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Abstract: Land use land cover within a watershed influences stream water quality, habitat quality,
and biological community structure. As development and associated impervious surface increases
in a watershed, changes in storm water and nutrient inputs generally cause declines in habitat
conditions and biodiversity. The first goal of our study was to evaluate the water quality in the
Charles River watershed, in which our objective (G1O1) was to establish ten 100-meter reach-scale
sampling stations and conduct physical, chemical, and biological assessments. The second goal
of this study was to better understand the direct and indirect effects of hierarchical variables on
water quality in the Charles River watershed. Our first objective of our second goal (G2O1) was
to calculate land use land cover percentages at the pour-point subwatershed and local 100-meter
buffer scale for each of our ten 100-meter reach sampling stations. Our second objective of our
second goal (G2O2) was to use path analysis to determine the direct and indirect effects of land
use land cover and impervious surface on water quality in the Charles River watershed. The
results of G1O1 were that habitat quality assessments ranged from “marginal” to “optimal” and
biological quality assessments ranged from “fair” to “good“, indicating overall “fair” or better water
quality conditions in the watershed. The results of G2O2 were that our path analysis resulted in
differences in effects of development between the buffer and sub-watershed scale. At the buffer scale,
water quality was influenced more negatively by the percentage of developed land area versus the
percentage of impervious cover. While both buffer development and habitat quality had a direct
effect on Streamside Biosurvey Macroinvertebrates, buffer development also directly hindered habitat
quality, thus having an indirect effect on Streamside Biosurvey Macroinvertebrates through habitat.
Streamside Biosurvey Macroinvertebrate scores were shown to be more sensitive to development
within the buffer versus at the sub-watershed scale, where impervious cover was a more important
indicator of stream water quality. Through this small case study of 10 stations within the Charles
River watershed, we illustrated how citizen-science level water quality assessments can be combined
with water chemistry and hierarchical LULC data to provide insights into potential direct and indirect
effects on water quality. As the fields of landscape ecology and conservation continue to grow, so
does our ability to determine changes in land development and devise management strategies aimed
at improving water quality.

Keywords: Charles River watershed; Massachusetts; habitat quality; volunteer water quality
biomonitoring; land use land cover; development; impervious cover; path analysis

1. Introduction

Streams are organized hierarchically over spatial-temporal scales ranging from larger-
scale catchments (stream systems, the area in which water drains through a specific down-
stream pour-point), which encompass the spatially smaller and temporally shorter segment
scale (segment systems, 1000s meters), reach scale (reach systems, 100s meters), meso
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scale (pool/riffle systems, 10s meters), and micro scale (micro-habitat systems, <10 meters)
units [1,2]. Humans have played a large role in influencing terrestrial and riverine inter-
action by altering terrestrial and aquatic ecosystems [3,4]. Urban streams are consistently
observed as degraded (i.e., “Urban Stream Syndrome”), in which urban streams often
have flashier hydrographs, elevated concentrations of nutrients and contaminants, altered
channel morphology and stability, and reduced species richness [5–7]. However, the scale,
and interaction of scales, at which natural and anthropogenic gradients influence stream
physical, chemical, and biological components is not well understood.

Aquatic macroinvertebrates are affected directly and/or indirectly by many stressors
that result from altered landscape conditions [4,8,9]. Macroinvertebrates are rather immo-
bile and are known to be sensitive to both local instream and adjacent riparian habitat
conditions. Therefore, macroinvertebrate assemblage characteristics can reflect instream
and terrestrial landscape features [4,9,10]. Water quality can be assessed using rapid
bioassessment protocols for aquatic assemblages and habitat quality [8,9]. For example,
the USEPA Streamside Biosurvey is a volunteer stream monitoring assessment tool used to
sample and evaluate stream macroinvertebrate assemblages at a stream reach-scale using
abundance and tolerance values for class- and order-level taxonomic identifications [11].
Furthermore, habitat incorporates all aspects of physical and chemical components associ-
ated with biotic interactions. Habitat quality can be visually assessed at a stream reach-scale
for “poor” to “optimal” conditions of 10 habitat variables [9].

Land Use Land Cover (LULC) and impervious cover are used to measure the degree
of development within a region by quantifying, for example, the fragmentation of a forest
stand, the extent of a riparian buffer, or the density of an urban development [4]. Land use
refers to how the land is used, such as for agriculture, residential neighborhoods, railways,
etc., while land cover is a description of what is covering the land, such as wetlands, forests,
row crops, etc. Impervious cover, or surface material preventing infiltration of water
into the soil, can have a negative effect on a river’s water quality [8,12–14]. Increases in
development and population density have shown to be directly correlated with an increase
in impervious surfaces such as roads, rooftops, sidewalks, patios, bedrock, and compacted
soil [12]. Land area with higher percentages of impervious cover alters the hydrologic cycle,
and these areas experience more flash floods, a reduction in groundwater recharge, and
a lowering of the water table, which alters channel morphology and stability, increases
sedimentation, and increases the concentrations of nutrients and other contaminants [8,12].

Water quality can be jeopardized due to human-induced stressors such as channel
alteration, urban and residential development, agriculture, and stream flow modification.
These landscape alterations result in an increase in nutrients, contaminants, and sediments
in stormwater resulting in the deterioration of stream habitat [4]. For example, at the
watershed scale, residential development often results in high nutrient export rates, leading
to algal blooms and eutrophication [3,12]. This relationship between landscape metrics
and water quality at the watershed scale down to the reach scale can be determined using
a biological variable such as macroinvertebrate assemblage structure indices or water
quality scores [4,10,15]. Another common measure of landscape influence occurs within
the riparian zone where interactions at the land-water boundary are direct and activities
within this zone can be extremely detrimental or helpful for the ecosystem [4,16].

