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Abstract: This paper examines the joint adjustment of population and employment numbers across
America’s metropolitan areas during the period 1990–2015. Current levels of both are estimated,
for 10 year periods, using their lagged (own and cross) levels and eight other lagged variables.
Population is affected by both human and natural amenities and employment by wages, patents,
and other attributes of the workforce. This paper questions the conventional interpretation of the
adjustment process by using geographically weighted regression (GWR) instead of standard linear
(OLS, 2GLS) regression. Here the various estimates are all local, so the long-run equilibrium solutions
for the adjustment process vary over space. Convergence no longer indicates a stable universal
solution but instead involves a mix of stable and unstable local solutions. Local sustainability becomes
an issue when making projections because employment can quickly lead or lag population in some
metropolitan labor markets.

Keywords: adjustment; population and employment; regression; stable and unstable local solutions;
local sustainability

1. Introduction

Analysts and policymakers remain keenly interested in the structure and evolution
of national metropolitan systems. However, in recent decades, urban scientists in the U.S.
have been so preoccupied with such matters as governance, innovation, and inequality
that few new insights have been reached regarding systemic growth and change across the
nation’s hundreds of metropolitan areas. In part because of their interests in, and concerns
about, spatial equity and regional cohesion, the Europeans now seem to have a superior
appreciation of how place-based metropolitan development occurs [1].

During the 1970s geographers like Borchert [2] pointed out that U.S. economic growth
was directed by key metropolitan control centers; Pred [3] outlined how an intercity hierar-
chy emerged to channel this growth; and, using earlier studies, Berry and Horton [4] sum-
marized how these features, interacting with one another, influenced the size-distribution
of cities, their industrial specialisms, and the socioeconomic properties of the American
metropolitan system. But, aside from a few exceptions, the contributions of geographers
to understanding systemic metropolitan growth diminished afterward and were soon
replaced by the new insights of economists during the 1980s and 1990s [5]. To some de-
gree this new thinking was built on the ideas of visionaries like Jane Jacobs and regional
scientists like Edgar Hoover, Walter Isard, and Martin Beckmann. By the late 1990s a new
generation of economists had made great strides in revealing the importance of factors
like agglomeration, spatial externalities, and the role of human capital in facilitating the
growth of large U.S. urban centers [6,7]. But interest in the systemic aspects of this growth
became appreciably narrower in scope just as the models used to understand metropolitan
employment and population growth became more sophisticated.

Perhaps the most insightful literature of recent decades has focused on the chang-
ing relationship between demographic composition and spatial behavior as household
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members move through their life courses. Along these lines, Whisler et al. [8] used the
data of Census 2000 to show that highly educated American households, depending on
their ages and other attributes, preferred the locations, sizes, and economic specialisms
of some cities over those offered by others; using similar longitudinal data sets, contrib-
utors from elsewhere extended those findings to other nations and cultures at different
geographic scales [9]. For some decades, too, urban scientists have argued that large and
diverse superstar cities have acted as high-density escalators (and even elevators) of human
opportunity where risk-taking households could enter at a lower level of affluence and
expect to depart later at an appreciably higher level [10,11]. This escalator effect has been
much easier to distinguish in simpler national metropolitan systems, such as that in the
U.K., but is still highly relevant to the U.S. experience. Recently, however, a declining
proportion of American households has been able to participate in this process, which once
largely ensured better life chances for the so-called middle class because affluence could
accumulate in place through widespread home ownership and rising house prices. But
in the U.S., and elsewhere, many middle-class jobs have simply been lost or replaced by
communications technology, while the remaining opportunities have become distributed
across ever-larger numbers of over-qualified workers. Consequently, a few urbanists, in-
cluding Kotkin [12], soon became disillusioned with various aspects of the widely accepted
high-density opportunity model. In fact, recent events unfolding during the Covid-19
pandemic suggest that the current geographic dispersal of workers might become the
generational norm as many young households prefer (or require) larger living spaces and
choose not to undertake the congested journey-to-work seen in earlier times.

Despite all this research there still exists a tendency among urban scientists to view the
effects of the Knowledge Economy on U.S. metropolitan areas in simplistic binary terms.
Large urban regions are often said to be sorting into camps of haves and have-nots by
economists; widespread areas are classified as being coastal versus flyover, or perhaps
sunbelt versus rustbelt, according to various policy-oriented blogs and popular journals;
and the changing relationship between population and employment is often categorized as
being either supply-driven or demand-driven growth [13–15]. In truth the recent evolution
of the U.S. metropolitan space-economy has been much more nuanced and, at both the
local and regional levels, more uneven than these binary designations suggest [16].

In the spirit of existing spatial-econometric papers by the authors, this study focuses on
the mutual adjustment that has recently taken place between population and employment
numbers across metropolitan America [17,18]. Using 10-year temporal lags, both aspects
of this mutual adjustment are examined every five years between 1990 and 2015 (the
last dependable year for some of the data). A spatial model, which can be estimated
by linear regression, assumes that current population and employment numbers must
jointly adapt to their (own and cross) prior numbers, where this adaptation depends upon
various place-specific conditions [19]. These exogenous conditions include prior natural
and human-created amenities, which largely influence population change, and a handful
of other factors—including prior wages and age of the workforce—that largely influence
employment change.

Past studies have identified global estimates for metropolitan regions, where a series
of 2 by 2 “growth operator” matrices trace out the ever-evolving relationship between
current population and employment levels and their earlier levels [20]. The coefficients
of these matrices usually stabilize over time, so a single universal endogeneity matrix
is thought to be appropriate for all the metropolitan places in the study. Alternatively,
this paper generates local estimates instead of these global estimates, in effect estimating
a separate endogeneity matrix for each metropolitan place. As expected, the pattern of
coefficients in these growth operator matrices varies substantially across the national
landscape. Moreover, the local effects of the contextual variables, especially amenities and
wages, are also shown to vary a lot across those metropolitan areas.

These local estimates are generated by adopting geographically weighted regression
(GWR), although other methods exist for revealing the local interactions between popula-
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tion and employment [21]. As a result, there is no longer a unique equilibrium solution
but, instead, a distribution of location-specific equilibrium solutions. Moreover, in those
situations where population or employment numbers grow too quickly, or too slowly,
long-run equilibrium solutions might not even exist. In fact, it is now possible for broad
regions of the nation to exhibit stable adjustment solutions but small regions or pockets
to exhibit unstable solutions. This paper shows how the stability existing between people
and jobs changed for those 377 metropolitan areas that were located across the lower
48 U.S. states between 1990 and 2015.

Like earlier studies, the four coefficients of the endogeneity matrix are used to de-
termine how the initial or “short-run” balance between people and jobs should change
in the future [17,18]. As already noted, the column elements of the endogeneity matrix
reveal the total (direct and indirect) effects of earlier conditions on the more recent levels of
population and employment in each metropolitan area. Repeated matrix multiplication is
then used to shift, sometimes incrementally, the relative composition of each column effect
one period at a time; as matters turn out, the projected “long-run” relationships, generated
by numerous rounds of such multiplication, can prove to be very different from the initial
or short-run relationships.

Various urban analysts have claimed that these metropolitan economies are leading
the U.S. through a new creative age—one that is fraught with many social tensions and
economic disruptions. Although a binary classification is much too general, the nation’s
urban-based regional economies are certainly sorting into those with more advanced
human capital and those with less advanced human capital [13,22,23]. More and more,
too, it appears that the economic health of the nation’s rural and micropolitan economies
will be dictated by their location relative to the larger and more dynamic metropolitan
economies [24]. Current research suggests that many metropolitan areas currently straddle
a technological fence where they could land on either side [13,25]. However, urban policy-
makers are still divided over whether government support for the so-called backward or
lagging regions should be more person-based or place-based. This paper sheds new light
on this very important spatial-welfare issue by projecting population and employment
numbers that are no longer spatially uniform across the national metropolitan landscape.
A series of place-specific projections, all using 10-year lags, suggest that a lot of variation
in economic health will continue across the nation’s metropolitan landscape during the
upcoming decades. The estimates of this paper reveal how certain policy-related variables,
including amenities and wages, can redirect the overall adjustment that occurs between
the population and employment numbers of these metropolitan places.

