local neighborhoods. Ultimately, the analysis completed here does not justify causal 

interpretations of a contagion effect. 

However, this research does suggest that if a violence contagion did exist, the form 

through which diffusion would occur would be mobility patterns rather than spatial con-

tiguity. Indeed, this notion aligns closely with theory. Retaliatory acts constitute a central 

mechanism through which violence contagion may manifest [9]. Such retaliatory acts 

should constitute a network of people whose movement patterns are approximately cap-

tured by aggregated, nuanced mobility metrics, not simply spatially proximal patterns of 

movement. 

In addition to a contagion effect, mobility patterns may predict violent crime diffu-

sion as a result of shared-exposure bias. Various common exposures tend to cause vio-

lence, and mobility ties may indicate that residents of different neighborhoods share these 

common exposures. Spatially proximal neighborhoods need not be strongly connected 

through mobility patterns, so the same is not necessarily true for spatially proximal neigh-

borhoods. 

If violence is contagious and spreads through mobility patterns, such a finding would 

have substantial implications for neighborhood inequality in contagion-induced violence. 

Specifically, a major implication would be that neighborhoods connected through mobil-

ity patterns to violent neighborhoods would experience more contagion-induced vio-

lence. Notably, recent analyses of violence and other adverse neighborhood outcomes find 

that mobility connections with disadvantaged neighborhoods is an extremely powerful 

predictor [28,31]. Furthermore, connections to disadvantaged neighborhoods also tend to 

be racially unequal. Since disadvantage and violence are highly correlated, contagious vi-

olence may ultimately be even more concentrated in already-violent neighborhoods and 

also may concentrate in Black neighborhoods. Future research needs to better assert the 

validity of these claims though. 

The ability to predict violent crime is valuable regardless of the awareness of the 

causal mechanism. For example, research using social networks to predict the diffusion of 

gun violence has blossomed into targeted violence prevention programs in Chicago [34]. 

This program, and other similar ones, operate outside the criminal justice system and pro-

vide alternatives to traditional policing in preventing violence. While this analysis is done 

over the short term, this work lays a blueprint for utilizing mobility patterns to predict 

violence before it happens, which may eventually be usable in preventing violence. Future 

research should build off this work by further disentangling the mechanisms that make 

mobility patterns meaningful, and policy interventions should consider utilizing these 

findings in creating violence prevention programs. 

7. Conclusions 

In this work, I compared mobility and spatial pathways in the hourly patterning of 

violent crime in New York City, Los Angeles, and Chicago. Across all three cities, I find 

that recent violence in the neighborhoods a neighborhood is connected to through mobil-

ity ties can strongly predict that neighborhood’s odds of violent crime in the subsequent 

hour. Furthermore, spatial proximity has no significant effect on the likelihood of violent 

crime after controlling for mobility ties in any of the three cities. I encourage future re-

search on violence contagion to more greatly consider mobility patterns as a potential 

pathway and empirically take advantage of the rich data that has become recently availa-

ble. 
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Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 



Urban Sci. 2022, 6, 74 12 of 13 
 

 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data sharing is not allowed because of Safegraph’s terms of service. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Buka, S.L.; Stichick, T.L.; Birdthistle, I.; Earls, F.J. Youth exposure to violence: Prevalence, risks, and consequences. Am. J. Or-

thopsychiatry 2001, 71, 298–310. 

2. Dodge, K.A.; Bates, J.E.; Pettit, G.S. Mechanisms in the Cycle of Violence. Science 1990, 250, 1678–1683. 

3. Galster, G.C. The mechanism (s) of neighbourhood effects: Theory, evidence, and policy implications. In Neighbourhood Effects 

Research: New Perspectives; Springer: Dordrecht, The Netherlands, 2012; pp. 23–56. 

4. Heissel, J.A.; Sharkey, P.T.; Torrats-Espinosa, G.; Grant, K.; Adam, E.K. Violence and Vigilance: The Acute Effects of Community 

Violent Crime on Sleep and Cortisol. Child Dev. 2017, 89, e323–e331. 

5. Margolin, G.; Gordis, E.B. Children's exposure to violence in the family and community. Curr. Dir. Psychol. Sci. 2004, 13, 152–

155. 

6. Sharkey, P.T.; Tirado-Strayer, N.; Papachristos, A.V.; Raver, C.C. The Effect of Local Violence on Children’s Attention and Im-

pulse Control. Am. J. Public Health 2012, 102, 2287–2293. 

7. Blumstein, A. Youth Violence, Guns, and the Illicit-Drug Industry. J. Crim. Law Criminol. 1995, 86, 10. 

8. Cohen, J.; Tita, G. Diffusion in homicide: Exploring a general method for detecting spatial diffusion processes. J. Quant. Criminol. 

1999, 15, 451–493. 

9. Loeffler, C.; Flaxman, S. Is Gun Violence Contagious? A Spatiotemporal Test. J. Quant. Criminol. 2017, 34, 999–1017. 

10. Papachristos, A.V.; Braga, A.A.; Piza, E.; Grossman, L.S. The company you keep? the spillover effects of gang membership on 

individual gunshot victimization in a co-offending network. Criminology 2015, 53, 624–649. 