Determining effects of reach, buffer, and subwatershed environmental variables have
on water quality has been investigated using a variety of multivariate analyses [8,16,17].
One appropriate multivariate analysis is path analysis, which extends multiple regres-
sion analysis by simultaneously addressing direct and indirect contributions to an effect
variable [18,19]. Path analysis begins with a pictorial representation of exogenous (not
affected by other variables in the system) and endogenous (affected by other variables in
the system) variables connected with arrows showing linear dependencies and the direction
of causation. Standardized regression weights, or effects, are given within the model and
represent the strength of causation or the amount of change in the dependent variable that
is attributed to a single standard deviation unit’s worth of change in the predictor variable.
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Because of its multivariate capabilities, path analyses are often conducted in ecological
research to initiate decomposition of ecological complexities.

This study was part of a collaboration with the Charles River Watershed Association
(CRWA) to develop a citizen-science water quality monitoring program in the Charles
River watershed (CRW). Our research group developed a citizen-science water quality
program that included developing training protocols and establishing and carrying out
the monitoring at 10 sampling stations in October 2012 [20]. Furthermore, we took this
citizen-science water quality sampling opportunity to explore if there were any direct
or indirect effects of hierarchical watershed variables on water quality in the headwater
stream of the CRW that may be useful for further exploring management of the CRW. Thus,
there were two goals associated with this study. The first goal was to evaluate the water
quality in the CRW. Our objective associated with this goal (G1O1) was to establish ten
100-meter reach-scale sampling stations and conduct physical, chemical, and biological
assessments. The second goal of this study was to better understand the direct and indirect
effects of hierarchical variables on water quality in the CRW so that effective conservation
and management practices can be evaluated and implemented. To achieve this second
goal, we had two objectives. Our first objective (G2O1) was to calculate LULC cover
percentages at the pour-point subwatershed and local 100-meter buffer scale for each of
our ten 100-meter reach sampling stations. Our second objective (G2O2) was to use path
analysis to determine the direct and indirect effects of LULC and impervious surface on
water quality at the reach, buffer, and sub-watershed scales in the CRW. The results of
this study provide information on water quality in the watershed and reach, buffer, and
sub-watershed scale and the LULC influences on water quality in the watershed.

2. Materials and Methods
2.1. Field-Area Description

The CRW is the most densely populated watershed in New England [21–23]. The
Charles River begins in Hopkinton, Massachusetts and meanders northeastward 134 kilo-
meters to the Boston Harbor (Figure 1). The area of the CRW is ~798 km2 with a total of
~970 km of mapped streams [24]. The watershed is covered by 39% forest, 11% wetlands,
2.96% lakes and ponds, ~47% course-grained stratified drift, 22% impervious area based
on National Land Cover Database (NLCD) 2011 data, and ~52% developed land based
on NLCD 2011 classes 21–24 [24]. Other basin characteristics include an average mean
annual precipitation of 121.7 cm, a mean annual maximum air temperature over the basin
of 13.3 ◦C, and a mean basin slope computed from a 10-meter digital elevation model
(DEM) of 5.515% [24].

2.2. Study Design

Ten sampling stations within the mainstem and 1st–3rd order tributaries of the Charles
River were chosen based on the CRWA recommendations for the citizen-science monitoring
program and chosen based on trade-offs between watershed coverage and accessibility
(Table 1; Figure 1) [20]. We then conducted pour-point sub-watershed scale and 100-meter
local buffer scale geographic information systems (GIS) analyses with the goal of spatially
analyzing and representing the relationship between water quality, LULC, and impervious
cover at the 10 sampling stations.
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Figure 1. The 10 sampling stations in the Charles River watershed. Beaver Brook (BB), Cheesecake
Brook (CHBR), Muddy River Babbling Brook (MRBB), Charles River Mainstem 1 (35CS), Charles
River Mainstem 2 (90CS), Echo Lake Down Stream (ELDS), Stop River (STOP), Mine Brook (MINE),
Godfrey Brook (GB), and Miscoe Brook (MIBR).
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Table 1. Summary of river, station ID, town, coordinates (Latitude/Longitude), predominant land use
for the ten 100-meter reach stations sampled in 2012 in the Charles River watershed, Massachusetts.

River Station ID Town Coordinates
(Lat./Lon.)

Predominant
Land Use

Beaver Brook BB Waltham 42.38099
–71.21727 Residential

Charles River CS35 Milford 42.13970
–71.51253 Urban

Charles River ELDS Milford 42.18350
–71.51222 Forests

Charles River CS90 Bellingham 42.09435
–71.47668 Forests

Cheesecake Brook CHBR Newton 42.35609
–71.21499

Residential/
Recreational

Godfrey Brook GB Milford 42.12954
–71.51854 Urban

Mine Brook MINE Franklin 42.12469
–71.43083

Forests/
Wetlands

Miscoe Brook MIBR Franklin 42.04090
–71.42646 Forests

Muddy River
Babbling Brook MRBB Brookline 42.32431

–71.11639
Forests/

Recreational

Stop River STOP Medfield 42.17221
–71.31730 Wetlands

2.3. 2012 Water Quality Monitoring
2.3.1. Reach-Scale Habitat Quality

The above stations were visually evaluated for physical habitat along a 100-meter
reach and subsequently classified using the United States Environmental Protection Agency
(USEPA) Rapid Bioassessment Protocol Habitat Assessment (RBP) during the October
2012 sampling effort [9]. Variables were visually observed and assessed with the Low
Gradient Streams Habitat Assessment RBP, which included the 10 variables of epifaunal
substrate/available cover, pool substrate characterization, pool variability, sediment depo-
sition, channel flow status, channel alteration, channel sinuosity, bank stability (right and
left), riparian zone (right and left), and bank vegetation (right and left). Based on visual
observations, a score was assigned for each variable and summed to a final score of “poor”
(0–59), “marginal” (60–109), “sub-optimal” (110–159), and “optimal” (160–200) [9]. Photos
were taken at each site documenting habitat conditions as well as the surrounding land
use. These photos were used in verifying LULC classifications presented within GIS raster
data sets.