2. Bidirectional Population and Employment Change

The 1970 Census revealed that, somewhat surprisingly, many of America’s non-
metropolitan counties were growing at the expense of their metropolitan counterparts.
This remarkable turnaround process, first noted by people like Beale [26], soon attracted
the interest of many regional and urban scientists. For the most part economists viewed
this as evidence of job restructuring but others, including demographers, saw this as ev-
idence of deconcentrating households [14,15,27,28]. But, taking a more comprehensive
stance, Muth [29] argued that the U.S. space-economy was just exhibiting uncertainty in the
direction of causality between changes in population (involving the choices of households)
and changes in employment (involving the choices of businesses). Thus, the turnaround
topic became yet another chicken and egg problem—one where the twin distributions of
population and employment would have to be endogenously analyzed [30]. This bidi-
rectional hypothesis is now increasingly, but not entirely, accepted in the regional and
urban sciences.

Before analysts in the U.S. witnessed this national counter-urbanization of the 1960s,
many believed that regional employment change necessarily preceded regional population
change, or that people always followed jobs [31]. But some quickly became convinced that
swelling population numbers could instead drive regional employment change, where jobs
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followed people as an alternative scenario [32]. As mentioned above, this led to the binary
categorization of demand-induced growth versus supply-induced growth [14,15]. In truth,
these opposing tendencies are both continuous and highly correlated, attributes that make
it difficult to discern which is the more important in transforming the social and economic
fabric of the post-industrial space-economy [17,18].

As Isserman [32] anticipated, the models devised to analyze this bidirectional change
have come from a variety of disciplines and perspectives. Analysts like Greenwood [33] and
Graves [34,35] observed that U.S. households often behaved differently from expectations
and frequently shifted their residences from places of high economic opportunity to places
of low economic opportunity. This finding brought key demographic concepts, like the
life course, to the forefront for consideration and empirical testing. Here the thoughtful
paper by Sjaastad [36] proved especially influential because he suggested that households
will often see short-distance mobility or long-distance migration as an investment decision.
Moreover, the path-breaking work done on hedonic markets by people like Rosen [37] and
Roback [38] clarified other matters and provided a rationale for why many households
might migrate over long distances. In short, households might be content to trade off
the higher wages and salaries that can be earned at one place for the more valuable
natural or human-created amenities found at another place. Moreover, considerable
research stresses that households exhibit significant heterogeneity—in size, composition,
wealth, and risk aversity—and this factor alone might drive or constrain their migration
decisions; consequently, in any case, households with very different attributes might make
remarkably different choices about where to live and work [39]. Finally, various studies of
metropolitan labor markets argue that some forward-looking firms will always anticipate
the shifting preferences of their workers and consider locating, or perhaps even relocating,
their businesses to areas that are believed to be richer in non-traded amenities [40]. Given
the remarkable sizes of the nation’s very largest metropolitan areas this relocation might
happen either inside or outside the area’s existing boundaries (or commuting zones).

It is now widely accepted, at least in the U.S., that amenity-based externalities, of
various types, will have a pervasive effect on the movements of households over fairly
long periods of time while economic opportunities, which are more restricted in space
by trading and commuting costs, will influence the movements of households in diverse
ways, depending in part upon the timing of events [41]. In any case, numerous studies
have lent strong support to Muth’s bidirectional claims and, increasingly, population and
employment shifts are not analyzed as if they represented entirely independent trends.
In fact, population studies that do not appreciate this endogeneity are apt to under- or
overpredict the effects of other demographic factors, including the age or composition
of the household, on the movement of people between regions. So, the notion of the
spatial equilibrium has been adopted to accommodate these simultaneous changes, which in
turn reflect the myriad decisions made by both workers and firms. In any case, the joint
adjustment perspective has become popular not only for explaining short-term trends in
population and employment numbers, but also for studying the long-term movements
of demographic and economic agents that occur both within and between metropolitan
regions [41,42].

3. The Adjustment Process

Partial adjustment models have been widely used throughout economics, especially in
the analysis of money markets and the demand for certain consumer goods, and regional
adjustment models are simply the spatial versions of these. Of course, distinctive problems
do arise once the adjustment process is embedded in space as well as time. Interestingly,
these spatial models first appeared in the research of regional science addressing the
distribution of people and jobs within regions and not between separate regions [43,44].
Regional adjustment models only became popular in the U.S. after the studies of Carlino
and Mills [19] and Clark and Murphy [45], who each introduced numerous exogenous
variables to control the mutual adjustment of population and employment numbers across
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thousands of contiguous U.S. counties. Seen together, these two studies provided interest-
ing insights into some regional features that were just emerging in the U.S. post-industrial
space-economy during the 1970s and 1980s. Among other matters, the results indicated
that public choices, in the form of unionization rates or taxation levels, might affect the
equilibrium properties of the overall adjustment process. Later studies of regional adjust-
ment models have clarified some key specification issues, introduced various diagnostics,
and have even addressed the thorny problem of scale [46,47].

3.1. Global Estimates

In the (simplest) 2 by 2 adjustment model the two bodies of population and employ-
ment are seen to be inexorably moving toward their equilibrium states. But these final
states might never actually be reached. Instead, the two equilibria act more like targets that
also evolve over time—due to macroeconomic shocks, demographic reversals, or techno-
logical disruptions—because the parameters that control the ongoing adjustment process
can also shift. In any case, estimation is carried out on both aspects of the adjustment
process or, preferably, on the reduced forms of those twin aspects. Once expressed in
the more transparent reduced forms, as seen below, current estimates are based on own
(lagged) levels of both endogenous variables, cross (lagged) levels of those endogenous
variables, and several own (lagged) exogenous variables. So, to be clear, during some
specified time interval, population adjusts to some earlier state of employment but, at
the same time, employment adjusts to some earlier state of population. To operationalize
matters, however, current population POPULt is taken to adjust to an estimate for current
employment EMPLY*t and, similarly, current employment EMPLYt is taken to adjust to
an estimate for current population POPUL*t. Since Carlino and Mills [19] analysts tend
to make use of Census data, so the adjustment period is usually assumed to be a decade
in length, but the most appropriate time lag is not really known. It remains unclear how
important this time restriction is.

For the most part the two equations tracing out the adjustment process are estimated
by adopting two-stage least squares (2GLS) regression procedures. Here the 2nd-stage
results are:

POPULt = a1 + b1POPULt-1 + c1EMPLY*t + d1VECTRt-1 + e1 (1)

EMPLYt = a2 + b2POPUL*t + c2EMPLYt-1 + d2VECTRt-1 + e2 (2)

The coefficient c1 indicates the rate at which population numbers are adjusting to
employment while the coefficient c2 indicates the rate at which employment numbers are
adjusting to population. The underlying supposition is that the incremental changes in both
current population and employment will diminish over time, and a spatial equilibrium
will be reached. The magnitudes of these two coefficients indicate the differential speeds of
the two aspects of the overall joint adjustment. The estimates in reduced form for these
two adjustment equations can be reached through substitution [17,18]. When making the
various estimates for current employment and population, a series of exogenous (initial
or prior) variables are typically placed in a contextual vector VECTRt-1. This vector is
required because the twin distributions of errors are likely correlated so the estimates of
those variables will be biased. The two reduced-form expressions are expressed as follows:

POPULt = g1 + h1POPULt-1 + i1EMPLYt-1 + j1VECTRt-1 + k1 (3)

EMPLYt = g2 + h2POPULt-1 + i2EMPLYt-1 + j2VECTRt-1 + k2 (4)

which can, of course, be alternatively estimated directly by OLS regression (or a similar
technique). In this paper all variables have been transformed using logarithms, so the
various coefficients are in fact elasticity estimates. Several sources, including [18], show
how numerical reduced-form estimates can be calculated on a step-by-step basis.



Urban Sci. 2021, 5, 24 6 of 18

Finally, the estimation itself can be carried out for the entire time interval or for shorter,
but contiguous, intervals that comprise the entire period. Quite often, too, some overlap-
ping of these shorter intervals is involved. This pooling of data serves to “average out” the
estimates and offers more observations for study, but often obscures any shifts in the esti-
mates of population and employment that might reflect either a systemic shock or represent
a system-wide secular or cyclical tendency in the population and employment numbers.