11. Papachristos, A.V.; Wildeman, C.; Roberto, E. Tragic, but not random: The social contagion of nonfatal gunshot injuries. Soc. 

Sci. Med. 2015, 125, 139–150. 

12. Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. 

13. Brantingham, P.J.; Yuan, B.; Herz, D. Is Gang Violent Crime More Contagious than Non-Gang Violent Crime? J. Quant. Criminol. 

2020, 37, 953–977. 

14. Tita, G.E.; Greenbaum, R.T. Crime, neighborhoods, and units of analysis: Putting space in its place. In Putting Crime in its Place; 

Springer: New York, NY, USA, 2009; pp. 145–170. 

15. Graif, C.; Lungeanu, A.; Yetter, A.M. Neighborhood isolation in Chicago: Violent crime effects on structural isolation and ho-

mophily in inter-neighborhood commuting networks. Soc. Netw. 2017, 51, 40–59. 

16. Sharkey, P.; Marsteller, A. Neighborhood Inequality and Violence in Chicago, 1965–2020. Univ. Chic. Law Rev. 2022, 89, 3. 

17. Lester, D. Temporal variation in suicide and homicide. Am. J. Epidemiol. 1979, 109, 517–520. 

18. Bridges, F.S. Rates of Homicide and Suicide on Major National Holidays. Psychol. Rep. 2004, 94, 723–724. 

19. Cheatwood, D. The effects of weather on homicide. J. Quant. Criminol. 1995, 11, 51–70. 

20. Ejrnæs, A.; Scherg, R.H. Nightlife activity and crime: The impact of COVID-19 related nightlife restrictions on violent crime. J. 

Crim. Justice 2022, 79, 101884. 

21. Duke, A.A.; Smith, K.M.Z.; Oberleitner, L.M.S.; Westphal, A.; McKee, S.A. Alcohol, drugs, and violence: A meta-meta-analysis. 

Psychol. Violence 2018, 8, 238–249. 

22. Campbell, C.A.; Hahn, R.A.; Elder, R.; Brewer, R.; Chattopadhyay, S.; Fielding, J.; Naimi, T.S.; Toomey, T.; Lawrence, B.; Mid-

dleton, J.C.; Task Force on Community Preventive Services. The Effectiveness of Limiting Alcohol Outlet Density as a Means of 

Reducing Excessive Alcohol Consumption and Alcohol-Related Harms. Am. J. Prev. Med. 2009, 37, 556–569. 

23. Copus, R.; Laqueur, H. Entertainment as Crime Prevention: Evidence from Chicago Sports Games. J. Sports Econ. 2018, 20, 344–

370. 

24. Elwert, F.; Christakis, N.A. Wives and ex-wives: A new test for homogamy bias in the widowhood effect. Demography 2008, 45, 

851–873. https://doi.org/10.1353/dem.0.0029. 

25. Feld, S.L. Why your friends have more friends than you do. Am. J. Sociol. 1991, 91, 1464–1477. 

26. Christakis, N.A.; Fowler, J.H. Social network sensors for early detection of contagious outbreaks. PLoS ONE 2010, 5, e12948. 

27. Ben Sliman, M.; Kohli, R. Asymmetric relations and the friendship paradox. Columbia Bus. Sch. Res. Pap. 2018, 18–73. 

https://doi.org/10.2139/ssrn.3248965. 

28. Levy, B.L.; Phillips, N.E.; Sampson, R.J. Triple Disadvantage: Neighborhood Networks of Everyday Urban Mobility and Vio-

lence in U.S. Cities. Am. Sociol. Rev. 2020, 85, 925–956. 

29. Al Boni, M.; Gerber, M.S. Predicting crime with routine activity patterns inferred from social media. In Proceedings of the 2016 

IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 001233–

001238. 

30. McCormack, P.D.; Pattavina, A.; Tracy, P.E. Assessing the Coverage and Representativeness of the National Incident-Based 

Reporting System. Crime Delinquency 2017, 63, 493–516. 



Urban Sci. 2022, 6, 74 13 of 13 
 

 

31. Levy, B.L.; Vachuska, K.; Subramanian, S.V.; Sampson, R.J. Neighborhood socioeconomic inequality based on everyday mobil-

ity predicts COVID-19 infection in San Francisco, Seattle, and Wisconsin. Sci. Adv. 2022, 8, eabl3825. 

32. Wang, Q., Phillips, N.E.; Small, M.L.; Sampson, R.J. Urban mobility and neighborhood isolation in America’s 50 largest cities. 

Proc. Natl. Acad. Sci. USA 2018, 115, 7735–7740. 

33. Malleson, N.; Andresen, M.A. The impact of using social media data in crime rate calculations: Shifting hot spots and changing 

spatial patterns. Cartogr. Geogr. Inf. Sci. 2014, 42, 112–121. 

34. Papachristos, A.V.; Kirk, D.S. Changing the street dynamic: Evaluating Chicago's group violence reduction strategy. Criminol. 

Public Policy 2015, 14, 525–558. 