2.3.2. Physical-Chemical Analyses

In situ physical–chemical measurements [i.e., temperature, dissolved oxygen (DO),
specific conductance (Spc), conductivity, salinity, total dissolved solids (TDS), and pH]
were taken using a YSI meter (YSI Professional Plus Multiparameter Sonde, Yellow Springs,
Ohio) during the October 2012 sampling effort. There were no rain events 48 h prior to
sampling. At the same time, two water samples were collected at each station and were
filtered using standard protocols. Chlorophyll-a analysis was performed within the lab fol-
lowing the Yentsch and Menzel protocol [25]. For total suspended solids (TSS)/non-volatile
suspended solids (NVSS) and particulate phosphorus (PP), analyses were performed fol-
lowing the protocol reported by Greenburg et al. [26]. A filtrate was used for the testing
of phosphates, ammonia, nitrates, nitrites, and total dissolved nitrogen (TDN) using the
following protocols. A spectrophotometer (Hach DR/2400 Portable Spectrophotometer,
Hach, Loveland, Colorado) was used to analyze 10 mL of sample water following the
Salicylate Method for measuring Nitrogen and Ammonia, the PhosVer®3 Method for mea-
suring phosphorus, and the Cadmium Reduction Method for measuring nitrate. TDN was
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analyzed using a Varian DMS 100S UV visible spectrophotometer following calculations of
Crumpton et al. [27].

2.3.3. Macroinvertebrate Sampling and Analysis

Macroinvertebrate sampling was conducted during the October 2012 sampling ef-
fort following a 20-jab multi-habitat approach [9]. In the laboratory, macroinvertebrates
were identified to class and order [11,28,29]. Calculation of the Streamside Biosurvey:
Macroinvertebrates (SBM) monitoring index was performed by counting the number of
observed macroinvertebrates listed within three groups: sensitive, somewhat sensitive, and
tolerant [11]. Each taxon was classified as rare, common, or dominant based on their abun-
dances, and each were weighted and summed to a water quality score. This score classified
a stream using a modified scoring condition of “excellent” (59–78), “good” (40–58), “fair”
(20–39), or “poor” condition (0–19) [11].

2.4. Sub-Watershed and Local Buffer GIS Data Collection

Global positioning system (GPS) locations of the mid-point of each 100-meter sampling
reach station was used to establish the sub-watershed scale pour-point and the center of
the local 100-meter circular buffer for the following GIS analyses. Data layers used for
GIS analyses included rivers, major watersheds, and a digital elevation model and were
acquired from the Massachusetts Office of Geographic Information (MassGIS). A 100-meter
circular buffer was delineated and included all area within 100 meters of the mid-point of
each macroinvertebrate sampling station reach. A sub-watershed also was delineated that
included all areas upstream of the mid-point of each macroinvertebrate sampling station
reach flowing through the sampling point. Buffer scale and sub-watershed scale LULC and
impervious cover data was acquired for each site from the NLCD [24].

The LULC data was in raster format, which was produced in 2011 with a 30-meter
resolution. These data were grouped into 16 classes, and each was given an ID with a “W”
for watershed or “B” for buffer to indicate the scale at which each was being measured.
Development was broken down into various levels including developed–open (BDevOpen,
WDevOpen), developed–low intensity (BDevLow, WDevLow), developed–medium in-
tensity (BDevMed, WDevMed) and developed–high intensity (BDevHigh, WDevHigh).
Other LULC classes included barren land (BBarr, WBarr), shrub/scrub (BShrub, WShrub),
grassland/herbaceous (BHerb, WHerb), and pasture/hay/cultivated crops (BPlantCult,
WPlantCult). Deciduous, evergreen, and mixed forests were combined to create one forests
category (BForest, WForest), and woody, emergent, and herbaceous wetlands were com-
bined to create one wetlands category (BWetlands, WWetlands). Proportions of LULC
were taken by calculating the percentage of pixels representative of each different land use
classification within the sub-watershed or buffer.

The impervious cover raster dataset also was produced in 2011 with a 30-meter
resolution. Data were labeled as BImpCov and WImpCov, each representing the percentage
of impervious cover within the total area of each 100-meter buffer or sub-watershed.

We utilized the above data files to perform the following functions using
ESRI®ArcMap®10.2.2 (ESRI, Redlands, California, USA): (1) plot sample stations on CRW
map using “Display XY data” function; (2) delineate sub-watersheds using the following
tools: “Fill DEM”, “Sink”, “Fill”, “Flow Direction”, and “Flow Accumulation.”; (3) create
100 meter buffers around each watershed using the “Buffer” tool; (4) create new layers
with LULC data clipped to the buffer region using the “Clip” tool; (5) create new layers
with LULC data clipped to the sub-watershed; (6) create new layers with impervious cover
data clipped to the buffer region; (7) create new layers with impervious cover data clipped
to the sub-watershed; (8) calculate percentages of various land uses within each buffer
and sub-watershed; and (9) calculate percentages of impervious cover by area within each
buffer and sub-watershed using the Raster Properties tool.
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2.5. Data Analysis
2.5.1. Data Reduction

Due to the small number of stream sites (n = 10), a reduction in the number of variables
to be included within the path analysis was needed. The subsequent chronological data
reduction steps were followed to reduce our 49 variables discussed in the previous sections
down to 11 variables.

A principal component analysis (PCA) was performed on the non-dimensionalized,
z-transformed physical, chemical, LULC, impervious cover, and macroinvertebrate vari-
ables using PCOrd™ v6 (MJM™ Software Designs, Gleneden Beach, OR, USA). Axis 1
represented 35.79% of the variance, axis 2 represented 15.76% of the variance, and axis 3
represented 11.94% of the variance for a total of 63.49% of the variance. Based on the
PCA analysis, 23 variables significantly (tau ≥ ±0.210) representing the variance in the
data were retained for additional data reduction. These variables included: DO, TDS, Spc,
salinity, NVSS, PP, TSS, Chl_a, WDevMed, WDevHigh, WImpCov, BDevOpen, BDevLow,
BDevMed, BDevHigh, BImpCov, Habitat, WForest, WWetland, BForest, BWetland, WHerb,
and WShrub.