To address shifts instead of levels some analysts prefer to modify the left-hand side of
Equations (1) through (4) prior to estimation. But this operation is simply cosmetic, and
only reduces the magnitude of the adjusted coefficient of determination in each instance. In
the arithmetic case, the new estimates for h1 and h2 become h1-1 and h2-1, respectively, in
Equations (3) and (4), while all the other estimates exactly remain the same. Alternatively,
in the logarithmic case, the modified equations—that now address growth instead of change—
are once again h1-1 and h2-1, respectively. When three or more endogenous variables are
estimated the issue of convergence can become somewhat problematic once the extra coef-
ficients appear in the growth operator matrix. In any case, these new endogenous variables
are typically chosen from those already included in the vector of exogenous variables.

As already stated, the joint adjustment process might never reach a long-run equi-
librium if one of the endogenous variables grows too quickly or too slowly. For example,
rapid household growth confined only to some metropolitan areas (in the Sunbelt) might
mean that population numbers outstrip the corresponding employment numbers at these
locations, and the features of the adjustment process must adapt step-by-step to these
new circumstances. Or, alternatively, jobs might quickly swell only at some places (in
the oil patch) and employment might outstrip population numbers at those locations.
So, it is imperative that a test for convergence be applied to the reduced-form equations
(see below). As discussed in detail elsewhere [17,18], such convergence means that the
standardized array of elements down each column of the long-run equilibrium matrix
M* becomes increasingly similar. Moreover, their ratios (or shares) become identical to
those uncovered in the so-called unit vector [48]. While the future values projected for the
two endogenous variables are fixed throughout each projection period by the so-called
“growth operator” matrix, these values are constantly updated by the subsequent rounds
of matrix multiplication. Here the use of the projection matrix is much the same as that for
the Markov models of population redistribution that are well known elsewhere [20,49,50].

3.2. Local Estimates

The methodology outlined above generates global estimates for the lagged endoge-
nous variables and the other lagged contextual conditions. But there are conceptual
problems with this approach even when accommodation is made for spatial dependency.
The most severe problem is that the effect of each contextual variable—including the impact
of human amenities on population and the impact of wages on employment—is assumed
to be invariant across the landscape. Clearly, an alternative, and superior, methodology is
needed that generates local estimates of these endogenous and exogenous effects.

This paper adopts geographically weighted regression (GWR) to accomplish the task
of making these location-specific estimates [21,51]. Other similar methods exist, including
the spatial expansion approach, but GWR seems the best for addressing problems where
the (spatial) density of observations is so varied. Put simply, this method adapts the kernel
configuration for sampling to this uneven density to ensure that all local estimates are
made using the same number of surrounding neighbors. The logic behind GWR estimation,
nicely reflecting Tobler’s first law of geography, is very straightforward: the influence
of nearby observations is given much greater weight than the influence of more distant
observations. Although different versions of GWR now exist, the results of this paper are
based on the original version of the model where all variables, endogenous and exogenous
alike, are given local estimates. As before, each of these estimates can be interpreted as an
(elasticity) effect that is specific to the vicinity of the metropolitan area.
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The adjustment process is modeled exactly as before but now the estimates are made
separately for each of 377 metropolitan economies. Again, the various estimates are made at
four different points in time, thereby providing a series of 10-year snapshots of the nation’s
changing demographic and economic conditions between 1990 and 2015. Denoting each of
these time intervals by the subscript s where s = 1,2,3,4, the two reduced-form expressions
are now:

POPULst = gzs1 + hzs1POPULst-1 + izs1EMPLYst-1 + jzs1VECTRst-1 + kzs1 (5)

EMPLYst = gzs2 + hzs2POPULst-1 + izs2EMPLYst-1 + jzs2VECTRst-1 + kzs2 (6)

and the additional subscript z on the coefficients is only a reminder that nearby observations
are weighted more than distant observations in the estimation of local values for population
POPULst and employment EMPLYst. As for stability, the discussion above, which pertained
to global estimates made across all metropolitan areas, remains appropriate for the various
place-specific estimates that are made by applying geographically weighted regression.

4. Data, Variables, and Conjectures

As in other recent studies, the analysis focuses on 377 of the 381 metropolitan statistical
areas that are monitored by the Bureau of Economic Analysis [16,52,53]. Four cities in
Alaska and Hawaii were not considered because they were extreme spatial outliers, a
property that violates the geographic nearness needed for GWR or for assessments of
spatial dependency in OLS. The BEA website [52] discloses that, between 1990 and 2015,
the mean population POPUL of these areas rose approximately 29.6% to 319K while, at
the same time, their mean employment EMPLY rose approximately 37.8% to 182K. While
dozens of the smallest places had not yet achieved metropolitan status for Census 1990, a
good number of these had achieved micropolitan status (a new and intermediate category)
for Census 2000.

A large literature suggests that current population should be affected by the quality
and quantity of natural amenities [17,19,54]. Here natural amenities were captured by
data addressing both cooling degree-days CDGDY, which ranged from 109 (Seattle, WA,
USA) to 3984 (Miami, FL, USA), and heating degree-days HDGDY, which ranged from
245 (Miami, FL, USA) to 9897 (Duluth, MN, USA). In general, cooling degree-days were
lowest along the Pacific Coast and heating degree-days were lowest in the desert Southwest
and throughout the humid Southeast. But both figures varied considerably by temperature,
humidity, and moisture across the large land mass of the continental U.S. [55,56]. These
data were assumed to be constant over the 25-year study period and accommodation was
not made for any local or regional variation in utility rates, even though electricity is widely
needed to operate air conditioning. Other indices for natural amenities were available for
adoption but the degree-day indices are both continuous and objective, even if they largely
reflect only the climate differences across the metropolitan locations [5].

Current population was also conjectured to be affected by the quality, quantity, and
availability of human-created amenities [22,57]. These amenities HAMEN were estimated
for each 10-year interval by first regressing median house values on per capita income,
heating degree-days, and cooling degree-days, and then selecting the residuals as net
measures of those house values [54]. Some experimentation disclosed that these regressions
lost a fair bit of their explanatory power once total degree-days were used instead of its
two components. Other evidence exists that these residuals, after being transformed into
positive numbers, appear to be a good indirect index of human amenities. In general,
certain large cities, including New York, NY and Washington, DC, perform well because
of their museums, galleries, and fine restaurants. Likewise, numerous smaller college
and university cities, including Ames, IA and Boulder, CO, rank highly because they
have valued public goods (including health-care facilities) and they are characterized
by a vibrant local ambience. Based on current dollars [52], between 1990 and 2015, the
metropolitan median house value rose on average some 24.1% to $170K; at the same time,
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personal income rose on average some 145.4% to $42.7K. Given present purposes, the three
conjectures of greatest interest were as follows: population numbers were driven lower
by CDGDY (-) and HDGDY (-) but higher by HAMEN (+). In the first two instances it is
assumed that households generally prefer mild to extreme climates and often seek out
those locations offering low scores for either cooling or heating degree-days. In the third
instance it is assumed that households generally prefer more as opposed to less public
goods and local ambience, even if those human amenities become capitalized into higher
house values [54].

Current employment was also conjectured to be significantly affected by average
wages and salaries, industrial specialization, and patenting activity [17,19]. Expressed in
current dollars [52], between 1990 and 2015, average annual wages and salaries WAGES rose
approximately 115.4% to $44.6K. Although all types of manufacturing jobs were considered
in the earlier study by Mulligan and Nilsson [18], only industrial specialization PPROF was
considered here; this was measured by the incidence of human-capital employment arising
in the professional, scientific, and technical services (classified as NAICS 54). Between
1990 and 2015 the average importance of these knowledge-intensive jobs rose from 4.27%
to 5.18% when expressed as a proportion of all metropolitan jobs [40]. Patenting PATEN
was included only because this activity is often chosen to differentiate between highly
creative cities and less creative ones [13,18,22]. Although there is only weak evidence for
this relationship, the thinking was that creative cities would eventually attract more new
businesses than non-creative cities. In any case, between 1990 and 2015 the average patent
density (patents per 1,000 persons) in the 377 metropolitan economies nearly doubled in
size from 0.161 to 0.318 [58,59]. Here the first conjecture (WAGES, -) recognizes that firms
generally prefer to pay lower wages to their workers, although this tendency varies a lot
both with the industry concerned and with the skills (or occupations) already acquired by
those workers. The second conjecture (PPROF, +) indicates that, due to spatial spillover
and local learning effects, overall employment levels in the post-industrial economy should
increase more in those places where technical and scientific expertise is initially high. The
third conjecture (PATEN, +), the weakest of these three, recognizes that highly innovative
metropolitan economies should generate more overall jobs through spread and spin-off
effects than less innovative economies.

This study also addresses two other conditions that have not been included in most
of these other studies [48]. One of these is proprietary employment, which is a popular
measure of the incidence of entrepreneurship in regional economies [60,61]. Of course,
self-employment can be measured in different ways but, for present purposes, the figures
released in the BEA’s Economic Profiles have been adopted [52]. Between 1990 and 2015,
the importance of self-employment PROPR jobs rose on average from 15.7% to 20.5%
when expressed as a proportion of all metropolitan jobs. In the U.S. space-economy, self-
employment tends to be higher throughout the Sunbelt states where older people often start
up small businesses or they decide to work part-time, and where state-level right-to-work
laws are generally weaker. Finally, to control for the differential age composition of the
various metropolitan labor markets, a prime workforce variable PWFOR was calculated.
But this variable did not exactly address the ages of employees and, instead, dealt with
the ages of people: it was calculated as the ratio between those persons in the 18–44 age
cohorts and those persons in all age cohorts. People in this intermediate age group are
widely believed to be more productive, on average, than those in either younger or older
age groups. The average of this prime workforce proportion fell from 31.4% in 1990 to
25.0% in 2015 as the population aged in most metropolitan areas. Across the entire 25-year
study period, higher initial rates of self-employment (PROPR, +) and higher initial prime
workforce ratios (PWFOR, +) were both conjectured to have a positive effect on overall job
numbers in the nation’s diverse metropolitan economies.
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5. Results
5.1. Regression Estimates

The first set of results compares the reduced-form estimates for ordinary least-squares
(OLS) and least-squares adjusted for spatial dependency (2GLS) to the average estimates
(across 377 observations) generated by geographically weighted regression (GWR). The
2GLS estimates, which account for spatial lags, use the approach outlined by Kelejian and
Prucha [62] with a 400-km threshold. The most interesting results, shown in Tables 1 and 2,
are the elasticity estimates, respectively, for population and employment numbers covering
the four decadal periods prior to the years 2000, 2005, 2010, and 2015, respectively. To
save space, only the conjectured estimates of interest are shown: the two endogenous
variables along with three contextual variables for population and the two endogenous
variables along with five contextual variables for employment. In general, GWR deflates
the own-effect of lagged population and inflates the cross-effect of lagged employment on
current population; also, GWR deflates the cross-effect of lagged population and inflates the
own-effect of lagged employment on current employment. In fact, across the 1508 (377 × 4)
observations pooled over the four time periods, the elasticity estimate on POPULt-1 falls
from 0.944 (GS2SLS) to 0.913 (GWR) and the estimate on EMPLYt-1 climbs from 0.055 to
0.086 in the population equation; at the same time, the estimate on POPULt-1 falls from
0.057 (GS2SLS) to 0.029 (GWR) and the elasticity estimate on EMPLYt-1 climbs from 0.943
to 0.969 in the employment equation. Clearly, the four coefficients of the 2 by 2 endogeneity
matrix are shifted away from an overall population effect toward an overall employment
effect when using geographically weighted regression. As for the contextual effects only
three differences are worthy of note. Again, looking across all 1508 observations, GWR
generates a much greater effect (0.104 versus 0.066) for human amenities in the population
equation, and much smaller effects for both self-employment (0.124 versus 0.170) and
wages (−0.196 versus −0.238) in the employment equation. The estimates in Table 1
suggest that the gap in the human amenities effect narrowed in the middle years but the
estimates in Table 2 suggest that the gap in the self-employment effect widened over time,
while the gap in the wage effect narrowed over full study period. Other shifts are evident
in specific time periods, including a rise in the importance of a prime workforce in the
period 1995–2005 and a fall later in the period 2005–2015, but these are the three most
pervasive shifts (Table 2).

Table 1. Reduced-Form Population Estimates: 10 Year Lags.

OLS 2GLS GWR OLS 2GLS GWR

90-00 95-05
Constant 2.609 * 2.276 * 1.569 1.167 * 1.024 * 0.328
POPUL 0.894 * 0.888 * 0.872 0.945 * 0.950 * 0.903
EMPLY 0.109 * 0.111 * 0.132 0.050 0.044 0.090

HAMEN 0.083 * 0.093 * 0.114 0.142 * 0.143 * 0.117
CDGDY −0.009 −0.006 −0.018 0.005 0.006 −0.013
HDGDY −0.067 * −0.060 * −0.062 −0.057 * −0.054 * −0.056

00−10 05−15
Constant 1.285 * 1.092 * 0.369 0.489 0.320 0.769
POPUL 0.982 * 0.997 * 0.967 0.965 * 0.974 * 0.911
EMPLY 0.018 0.002 0.033 0.029 0.019 0.087

HAMEN 0.135 * 0.133 * 0.141 −0.010 −0.009 0.044
CDGDY 0.012 0.015 ** 0.007 0.031 * 0.033 * 0.034
HDGDY −0.031 * −0.026 * −0.025 −0.005 −0.001 −0.015

Note: n = 377; * 0.01 level; ** 0.05 level. OLS does not address spatial dependence and 2GLS addresses spatial
dependence; GWR is the average across all observations.



Urban Sci. 2021, 5, 24 10 of 18

Table 2. Reduced-Form Employment Estimates: 10 Year Lags.

OLS1 2GLS GWR OLS1 2GLS GWR

90-00 95-05
Constant 2.985 * 2.509 * 0.373 1.914 * 1.600 * 1.115
POPUL −0.020 −0.028 −0.017 0.039 0.050 0.028
EMPLY 1.023 * 1.027 * 1.120 0.955 * 0.942 * 0.962
WAGES −0.397 * −0.296 * −0.261 −0.142 * −0.089 −0.099
PWFOR 0.290 * 0.173 * 0.331 0.015 −0.038 0.239
PROFS 0.040 * 0.040 * 0.031 0.066 * 0.062 * 0.059
PATEN 0.015 ** 0.017 * 0.013 −0.002 0.000 −0.004
PROPR 0.124 * 0.081 * 0.121 0.117 * 0.092 * 0.144

00−10 05−15
Constant 0.040 −0.193 1.004 −0.384 −0.727 1.350
POPUL 0.141 * 0.159 * 0.113 0.061 0.080 −0.009
EMPLY 0.846 * 0.827 * 0.881 0.939 * 0.919 * 1.015
WAGES −0.229 * −0.189 * −0.246 −0.186 * −0.136 * −0.179
PWFOR 0.393 * 0.350 * 0.361 0.341 * 0.288 * 0.227
PROFS 0.135 * 0.130 * 0.100 0.115 * 0.110 * 0.091
PATEN −0.006 −0.004 0.002 0.010 0.012 ** 0.012
PROPR 0.211 * 0.187 * 0.135 0.200 * 0.176 * 0.096

Note: n = 377; * 0.01 level; ** 0.05 level. OLS does not address spatial dependence and 2GLS addresses spatial
dependence; GWR is the average across all observations.

5.2. Stability

As pointed out by Carlino and Mills [19] the stability of the population and employ-
ment estimates should be examined, even though the practicality of any equilibrium might
be questioned [63]. Here it has become customary to examine the lagged coefficients of
the 2 by 2 growth operator matrix M = (h1, i1; h2, i2), where h represents population and
i represents employment. The subscripts signify that two equations are being estimated,
and the semi-colon simply delimits the separate rows for these equations [17,18]. When
the eigenvalues (or characteristic roots) are real for the endogeneity matrix M, convergence
(eventually) must take place in the adjustment process and a long-run equilibrium exists.
At the global equilibrium, estimated by OLS regression, or at each local equilibrium, esti-
mated by GWR, the array of population coefficients in M* is just matched by the array of
employment coefficients in that same matrix. The dominant (larger) eigenvalue is selected
to indicate the correct solution for stability in the adjustment process [49,50].

In fact, stability in the GWR estimates was almost universal. In the first period, there
were only 2 cases of instability; in the second period, 16 cases; and in both the third and
fourth period, no cases at all. Clearly the period 1995–2005 exhibited the greatest degree of
instability for the four periods that were examined. Five of these places, including Houston,
were found in the oil patch district of Texas and three more, including Dubuque, IA and
Eau Claire, WI, were strung out along the Mississippi River and its tributaries in Middle
America. The remaining places were distributed across the nation and this list included
some agricultural economies such as Chico, CA and Yakima, WA; but, in any case, none
was a large metropolitan area.