Further data reduction was performed by aggregating all classes of developed land
(developed–open; developed–low intensity; developed–medium intensity; developed–high
intensity) into one “Developed” category and an “Undeveloped” category that was created
out of a sum of the forest, wetland, shrubland, and herbaceous classes. We then further re-
duced the dataset using Pearson Correlation Coefficients (PCC) using IBM®SPSS®Statistics
Grad Pack 22.0 (IBM, Armonk, New York, NY, USA) with a P-value threshold of ≤0.05.
A professional opinion was used in the removal of related variables and if any uncertainty
in the relationship remained between the two variables, the variable was maintained in
the dataset.

2.5.2. Path Analysis

Eleven variables were retained for use within the path analysis and included TSS,
DO, SpC, habitat, SBM, BImpCov, WImpCov, WDev, BDev, WUndev, and BUndev. A path
analysis was performed on numerous preliminary models (>4) using IBM®SPSS®AMOS
20 (IBM, Armonk, New York, NY, USA) to determine which variables were the most
significant influences on water quality directly and indirectly. Standardized estimates
were given within the model as regression weights and are representative of the portion
of the variance of the dependent variable that can be explained by its indicator variables.
Direct effects were considered significant if the p-value was <0.05. The indirect effects were
given within the AMOS output and were the sum of all products of two or three direct
effects. These indirect path effects were considered significant if both direct path effects
used in the calculation were also statistically significant. Model fit was determined by
looking at the Chi-square, probability level, the goodness of fit index (GFI), normed fit
index (NFI), relative fix index (RFI), confirmatory fit index (CFI), and root mean square
error of approximation (RMSEA) for each proposed model.

3. Results
3.1. Water Quality

Reach-scale habitat quality scores ranged from 68 to 167 with a narrative range of
“marginal” to “optimal” habitat quality (Figure 2). Reach-scale macroinvertebrate SBM
scores ranged from 20 to 40, with nine out of 10 stations having scores of 20–39 (Figure 2).
This resulted in only one station having a “good” water quality ranking, with the remaining
stations falling in the “fair” category for water quality classification (Figure 2).

Reach-scale in situ measurements of temperature, DO, specific conductance, conduc-
tivity, salinity, and pH varied little across stations (Table 2). The mean pH among all
stations within the watershed was 7.22, with the highest pH at GB (9.14) and the lowest at
ELDS (5.88). Temperature averaged 14.1 ◦C with the highest temperature at 35CS (18.9 ◦C)
and the lowest at ELDS (10.5 ◦C). The mean dissolved oxygen saturation across all sta-
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tions was 62.5%, with CHBR having the highest saturation of 95.8% and ELDS having the
lowest saturation of 8.3%. Salinity averaged 0.2 ppt with the highest salinity at CHBR
(0.4 ppt) and the lowest at GB (0.1 ppt). The mean specific conductance was 429.3 µS/cm,
with CHBR having the highest specific conductance (817.0 µS/cm) and GB having the
lowest (120.4 µS/cm). TDS averaged 307.9 mg/L, with CHBR having the highest TDS
(533.0 mg/L) and GB having lowest TDS (76.1 mg/L). For six out of 10 stations, NVSS was
reported to be zero or likely below the detection limit (BDL), while it was the highest for
MINE at 16.6 mg/L. TSS averaged 10.4 mg/L with STOP having the highest recorded TSS
(34.6 mg/L) and ELDS having a TSS of 0.0 mg/L or likely BDL.

Urban Sci. 2022, 6, x FOR PEER REVIEW 8 of 17 
 

This resulted in only one station having a “good” water quality ranking, with the remain-
ing stations falling in the “fair” category for water quality classification (Figure 2).  

 
Figure 2. Biplot of USEPA Rapid Bioassessment Habitat Assessment for Low Gradient Streams 
(Habitat Score) and the USEPA Streamside Biosurvey: Macroinvertebrates (SBM) scores at the ten 
100-meter reach sample stations throughout the Charles River watershed sampled in 2011. 

Reach-scale in situ measurements of temperature, DO, specific conductance, conduc-
tivity, salinity, and pH varied little across stations (Table 2). The mean pH among all sta-
tions within the watershed was 7.22, with the highest pH at GB (9.14) and the lowest at 
ELDS (5.88). Temperature averaged 14.1°C with the highest temperature at 35CS (18.9°C) 
and the lowest at ELDS (10.5°C). The mean dissolved oxygen saturation across all stations 
was 62.5 %, with CHBR having the highest saturation of 95.8% and ELDS having the low-
est saturation of 8.3%. Salinity averaged 0.2 ppt with the highest salinity at CHBR (0.4 ppt) 
and the lowest at GB (0.1 ppt). The mean specific conductance was 429.3 µS/cm, with 
CHBR having the highest specific conductance (817.0 µS/cm) and GB having the lowest 
(120.4 µS/cm). TDS averaged 307.9 mg/L, with CHBR having the highest TDS (533.0 mg/L) 
and GB having lowest TDS (76.1 mg/L). For six out of 10 stations, NVSS was reported to 
be zero or likely below the detection limit (BDL), while it was the highest for MINE at 16.6 
mg/L. TSS averaged 10.4 mg/L with STOP having the highest recorded TSS (34.6 mg/L) 
and ELDS having a TSS of 0.0 mg/L or likely BDL.  

Table 2. Physical–chemical properties of 10 sample stations within the Charles River watershed 
sampled in 2012. 