Table 3 provides further evidence of this stability by showing how remarkably low
was the degree of volatility in the reduced-form coefficients at four different points in time.
The correlation coefficients shown in the various sections of this table relate, in clockwise
order, to the degree of association between (i) the estimates of POPULt-1 in the current
population equations; (ii) the estimates of EMPLYt-1 in the current population equations;
(iii) the estimates of POPULt-1 in the current employment equations; and (iv) the estimates
of EMPLYt-1 in the current employment equations. So, to clarify, r = 0.794 denotes the very
strong association between the 377 estimates of POPULt-1 for the period 1990–2000 and the
377 estimates of POPULt-1 fifteen years later for the period 2005–2015. The own-variable
correlations, all very high, were to be expected but the strong cross-variable correlations
were not; however, these high latter figures appear to be in part due to the way GWR
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generates it place-specific estimates. The comparable correlations for the employment
equations were also very strong. The only remarkable difference between the two sets
of estimates was the drop in both the own- and cross-variable correlation coefficients for
employment across the 377 metropolitan areas during the period 2000–2010, when the
Great Recession was taking place. The strength of the association between the estimates of
2000 and those of 2010 were 0.868 (own) and 0.850 (cross) for the population equations, but
these two figures dropped to 0.621 (cross) and 0.656 (own) for the employment equations.
Nevertheless, the stability over time in the various place-specific estimates of population
and employment was truly remarkable.

Table 3. Correlations across the GWR Estimates of Current Population and Current Employment.

2000 2005 2010 2015 2000 2005 2010 2015

POPULt

POPULt-1 POPULt-1 POPULt-1 POPULt-1 EMPLYt-1 EMPLYt-1 EMPLYt-1 EMPLYt-1

2000 1.000 0.920 0.868 0.794 1.000 0.919 0.850 0.810

2005 0.920 1.000 0.961 0.844 0.919 1.000 0.957 0.853

2010 0.868 0.961 1.000 0.915 0.850 0.957 1.000 0.917

2015 0.794 0.844 0.915 1.000 0.810 0.853 0.917 1.000

EMPLYt

POPULt-1 POPULt-1 POPULt-1 POPULt-1 EMPLYt-1 EMPLYt-1 EMPLYt-1 EMPLYt-1

2000 1.000 0.926 0.621 0.822 1.000 0.911 0.656 0.867

2005 0.926 1.000 0.727 0.885 0.911 1.000 0.796 0.910

2010 0.621 0.727 1.000 0.856 0.656 0.796 1.000 0.842

2015 0.822 0.885 0.856 1.000 0.867 0.910 0.842 1.000

This issue deserves more discussion focusing on the nation’s very largest metropolitan
economies. The four reduced-form coefficients of M are shown for each of the nation’s
15 largest metropolitan areas in Table 4, covering 1990 to 2000, and then in Table 5, covering
2005 to 2015. Even across this small number of metropolitan areas, a certain amount of
variation is visible in the signs and the sizes of these key estimates. While stability occurs
in all 15 instances, the property of sustainability is not universal (see below). In general, it
should be noted that the variation in the estimates of the four estimates declined over time.
Nevertheless, the pattern of coefficients for each large economy changed very little over
the 25-year study period; for example, the figures for Boston changed marginally from
M = (0.9074, 0.1054; 0.0405, 0.9773) for 2000 to M = (0.9310, 0.0672; 0.0252, 0.9800) for
2015. In fact, a simple 3-cluster classification based solely on these four coefficients is
identical in those two separate time periods, where two other economies resemble New
York, three others resemble Chicago, and the remaining seven are more like Los Angeles.
This is another remarkable result given the shifts noted in the values and signs of the
endogenous variables.

To explore matters even more, consider the four GWR estimates for Chicago based on
the final 10-year period 2005–2015, where M = (0.9418, 0.0568; 0.0432, 0.9648). Stability in
the long run occurs for Chicago because the two roots can be shown to be real and the value
of the dominant eigenvalue is λ = 1.0041. This local convergence leads to the specification of
a place-specific unit vector, which indicates the relative importance of the two endogenous
variables at the long-run equilibrium. Here the ratio between population and employment
at this equilibrium is 0.9109 to 1.0000, meaning that the ratio, expressed in logarithms, in
the unit vector is (0.4767; 0.5233). Once transformed into arithmetic format, this ratio is
(0.4884; 0.5116), and both unit vectors indicate that employment clearly exceeds population
at the long-run employment. As noted in the tables, all 15 of these large metropolitan areas
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have stable solutions for the two 10-year intervals of time. However, the composition of the
unit vectors can be somewhat different in the various places; for instance, the coefficients
for Seattle in the last period are M = (1.0273, −0.0318; 0.0871, 0.9112), where λ = 0.9937, and
the unit vector (in logarithmic format) is (0.4866, 0.5134). So, Chicago would be expected
to have a slightly higher population-to-employment ratio than Seattle when convergence
eventually occurs in both places.

Table 4. Reduced-Form Estimates of Population and Employment: 2000.

POPULt POPULt EMPLYt EMPLYt

Metro POPULt-1 EMPLYt-1 POPULt-1 EMPLYt-1 Stable Sustain

New York 1.017 −0.015 0.020 0.970 Yes Yes
Los Angeles 0.779 0.223 −0.098 1.100 Yes Yes

Chicago 0.847 0.137 −0.027 1.028 Yes No
Dallas 0.900 0.093 0.033 0.976 Yes No

Houston 0.716 0.283 −0.106 1.102 Yes Yes
Philadelphia 0.899 0.140 0.048 0.984 Yes Yes
Washington 0.867 0.131 0.009 0.995 Yes No

Miami 0.810 0.186 −0.053 1.049 Yes Yes
Atlanta 1.118 −0.108 0.148 0.862 Yes Yes
Boston 0.907 0.105 0.041 0.977 Yes Yes

San Francisco 0.851 0.147 −0.063 1.065 Yes Yes
Phoenix 0.833 0.161 −0.050 1.048 Yes Yes

Riverside 0.790 0.217 0.127 0.895 Yes Yes
Detroit 0.801 0.204 −0.138 1.143 Yes Yes
Seattle 1.032 −0.035 0.063 0.928 Yes Yes

Note: Solution is sustainable if population estimate exceeds employment estimate in 2020 using 2000 levels as
base figures.

Table 5. Reduced-Form Estimates of Population and Employment: 2015.

POPULt POPULt EMPLYt EMPLYt

Metro POPULt-1 EMPLYt-1 POPULt-1 EMPLYt-1 Stable Sustain

New York 1.021 −0.025 0.081 0.917 Yes No
Los

Angeles 0.838 0.162 −0.079 1.087 Yes No

Chicago 0.942 0.056 0.043 0.964 Yes No
Dallas 0.937 0.062 0.034 0.974 Yes No

Houston 0.879 0.119 −0.041 1.049 Yes No
Philadelphia 0.932 0.064 0.018 0.983 Yes Yes
Washington 1.022 −0.026 0.011 0.999 Yes No

Miami 0.852 0.148 −0.057 1.067 Yes No
Atlanta 1.031 −0.034 0.083 0.914 Yes Yes
Boston 0.931 0.067 0.025 0.980 Yes No

San
Francisco 0.817 0.182 −0.117 1.123 Yes No

Phoenix 0.823 0.176 −0.107 1.114 Yes Yes
Riverside 0.830 0.167 −0.097 1.101 Yes Yes

Detroit 0.824 0.172 −0.102 1.107 Yes Yes
Seattle 1.027 −0.032 0.087 0.911 Yes Yes

Note: Solution is sustainable if population estimate exceeds employment estimate in 2035 using 2015 levels as
base figures.