Station pH Temp 
(°C) 

DO  
(% sat) 

SpC (µS/ 
cm) Sal. (ppt) 

Chl_a 
(mg/ 

L) 

TDS (mg/ 
L) 

NVSS 
(mg/ 

L) 

TSS (mg/ 
L) 

BB 7.64 10.5 69.9 548 0.4 BDL 494.0 0.0* 1.7 
35CS 8.75 18.9 92.9 536 0.3 BDL 396.5 0.4 3.0 
90CS 8.55 18.4 74.4 618 0.3 0.0* 403.0 0.0* 1.4 
ELDS 5.88 10.5 8.3 134.5 0.1 BDL 87.1 0.0* 0.0* 
CHBR 7.66 14.8 95.8 817 0.4 0.0* 533.0 0.0* 1.1 

GB 9.14 15 75.1 120.4 0.1 BDL 76.1 0.0* 2.3 
MINE 8.25 14.5 40.6 490.9 0.2 0.0* 318.5 16.6 29.0 
MIBR 7.75 11 39.6 293.8 0.1 BDL 191.1 6.4 28.6 
MRBB 8.51 11.1 91.9 370 0.3 BDL 341.9 0.0* 2.0 
STOP 0.03** 16.4 36.1 364.7 0.2 0.0* 237.3 21.9 34.6 

Note: pH, temperature (Temp), dissolved oxygen (DO), specific conductance (SpC), salinity (Sal.), 
chlorophyll-a (Chl-a), total dissolved solids (TDS), non-volatile suspended solids (NVSS), total 

Figure 2. Biplot of USEPA Rapid Bioassessment Habitat Assessment for Low Gradient Streams
(Habitat Score) and the USEPA Streamside Biosurvey: Macroinvertebrates (SBM) scores at the ten
100-meter reach sample stations throughout the Charles River watershed sampled in 2011.

Table 2. Physical–chemical properties of 10 sample stations within the Charles River watershed
sampled in 2012.

Station pH Temp
(◦C)

DO
(% sat)

SpC
(µS/cm) Sal. (ppt) Chl_a (mg/L) TDS

(mg/L) NVSS (mg/L) TSS
(mg/L)

BB 7.64 10.5 69.9 548 0.4 BDL 494.0 0.0 * 1.7
35CS 8.75 18.9 92.9 536 0.3 BDL 396.5 0.4 3.0
90CS 8.55 18.4 74.4 618 0.3 0.0 * 403.0 0.0 * 1.4
ELDS 5.88 10.5 8.3 134.5 0.1 BDL 87.1 0.0 * 0.0 *
CHBR 7.66 14.8 95.8 817 0.4 0.0 * 533.0 0.0 * 1.1

GB 9.14 15 75.1 120.4 0.1 BDL 76.1 0.0 * 2.3
MINE 8.25 14.5 40.6 490.9 0.2 0.0 * 318.5 16.6 29.0
MIBR 7.75 11 39.6 293.8 0.1 BDL 191.1 6.4 28.6
MRBB 8.51 11.1 91.9 370 0.3 BDL 341.9 0.0 * 2.0
STOP 0.03 ** 16.4 36.1 364.7 0.2 0.0 * 237.3 21.9 34.6

Note: pH, temperature (Temp), dissolved oxygen (DO), specific conductance (SpC), salinity (Sal.), chlorophyll-a
(Chl-a), total dissolved solids (TDS), non-volatile suspended solids (NVSS), total suspended solids (TSS), below
detection limit (BDL). * = below detection limit; ** = likely instrument error.

Filtrate nitrate, nitrite, phosphorus, ammonia, and a nitrogen:phosphorus ratio also
was variable across stations (Table 3). Station 90CS had the highest nitrate concentrations
(252.13 mol/L) and second to highest nitrite concentrations (0.18 mol/L) behind MIBR
(0.20 mol/L). Phosphorus averaged 0.36 mol/L and was highest at CHBR (1.10 mol/L) and
lowest at GB (0.11 mol/L).
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Table 3. Dissolved inorganic nutrient data including nitrogen.

Station N:P NO3
+

(mol/L)
NO2

+

(mol/L)
PO4

+

(mol/L)
NH3−

(mol/L)

BB 150.85 65.79 0.03 0.56 18.07
35CS 335.77 40.57 0.00 0.14 4.83
90CS 1659.08 252.13 0.18 0.16 8.84
ELDS 49.54 5.48 0.02 0.19 3.70
CHBR 203.42 221.89 0.01 1.10 2.58

GB 1206.34 127.21 BDL 0.11 7.23
MINE 16.48 1.48 BDL 0.20 1.77
MIBR 273.45 36.59 0.20 0.14 2.71
MRBB 51.12 13.04 0.00 0.31 2.72
STOP 122.76 68.58 0.05 0.67 13.22

Note: nitrogen:phosphorus ratio(N:P), nitrate (NO3
+), nitrite (NO2

+), orthophosphate (PO4
+), and ammonia

(NH3
−) for 10 sample stations within the Charles River watershed sampled October 2012. BDL = below detec-

tion limit.

3.2. GIS Analysis

The sub-watershed areas for the 10 sampling stations ranged from 21,375 m2 at BB to
4,290,975 m2 at 90CS. Each sub-watershed showed some level of development, with 35CS
and BB being 100% developed and STOP being 10% developed (Figure 3, Table 4). Medium
intensity developed had the highest values for all sub-watersheds and buffers followed
by low intensity and then high intensity. Meanwhile, at the buffer level, 35CS, CHBR, and
GB were 100% developed, and ELDS was the only station that had no development within
the buffer.

Impervious cover at the sub-watershed scale for all stations ranged from 1.6% (STOP)
to 63.5% (35CS) (Figure 3, Table 4). Furthermore, at the buffer scale, impervious cover
ranged from 0% (ELDS) to 75% (35CS).
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Table 4. Percentages of impervious cover and aggregated LULC classification data for each station as
a percentage of total area at the sub-watershed and buffer scale.

Station Sub-Watershed % Area Buffer % Area

BB Developed 100.0 Developed 97.1
Undeveloped 0.0 Undeveloped 2.9
Impervious 58.8 Impervious 54.7

35CS Developed 100.0 Developed 100.0
Undeveloped 0.0 Undeveloped 0.0
Impervious 63.5 Impervious 74.5

90CS Developed 47.8 Developed 57.1
Undeveloped 50.7 Undeveloped 42.9
Impervious 20.7 Impervious 14.0

ELDS Developed 20.2 Developed 0.0
Undeveloped 71.2 Undeveloped 100.0
Impervious 5.3 Impervious 0.0

CHBR Developed 98.3 Developed 100.0
Undeveloped 1.7 Undeveloped 0.0
Impervious 50.9 Impervious 46.9

GB Developed 65.6 Developed 79.4
Undeveloped 11.4 Undeveloped 0.0
Impervious 44.3 Impervious 67.9

MINE Developed 72.7 Developed 42.9
Undeveloped 27.3 Undeveloped 57.1
Impervious 22.6 Impervious 13.7

MIBR Developed 36.0 Developed 14.3
Undeveloped 60.8 Undeveloped 85.8
Impervious 8.7 Impervious 0.3

MRBB Developed 68.3 Developed 88.6
Undeveloped 22.7 Undeveloped 11.4
Impervious 23.0 Impervious 11.1

STOP Developed 10 Developed 25.0
Undeveloped 90 Undeveloped 75.0
Impervious 1.6 Impervious 8.8

Note: Percentages calculated with ArcGIS® using Massachusetts Office of Geographic Information data for
hydrology and a digital elevation model (MassGIS).

3.3. Path Analysis

Throughout the model building process, various models were developed and analyzed
for model fit. The final model that most accurately represented the path of influence
of variables on reach-scale SBM water quality within the CRW included the following
observed, exogenous variables: watershed-scale developed (WDev) and watershed-scale
impervious cover (WImpCov) (Figure 4). The observed, endogenous variables included
buffer-scale developed (BDev), buffer-scale impervious cover (BImpCov), and reach-scale
habitat, SBM and DO. Unobserved exogenous variables within the model included errors
for all other observed exogenous variables. Model fit was determined by looking at the Chi-
square, probability level, the goodness of fit index (GFI), normed fit index (NFI), relative fix
index (RFI), confirmatory fit index (CFI), and root mean square error (RMSEA) for each
proposed model. The Chi-square of 2.853 was representative of the fit of the proposed
model versus the saturated, or perfect, model. A chi-square closest to our degrees of
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freedom (3) was optimal, and the probability level needed to be ≥0.05 to demonstrate
that the hypothesized model was not significantly different from the saturated model at
95% statistical confidence. The probability level of our model was 0.415, indicating that
the model was not significantly different than the saturated or “perfect” model. For good
model fit, the GFI, NFI, and RFI values given in the model output should be >0.9. The
values for this model were 0.913, 0.973, and 0.810, respectively. The CFI value should be
close to 1 and our CFI was exactly equal to 1. The RMSEA should be <0.05 and our RMSEA
was 0.000. Aside from the RFI value, all other indices indicate a good model fit.

1 
 

 
Figure 4. Final SPSS® AMOS 20 path analysis model of the 10 stations in the Charles River watershed
including watershed developed (WDev), buffer developed (BDev), watershed impervious cover
(WImpCov), buffer impervious cover (BImpCov), habitat, dissolved oxygen (DO), Streamside Biosur-
vey for Macroinvertebrates (SBM), and errors (e1–e5). Standardized direct effects are shown in the
middle along each arrow. Squared multiple correlation values are shown at the top right corner of
each variable. Red circles indicate statistically significant effects.

At the watershed-scale, WDev, and WImpCov were found to be highly correlated with
each other with a correlation coefficient of 0.95. While both datasets were compiled by the
NLCD measuring level of development, they were different in that WImpCov is strictly
measuring the percentage of impervious cover. For WDev, the LULC dataset provides
a categorical classification based on both impervious cover as well as an unknown “X”
factor related to ghd percentage of constructed materials, types of constructed materials,
and vegetation.

Ten out of 17 direct, standardized effects were shown to be statistically significant
(Figure 4). The direct effect of WImpCov on SBM was -2.02, indicating that for every
increase of one standard deviation in WImpCov, SBM declines 2.02 standard deviations
(Table 5). Similarly, the direct effect of BImpCov on SBM was 1.65, DO on SBM was 1.41,
and habitat on SBM was 0.70. DO was significantly, directly affected by BDev (1.51), but
not WDev, WImpCov, or BImpCov. However, the habitat was directly affected by WDev
(1.20), BDev (−1.16), and WImpCov (−1.50).
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Table 5. Standardized direct, indirect, and total effects of sub-watershed developed (WDev), buffer
developed (BDev), sub-watershed impervious cover (WImpCov), buffer impervious cover (BImpCov),
habitat, and dissolved oxygen (DO) on the Streamside Biosurvey for Macroinvertebrates (SBM) scores
as provided by the final path analysis using SPSS® AMOS 20.

Standardized Effects p-Value

WDev > SBM
Direct Effect 1.14 0.090

Indirect Effect −0.14
Total Effect 1.01

BDev > SBM
Direct Effect −1.53 0.070

Indirect Effect 1.09
Total Effect −0.45

WImpCov > SBM
Direct Effect −2.02 0.008 *

Indirect Effect 0.86
Total Effect −1.16

BImpCov > SBM
Direct Effect 1.65 0.002 *

Indirect Effect −0.20
Total Effect 1.45

Habitat > SBM
Direct Effect 0.70 0.017 *

Indirect Effect 0.20
Total Effect 0.90
DO > SBM

Direct Effect 1.41 0.002 *
Total Effect 1.41

Note: p-values < 0.05 are considered significant and marked with an *.