5.3. Sustainability

In both examples above population numbers exceed employment numbers when
the adjustment rounds begin but, at the final equilibria, employment comes to exceed
population in both instances. This, of course, is not a property that can be violated in stand-
alone labor markets. However, this property is not a tight constraint in the same sense
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for county-based studies where cross-commuting occurs [30]. So, the two labor markets
are slowly transformed, at different rates, from sustainable to unsustainable states as the
rounds of adjustment unfold. So, the interesting question arises of identifying the exact
point in time when this shift to unsustainability occurs? To address this problem, consider
the condition POPULt = σEMPLYt, where σ > 1 is a multiplier reflecting the relative size
of the non-working or dependent population in the final year of the estimation period.
Once the four coefficients of M have been determined the growth operator matrix can be
progressively powered to identify the rounds of adjustment that are expected to unfold
over the subsequent 10 years, 20 years, and so on. If a fixed multiplier σ is used for each
adjustment round after time t the future values for population and employment will fall
(or rise) depending on how population and employment interact locally. On the other
hand, this rather strict assumption could be modified to recognize that each place-specific
multiplier σ could shrink, at its own distinctive rate, over the entire study period as some
people continued to work while growing older and others took on multiple part-time jobs.
In any case, the upcoming analysis will not address this possibility; instead, it will simply
identify the point in time when employment is expected to exceed population using the
multiplier value that existed at the final year of the estimation period.

To illustrate matters, consider again the four coefficient values estimated for metropoli-
tan Chicago during the period 2005–2015 (see Table 5). In 2015, the values for popula-
tion and employment (expressed as natural logarithms) were 16.04 and 15.52, respec-
tively, indicating that Chicago’s metropolitan population was approximately 9.25 m and
its metropolitan employment was 5.50 m at that time. So, in this case, the multiplier
σ = 9.25/5.50 = 1.682, meaning that each worker supported 0.682 other persons (depen-
dents) in 2015. But, applying the growth operator matrix, after 10 years (year 2025), the
population and employment levels are projected to be 16.02 and 15.75, respectively, indicat-
ing clearly that Chicago’s population multiplier is expected to fall through the adjustment
process during the subsequent decade 2015–2025. After another 10 years, those figures will
shift to 15.99 and 15.89 in 2035, and then to 15.96 and 16.02 in 2045. So, the adjustment pro-
cess becomes unsustainable sometime between 2035 and 2045; in fact, by interpolation of
the two endogenous variables between the appropriate endpoint years, unsustainability in
the adjustment process appears to occur sometime between 2041 and 2042. As matters turn
out the process is somewhat different for Seattle. Here the projection for population falls
much like above but the projection for employment rises much more slowly. Consequently,
population must fall a lot for the equalization of population and employment to occur and,
in this instance, some sixty years are required before the labor market becomes unsustain-
able. In other words, even when solutions are stable, the property of sustainability will
vary a lot from one metropolitan place to the next.

5.4. Contextual Variables

This portion of this paper makes a few closing observations about the regional vari-
ation in the elasticity estimates for the different contextual variables. All the results are
based on the eight BEA regions, and it should be clarified that these state groupings are
somewhat different from those used by the U.S. Census Bureau [64,65]. The results, given
for the eight conjectured relationships mentioned earlier, are all based on the pooling
of the various GWR estimates across the four overlapping time intervals, meaning that
n = 1508 throughout. It is important to emphasize that these are average estimates of the
marginal effects and not average figures for the levels of the eight different exogenous
variables. Moreover, the GWR estimates for metropolitan areas in any given BEA region
will sometimes be affected by the attributes of metropolitan areas located in different BEA
regions. The numbers of metropolitan areas in each BEA region are indicated in the first
column of the table and both the two highest and two lowest regional deviations from the
national average scores are shown in boldface.

Table 6 shows the averages for the three variables that were expected to affect the
reduced-form population equation. As indicated, the appropriate nationwide averages
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for these effects were HAMEN = 0.1040, CDDEG = 0.0025, and HDGDY = −0.0398. So,
across the 25-year period, metropolitan population grew faster where human amenities
were higher, cooling degree-days were more frequent, and heating degree-days were less
frequent. All the region-specific averages in Table 6 are standard scores that have been
generated using the national estimates, pooled across four intervals, where the overall
average is 0.000 in all three instances. Consequently, the human amenity figures of 0.098 for
BEA region 1 and −0.216 for region 4 indicate that this effect was, on average, somewhat
stronger than the national norm in New England but was, on average, much weaker than
the national norm in the Southwest. The bottom row indicates a positive estimate for the
coefficient so better human amenities generated population growth in New England but
restricted population growth in the Southwest. Evidently, human amenities were especially
important in New England (0.098), the Southwest (−0.216), the Plains (0.204), and the
Rocky Mountain (−0.174) states. These numbers suggest that metropolitan areas in BEA
regions 4 and 7 could enhance their population growth even more if human amenities such
as restaurants and public goods such as education were improved.

Table 6. Pooled Standard Scores for the Four Population Equations.

Region Name HAMEN CDGDY HDGDY

1 (15) New England 0.098 −0.197 −0.326
2 (41) Mideast 0.055 −0.045 0.085
3 (121) Southeast 0.000 −0.007 0.005
4 (39) Southwest −0.216 0.234 0.112
5 (59) Great Lakes 0.069 0.002 0.012
6 (33) Plains 0.204 −0.197 −0.236
7 (22) Rocky Mountain −0.174 0.227 0.091
8 (47) Far West −0.045 −0.044 0.031

Nation Base Score 0.000 0.000 0.000
(377) Actual Estimate 0.1040 0.0025 −0.0398

Note: All figures are averages (n = 1508) where national mean is 0.000; numbers of metro areas shown in
parentheses.

This table also shows those regions where the population effects of cooling degree-
days and heating degree-days were most important between 1990 and 2015. Across the
entire nation, CDGDY had a small, positive effect on those population numbers, while
HDGDY had a moderate, negative effect. The Southwest (0.234) and Rocky Mountain
(0.227) states both enjoyed considerable population growth even though their summers
could be very hot; but, at the same time, New England (−0.197) and the Plains (−0.197)
suffered. This same pattern is seen for the more significant winter effect, where the
Southwest (0.112) especially benefitted in population growth, while New England (−0.326)
especially suffered.

The appropriate estimates for the four overlapping employment equations are shown
in Table 7. After noting the overall negative effect induced by marginal wage shifts (note
−0.1962 in the bottom row), the job numbers in New England (0.131) rose when that
small region’s wages were higher but, under the same expansionary conditions, those job
numbers fell a lot in the Far West (−0.147). New England (0.084) and the Far West (0.110)
especially benefitted from the youthful age composition of their workforces but, on this
measure, the Great Lakes (−0.101) and Plains (−0.063) clearly suffered. On the other hand,
the Mideast and Great Lakes benefitted jobwise from the professional qualities of their
workforces, and here New England and the Far West suffered. Patenting, while being the
least important national factor (note 0.0056 in the bottom row), was responsible for some
employment growth in the Far West (0.126) and Mideast (0.090); and, despite the presence
of high-tech Austin and Boston in those two regions, the Southwest and New England
exhibited negative patenting effects. Finally, self-ownership was clearly a factor in the job
growth witnessed across the Far West (0.097), Mideast (0.034), and Southeast (0.025) but
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this factor was not so important in the Southwest (−0.064), Plains (−0.055), and Rocky
Mountain (−0.061) states.

Table 7. Pooled Standard Scores for the Four Employment Equations.

Region Name WAGES PWFOR PROFS PATEN PROPR

1 (15) New
England 0.131 0.084 −0.244 −0.153 −0.118

2 (41) Mideast −0.053 −0.028 0.082 0.090 0.034
3 (121) Southeast −0.032 0.003 0.022 0.028 0.025
4 (39) Southwest 0.093 0.004 0.003 −0.218 −0.064

5 (59) Great
Lakes 0.076 −0.101 0.093 −0.005 −0.026

6 (33) Plains 0.039 −0.063 −0.114 0.000 −0.055

7(22) Rocky
Mountain 0.077 0.084 −0.013 −0.089 −0.061

8(47) Far West −0.147 0.110 −0.084 0.126 0.097
Nation Base Score 0.000 0.000 0.000 0.000 0.000

(377) Actual
Estimate −0.1962 0.2898 0.0704 0.0056 0.1246

Note: All figures are averages (n = 1508) where national mean is 0.000; numbers of metro areas shown in
parentheses.

As a last exercise, these standard score averages were examined for their geographic
variation. Three different cluster analyses were undertaken to discern whether the BEA
regions could be consolidated into even larger regions that maintained some uniformity in
their metropolitan estimates. In order, these adopted the population effects from Table 6,
the employment effects from Table 7, and the combined population and employment effects
from the two tables. The Southwest and Rocky Mountain regions grouped together on all
three occasions and the Mideast, Southeast, and Great Lakes regions also grouped together
on all three occasions. In both instances, the designated BEA regions were contiguous
so, clearly, two very broad megaregions accounted for the various effects seen across five
of the nation’s eight BEA regions. Between 1990 and 2015, New England and the Plains
region exhibited similarities in their population effects but not in their employment effects,
and the Far West was an employment outlier.

6. Concluding Remarks

To date, the adjustment models addressing joint population and employment change
across U.S. metropolitan areas have adopted ordinary least-squares (OLS) regression, an
approach that generates global estimates. Alternatively, this paper has adopted geographi-
cally weighted regression (GWR) to generate local estimates of population and employment
change between 1990 and 2015. Here population is driven by human and natural amenities
and employment is driven by wages, patents, self-employment rates, and various facets of
the workforce. Other variables were estimated by OLS regression in earlier studies but, to
maintain only a small number of key explanatory variables, these were omitted from the
current GWR study.

The GWR approach exposed substantial variation in the composition of the 2 by 2
growth operator (endogenous) matrix across the 377 metropolitan places at four different
points in time. Nevertheless, in the great majority of cases, a long-run equilibrium was
shown to occur, although, especially during the past crisis period 1995–2010, various
solutions were unstable. However, the GWR estimates indicated different local adjustment
speeds which, in turn, led to notable differences in the attributes of the place-specific
convergence processes. Consequently, the various metropolitan areas were projected
to have different employment-to-population ratios once those stable states were reached.
Moreover, the local estimates revealed that many of the projections might not be sustainable.
Whenever employment numbers exceeded population numbers in subsequent periods, the
labor markets of these economies would cease to be sustainable.
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Future research using a location-specific adjustment model could address a wide
variety of topical and methodological issues, and some of these might be explored once
the Census 2020 results arrive. First, other approaches, such as the spatial expansion
method, could be used to provide local estimates of the 2 by 2 growth operator matrix.
Consistency in the results would certainly enhance confidence in the findings of this
paper. Second, different versions of GWR could be estimated to clarify how sensitive
the findings of this paper are to the version that was chosen. Specifically, some exoge-
nous variables might only have local effects, while other such variables might exhibit
global effects. It makes sense that those variables that can be modified by public policy
(e.g., human amenities, wages) should have local effects but others (especially natural
amenities) might only have global effects. A third issue worthy of more study concerns the
nature of the matrix projections. As already noted, it is natural for dependent populations
(young and old) to change in relative size, on a local basis, and this factor could be endoge-
nized in a better methodology for establishing those future years when sustainability might
grind to a halt. Perhaps this approach could even be wedded with another, one having
more demo-economic complexity, to allow metropolitan in- or out- migration to proceed
whenever some triggering mechanism—either the dependency ratio or the unemployment
rate—became too large or too small [32].

There is also merit in replicating this study using all contiguous counties in the lower
48 states instead of metropolitan areas, or even in clarifying the different location-specific
effects that arise in small versus large metropolitan areas [30] Here it must be remembered
that changing the numbers of metropolitan areas—perhaps to the top 100 monitored by the
Brookings Institution—will also change the underlying spatial structure of the estimation
problem [66]. Furthermore, if population and employment levels are replaced by densities
very useful insights might arise regarding the very recent tendency for many households
to substitute large suburban or micropolitan dwelling units, having longer commutes
(if required), for the small inner-city units that offered them superior access to jobs and
human-created amenities.

Author Contributions: Conceptualization, G.F.M. and J.I.C.; methodology, G.F.M. and J.I.C.; formal
analysis, G.F.M. and J.I.C.; writing—original draft preparation, G.F.M. and J.I.C.; writing—review and
editing, G.F.M. and J.I.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are very grateful to Helena A. K. Nilsson for undertaking the
spatial estimations. Helena’s postdoctoral position is at the Centre for Entrepreneurship and Spatial
Economics at Jönköping International Business School in Jönköping, Sweden. The authors also thank
two referees for their comments.

Conflicts of Interest: The authors claim no conflict of interest.

References
1. McCann, P. The Regional and Urban Policy of the European Union; Edward Elgar: Cheltenham, UK, 2015.
2. Borchert, J. Major control points in American economic geography. Ann. Assoc. Am. Geogr. 1978, 68, 214–232. [CrossRef]
3. Pred, A. Urban Growth and the Circulation of Information; Harvard University Press: Cambridge, MA, USA, 1973.
4. Berry, B.; Horton, F. Geographic Perspectives on Urban Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1970.
5. Cadwallader, M. Urban Geography: An Analytical Approach; Prentice-Hall: Upper Saddle River, NJ, USA, 1996.
6. Arnott, R.; McMillen, D. (Eds.) A Companion to Urban Economics; Blackwell: Oxford, UK, 2008.
7. Glaeser, E. Triumph of the City; Penguin Press: New York, NY, USA, 2011.
8. Whisler, R.; Waldorf, B.; Mulligan, G.; Plane, D. Quality of life and the migration of the college-educated: A life-course approach.

Growth Chang. 2008, 39, 58–94. [CrossRef]
9. Corcoran, J.; Faggian, A. (Eds.) Graduate Migration and Regional Development; Edward Elgar: Cheltenham, UK, 2017.

http://doi.org/10.1111/j.1467-8306.1978.tb01192.x
http://doi.org/10.1111/j.1468-2257.2007.00405.x


Urban Sci. 2021, 5, 24 17 of 18

10. Gordon, I.; Champion, T.; Coombes, M. Urban escalators and interregional elevators: The difference that location, mobility, and
sectoral specialisation make to occupational progression. Environ. Plan. A 2015, 47, 588–606. [CrossRef]

11. Bosworth, G.; Venholst, V. Economic linkages between urban and rural regions—what’s in it for the rural? Reg. Stud. 2017, 52,
1–12. [CrossRef]

12. Kotkin, J. The Human City; Agate B2: Chicago, IL, USA, 2016.
13. Moretti, E. The New Geography of Jobs; Houghton Mifflin Harcourt: New York, NY, USA, 2012.
14. Bartik, T. Who Benefits from State and Local Economic Development Policies? W.E. Upjohn Institute: Kalamazoo, MI, USA, 1991.
15. DiPasquale, D.; Wheaton, W. Urban Economics and Real Estate Markets; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996.
16. Mulligan, G.; Reid, N.; Lehnert, M. Metropolitan innovation in the New Economy. Urban Sci. 2017, 1, 18. [CrossRef]
17. Mulligan, G.; Nilsson, H.; Carruthers, J. Population and employment change in U.S. metropolitan areas. In Population, Place, and

Spatial Interaction; Franklin, R., Ed.; Springer Nature: Singapore, 2019; pp. 95–113.
18. Mulligan, G.; Nilsson, H. Recent population and employment change in U.S. metropolitan areas. In Development Studies in

Regional Science; Chen, Z., Bowen, W., Whittington, D., Eds.; Springer Nature: Singapore, 2020; pp. 429–447.
19. Carlino, G.; Mills, E. The determinants of county growth. J. Reg. Sci. 1987, 27, 135–152. [CrossRef] [PubMed]
20. Rogers, A. Matrix Analysis of Interregional Population Growth and Distribution; University of California Press: Berkeley, CA,

USA, 1968.
21. Fotheringham, S.; Brunsdon, C.; Charlton, M. Quantitative Geography; Sage Publications: London, UK, 2000.
22. Florida, R. The Rise of the Creative Class; Basic Books: New York, NY, USA, 2002.
23. Noah, T. The Great Divergence; Bloomsbury Press: New York, NY, USA, 2012.
24. Fallah, B.; Partridge, M.; Rickman, D. Geography and high-tech employment growth in U.S. counties. J. Econ. Geogr. 2014, 14,

683–720. [CrossRef]
25. Mulligan, G.; Reid, N.; Carruthers, J.; Lehnert, M. Exploring innovation gaps in the American space economy. In Regional Research

Frontiers; Jackson, R., Schaeffer, P., Eds.; Springer International: Cham, Switzerland, 2017; Volume 1, pp. 21–50.
26. Beale, C. Rural and Nonmetropolitan Population Trends of Significance to National Population Policy; Economic Research Service:

Washington, DC, USA, 1972.
27. Frey, W. The new urban revival in the United States. Urban Stud. 1993, 30, 741–774. [CrossRef]
28. Carruthers, J.; Vias, A. Urban, suburban, and exurban sprawl in the Rocky Mountain West: Evidence from regional adjustment

models. J. Reg. Sci. 2005, 45, 21–48. [CrossRef]
29. Muth, R. Migration: Chicken or egg? South. Econ. J. 1971, 37, 295–306. [CrossRef]
30. Carruthers, J.; Mulligan, G. The regional adjustment model: An instrument of evidence-based policy. In Handbook of Regional