Significant indirect effects also were found (Tables 5 and 6). For example, WDev
positively, indirectly effected SBM through its influence on habitat (0.84). In contrast,
BDev indirectly effected SBM through both habitat and DO. The indirect effect between
BDev and SBM through habitat was -0.812, while it was 2.213 through DO. WImpCov also
significantly, indirectly affected SBM through habitat (−1.05), but BImpCov did not.

Table 6. Standardized indirect effects of sub-watershed developed (WDev), buffer developed (BDev),
sub-watershed impervious cover (WImpCov), buffer impervious cover (BImpCov), habitat and
dissolved oxygen (DO) as provided by the final path analysis using SPSS® AMOS 20.

WImpCov WDev BDev BImpCov Habitat DO

BDev 0.000 0.000 0.000 0.000 0.000 0.000
BImpCov 0.000 0.000 0.000 0.000 0.000 0.000
Habitat 0.694 −1.048 0.000 0.000 0.000 0.000

DO −0.688 1.385 −0.162 0.104 0.000 0.000
SBM 0.859 −0.138 1.085 −0.202 0.196 0.000

WImpCov had the strongest total negative effect of -1.16, while BImpCov had the
strongest total positive effect of 1.45 (Table 5). The only variable with a negative total effect
on SBM was BDev. Other positive total effects on SBM were attributed to WDev, habitat,
and DO.

4. Discussion
4.1. Overview

Our first goal was to evaluate the water quality in the Charles River watershed using
physical, chemical, and biological assessments. One major finding emerged through the
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combined assessments. The second goal of this study was to better understand the direct
and indirect effects of hierarchical variables on water quality in the Charles River watershed
and was addressed through path analyses. Four major findings emerged from our path
analysis regarding the effect of LULC and impervious cover on reach-scale water quality.

4.2. Water Quality

Two of the symptoms of the “Urban Stream Syndrome” concept is that urban streams
physical habitat and aquatic assemblages should be degraded compared to more pristine
stream systems [5,30]. Our habitat and macroinvertebrate assemblage water quality as-
sessments were consistent with “Urban Stream Syndrome” concept expectations. We did
observe degradation—“fair” or better water quality in the watershed—with our habitat
quality assessments ranging from “marginal” (i.e., “fair”) to “optimal” (i.e., “good”) and
biological quality assessments ranging from “fair” (i.e., “marginal”) to “good“ (i.e., “opti-
mal”/ “sub-optimal”). Furthermore, our CRW habitat and SBM findings were similar, but
slightly higher, to findings of a similar study on the adjacent coastal urban Boston Harbor
Massachusetts watershed, where the Neponset River watershed habitat scores ranged from
“poor” to “optimal” and SBM scores ranged from “poor” to “fair” [31].

4.3. Path Analysis
4.3.1. Impervious Cover

Our first path analysis main finding was that impervious cover had the strongest
influence on water quality of all LULC variables when this analysis was conducted at the
sub-watershed scale. The percentage of impervious cover had a strong negative effect
on SBM, implying that higher percentages of impervious cover within the sub-watershed
create a sub-optimal environment for macroinvertebrates. Schiff and Benoit studied urban
streams in New Haven, Connecticut and found that as impervious cover increased between
5 and 10%, instream conditions worsened and leveled off at 10%, demonstrating that
instream habitat was impaired, macroinvertebrate diversity declined, and water quality
was reduced [32]. Schiff and Benoit reported that the potential mechanism behind the
effect of impervious cover was mainly due to a short-circuiting of the stream drainage
system at the sub-watershed scale, disrupting the natural flow throughout the hydrologic
and sediment cycles [32]. At the buffer scale, they concluded that impervious cover is
negatively correlated with the area of riparian corridors that limits flooding and pollution
attenuation and influences habitat development by reducing shading and organic matter
and by increasing sediment inputs [32].

Contrary to Shiff and Benoit’s buffer impervious cover influence [32], our results
indicated that BImpCov had a positive, direct effect of 1.76 on SBM, meaning that for every
1 standard deviation increase in BImpCov, there is an increase in SBM by 1.76 standard
deviations. Because BImpCov is strongly influenced by WImpCov, which had a strong,
negative effect on SBM, this was the opposite of our anticipated result. However, based
on Schiff and Benoit’s hypothesis of hydrologic alteration [32], the unknown mechanism
driving the negative effect of impervious cover may break down at the buffer scale.

Another explanation arises from the idea of “effective impervious surface” presented
by Zarriello and Barlow, which involves measuring the percentage of impervious surface
directly connected to a stream [33]. For example, if a buffer has a high percentage of
impervious surface, it is likely that there will be a drain nearby. However, this drain may
not necessarily connect directly to the river within the 100-meter buffer zone and therefore
the runoff may be transported and released downstream outside of the buffer or the reach in
which our macroinvertebrates were sampled. If a buffer has a low percentage of impervious
surface, it is likely that there is some sort of vegetation or a pervious area between the road
and streambank. This impervious surface would not be considered “effective” because the
land intercepts runoff and serves as an additional filtration step. Perhaps our measure of
impervious cover is not portraying its true relationship with runoff and water quality in
the same way that a measure of “effective impervious surface” would.
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4.3.2. Habitat and DO Positive Direct Effects on SBM

Our second major finding associated with our path analysis supported our general
understanding that habitat and DO have strong, positive direct effects on SBM. When
determining habitat’s causal influence on SBM, we determined that as habitat scores
increased by one standard deviation, SBM scores increased by 0.70 standard deviations
(Figure 4 and Table 5). Habitat has been shown in numerous studies to positively influence
macroinvertebrates. In a study by O’Connor on Australian lowland streams, species-
habitat complexity curves demonstrated that more complex habitats boast a more complex
macroinvertebrate community with different body sizes, sources of nutrition, and micro-
habitats that they occupy [34].