Growth and Development Theories, 2nd ed.; Capello, R., Nijkamp, P., Eds.; Edward Elgar: Cheltenham, UK, 2019; pp. 607–627.
31. Borts, G.; Stein, J. Economic Growth in a Free Market; Columbia University: New York, NY, USA, 1964.
32. Isserman, A. Population Change and the Economy: Social Science Theories and Models; Kluwer-Nijhoff: Boston, MA, USA, 1986.
33. Greenwood, M. Research on internal migration in the United States: A survey. J. Econ. Lit. 1975, 13, 397–433.
34. Graves, P. A re-examination of migration, economic opportunity, and the quality of life. J. Reg. Sci. 1976, 16, 107–112. [CrossRef]
35. Graves, P. A life-cycle empirical analysis of migration and climate, by race. J. Urban Econ. 1979, 6, 135–147. [CrossRef]
36. Sjaastad, L. The costs and returns of human migration. J. Political Econ. 1962, 70, 80–93. [CrossRef]
37. Rosen, S. Wage-based indexes of urban quality of life. In Current Issues in Urban Economics; Mieszkowski, P., Straszheim, M., Eds.;

Johns Hopkins University Press: Baltimore, MD, USA, 1979; pp. 74–104.
38. Roback, J. Wages, rent, and the quality of life. J. Political Econ. 1982, 90, 1257–1278. [CrossRef]
39. Herzog, H.; Schlottman, A. What can be learned from the recent migrants? Growth Chang. 1986, 17, 37–50. [CrossRef]
40. Boarnet, M. An empirical model of intrametropolitan population and employment growth. Pap. Reg. Sci. 1994, 73, 135–152.

[CrossRef]
41. Mueser, P.; Graves, P. Examining the role of economic opportunity and amenities in explaining population redistribution. J. Urban

Econ. 1995, 37, 176–200. [CrossRef]
42. Glaeser, E. The Economics Approach to Cities; Working paper 13696; National Bureau of Economic Research: Cambridge, MA,

USA, 2007.
43. Steinnes, D.; Fisher, W. An econometric model of intraurban location. J. Reg. Sci. 1974, 14, 65–80. [CrossRef]
44. Steinnes, D. Causality and intraurban location. J. Urban Econ. 1977, 4, 69–79. [CrossRef]
45. Clark, D.; Murphy, C. Countywide employment and population growth. J. Reg. Sci. 1996, 36, 235–256. [CrossRef]
46. Mulligan, G.; Vias, A.; Glavac, S. Initial diagnostics of a regional adjustment model. Environ. Plan. A 1999, 31, 855–876. [CrossRef]
47. Hoogstra, G.; Dijk, J.; Florax, R. Do jobs follow people or people follow jobs? A meta-analysis of Carlino-Mills studies. Spat. Econ.

Anal. 2017, 4, 357–378. [CrossRef]
48. Mulligan, G.; Nilsson, H. Recent population and employment change in U.S. metropolitan areas: Endogenizing self-employment

and patents. In Unlocking the Potential of Regions Through Entrepreneurship and Innovation; Bernhard, I., Ed.; University West:
Trollhättan, Sweden, 2019; pp. 309–329.

49. Rogers, A. Matrix Methods in Urban and Regional Analysis; Holden-Day: San Francisco, CA, USA, 1971.
50. Keyfitz, N.; Caswell, H. Applied Mathematical Demography, 3rd ed.; Springer: New York, NY, USA, 2005.

http://doi.org/10.1068/a130125p
http://doi.org/10.1080/00343404.2017.1339868
http://doi.org/10.3390/urbansci1020018
http://doi.org/10.1111/j.1467-9787.1987.tb01143.x
http://www.ncbi.nlm.nih.gov/pubmed/12268789
http://doi.org/10.1093/jeg/lbt030
http://doi.org/10.1080/00420989320081901
http://doi.org/10.1111/j.0022-4146.2005.00363.x
http://doi.org/10.2307/1056181
http://doi.org/10.1111/j.1467-9787.1976.tb00954.x
http://doi.org/10.1016/0094-1190(79)90001-9
http://doi.org/10.1086/258726
http://doi.org/10.1086/261120
http://doi.org/10.1111/j.1468-2257.1986.tb00931.x
http://doi.org/10.1111/j.1435-5597.1994.tb00607.x
http://doi.org/10.1006/juec.1995.1010
http://doi.org/10.1111/j.1467-9787.1974.tb00430.x
http://doi.org/10.1016/0094-1190(77)90031-6
http://doi.org/10.1111/j.1467-9787.1996.tb01267.x
http://doi.org/10.1068/a310855
http://doi.org/10.1080/17421772.2017.1340663


Urban Sci. 2021, 5, 24 18 of 18

51. Lu, B.; Charlton, M.; Harris, P.; Fotheringham, S. Geographically weighted regression with a non-Euclidean distance metric: A
case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 2014, 28, 1–25. [CrossRef]

52. Bureau of Economic Analysis. Interactive Tables: Personal Income and Employment. Available online: https://www.bea.gov/
regional/index/htm (accessed on 1 November 2018).

53. U.S. Census Bureau. Available online: https://www.census.gov (accessed on 1 November 2018).
54. Carruthers, J.; Mundy, B. Environmental Valuation; Ashgate: Burlington, VT, USA, 2006.
55. Savageau, D.; Boyer, R. Places Rated Almanac, 4th ed.; Macmillan: New York, NY, USA, 1993.
56. BizEE Degree Days. Available online: https://www.degreedays.net (accessed on 1 November 2018).
57. Mulligan, G.; Carruthers, J. Amenities, quality of life, and regional development. In Investigating Quality of Urban Life; Marans, R.,

Stimson, R., Eds.; Springer: New York, NY, USA, 2011; pp. 107–133.
58. U.S. Patent and Trade Office. Calendar Year Patent Statistics. Available online: https://www.uspto.gov/web/offices/ac/ido/

oeip/taf/reports_cbsa.htm (accessed on 1 November 2018).
59. Mulligan, G. Revisiting patent generation in U.S. metropolitan areas: 1990–2015. Appl. Spat. Anal. Policy. accepted for publication

on 13 July 2020. [CrossRef]
60. Kirzner, I. Competition and Entrepreneurship; University of Chicago: Chicago, IL, USA, 1973.
61. Godin, K.; Clemens, J.; Veldhus, N. Measuring Entrepreneurship: Conceptual Frameworks and Empirical Indicators; Fraser Institute:

Vancouver, BC, Canada, 2008.
62. Kelejian, H.; Prucha, I. Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic

disturbances. J. Econom. 2010, 157, 53–67. [CrossRef]
63. Kaldor, N. The irrelevance of equilibrium economics. Econ. J. 1972, 82, 1237–1255. [CrossRef]
64. Perloff, H.; Dunn, E., Jr.; Lampard, E.; Muth, R. Regions, Resources and Economic Growth; Resources for the Future: Washington,

DC, USA, 1960.
65. Nourse, H. Regional Economics; McGraw-Hill: New York, NY, USA, 1968.
66. Shearer, C.; Shah, I.; Friedhoff, A.; Berube, A. Metro Monitor 2018. Available online: https://www.brookings.edu/research/

metro-monitor-2018 (accessed on 1 November 2018).

http://doi.org/10.1080/13658816.2013.865739
https://www.bea.gov/regional/index/htm
https://www.bea.gov/regional/index/htm
https://www.census.gov
https://www.degreedays.net
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports_cbsa.htm
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports_cbsa.htm
http://doi.org/10.1007/s12061-020-09354-3
http://doi.org/10.1016/j.jeconom.2009.10.025
http://doi.org/10.2307/2231304
https://www.brookings.edu/research/metro-monitor-2018
https://www.brookings.edu/research/metro-monitor-2018

	Introduction 
	Bidirectional Population and Employment Change 
	The Adjustment Process 
	Global Estimates 
	Local Estimates 

	Data, Variables, and Conjectures 
	Results 
	Regression Estimates 
	Stability 
	Sustainability 
	Contextual Variables 

	Concluding Remarks 
	References