While DO had a positive effect of 1.41 on SBM, there have been mixed conclusions
regarding DO’s effect on macroinvertebrates. The USEPA concludes that dissolved oxygen
is a critical variable influencing the presence and abundance of macroinvertebrates, but
many other studies, such as Kaller and Kelso’s study on Louisiana streams, found that the
prediction of more diverse and abundant macroinvertebrates in reaches with higher DO
habitats did not hold true [35]. They concluded that macroinvertebrates are highly tolerant
to low DO conditions and are often actually more abundant in low DO conditions. One
potential explanation of these mixed results on the influence of DO is the seasonal and
diel variability of DO. Therefore, this positive effect should be analyzed further with more
DO data.

4.3.3. Development Not Significantly Directly Effecting SBM

Our third major finding associated with our path analysis was that development did
not significantly, directly affect SBM, but it did significantly, indirectly affect SBM. BDev
and WDev both had strong, direct effects on habitat and therefore also indirectly affected
SBM. BDev had an indirect effect of −0.812 on SBM through habitat, meaning that as
development within the buffer increased, habitat declined; therefore, there is a negative
indirect effect on SBM. This relationship is understandable considering that quality of
habitat was determined by the buffer-scale variables and that macroinvertebrates are more
likely to be found in habitats that provide shelter, food, and DO [9,11].

In a study conducted by King et al. on coastal Maryland streams, urban streams with
high percentages of proximal developed land were found to experience a loss of ripar-
ian buffers that served as sources of woody debris, provide shade, and created desirable
habitats [12,17]. Therefore, a lower percentage of development within the buffer would con-
siderably influence the quality of habitat and the macroinvertebrate communities present.
In contrast, in our study, WDev had a positive, direct effect on habitat, indicating a positive,
indirect effect of 0.84 on SBM through habitat. This reversal and lack of a significant direct
effect between WDev or BDev to SBM could be attributed to our aggregated development
data rather than breaking development out into its constituent open, low, medium, and
high intensities, which may have different effects on habitat and SBM individually. More-
over, because habitat is measured by reach/buffer-scale variables, the positive effect of
WDev on habitat may not actually be relevant due to the difference in scale.

Numerous studies have shown why development at the watershed scale may not
be as influential on macroinvertebrate communities as development at the buffer scale.
In King et al.’s coastal streams study, they concluded that macroinvertebrate composition
was found to change dramatically between 21 and 32% developed area within a watershed,
with a 100% likelihood of change above 32% developed [17]. However, within a 250-meter
buffer around each station, there was a 100% probability that a developed area greater
than 22% would negatively affect macroinvertebrates, indicating the greater sensitivity of
macroinvertebrates to buffer versus watershed scale development. Like our methods and
results, they used a path analysis and found that many stations with higher macroinverte-
brate scores had a high percentage of development at the watershed scale (21–32%). They
concluded that development’s effect on macroinvertebrates stems from its contribution to
riparian degradation and the reduction of woody-debris within a local habitat [17].
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4.3.4. BDev Significant Indirect Effect on SBM

Our fourth main finding associated with our path analysis was BDev’s significant,
indirect effect on SBM through DO was 2.13. This result indicates that as development
increases within the buffer there is also a rise in DO and an increase in macroinvertebrates.
However, based on King et al.’s DO results, many poorly shaded urban streams had
higher DO and lower macroinvertebrate scores [17]. As mentioned before, DO can vary
throughout the day and season, and therefore its influence on SBM is inconclusive and
should be studied further.

4.3.5. Path Analysis Summary

In summary, SBM was significantly, directly affected by habitat and DO, but impervi-
ous cover at both the buffer and watershed scales had the strongest direct effects. There also
were indirect effects on SBM that proved to be significant, such as WDev’s positive, indirect
effect, and BDev’s negative, indirect effect through habitat. This is interesting because,
although WDev and WImpCov are highly correlated with one another, their effects on SBM
both directly and indirectly are the opposite. Similarly, WDev positively influences BDev,
but WDev’s effects on SBM are opposite in sign. The positive effects of WDev and BImpCov
on SBM could be an example of Simpson’s paradox in which aggregation of data or the
inclusion of a third “lurking” variable could result in an unexpected or reversed effect [36].

5. Conclusions

As the amount of developed land continues to grow, so does the need to link terrestrial
area to stream water quality and to consider best management practices. Through this
small case study of 10 stations within the CRW, we illustrated how citizen-science level
water quality assessments can be combined with water chemistry and hierarchical LULC
data to provide insights into potential direct or indirect effects on water quality. As a
result of our case study, we report mostly ≤ “good” (or “optimal”/ ”sub-optimal”) water
quality in the watershed. We also report that, at the buffer scale only, the percentage of
developed land area was shown to be a better indicator of water quality, as measured
by SBM, than impervious cover. Buffer development was shown to hinder quality of
instream habitat, indicating that macroinvertebrates are more sensitive to changes in
development at the buffer scale. Additionally, quality of habitat was illustrated as both
a direct, positive influence on water quality as well as an indirect connector facilitating
the effect of development on water quality. At the sub-watershed scale, the primary factor
controlling overall water quality was impervious cover, which generally increases with
the level of development. We hypothesize that the mechanism driving this influence
was the effect of impervious cover on the hydrologic regime within the sub-watershed.
As impervious cover increases, so does runoff resulting in additional sediment and nutrient
inputs into a water body, ultimately degrading stream integrity. As the fields of GIS and
landscape ecology and conservation continue to grow, so does our ability to determine
changes in land development and devise management strategies aimed at improving
water quality. We illustrate, and thus suggest, that management strategies may benefit by
incorporating holistic multi-ecological scale practices focusing on reducing developed land
(e.g., adding green spaces) and treating increased runoff resulting from development (e.g.,
adding riparian buffer strips, bank stabilization) [37].
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