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Abstract: A 3D model communicates more effectively than a 2D model, hence the applications of
3D city models are rapidly gaining significance in urban studies. However, presently, there is a
dearth of free of cost, high-resolution 3D city models available for use. This paper offers potential
solutions to this problem by providing a globally replicable methodology to generate low-cost 3D city
models from open source 2D building data in conjunction with open satellite-based elevation datasets.
Two geographically and morphologically different case studies were used to develop and test this
methodology: the Chinese city of Shanghai and the city of Nottingham in the UK. The method is
based principally on OpenStreetMap (OSM) and Advanced Land Observing Satellite World 3D digital
surface model (AW3D DSM) data and use GMTED 2010 DTM data for undulating terrain. Further
enhancement of the resultant 3D model, though not compulsory, uses higher resolution elevation
models that are not always open source, but if available can be used (i.e., airborne LiDAR generated
DTM). Further we test and develop methods to improve the accuracy of the generated 3D models,
employing a small subset of high resolution data that are not open source but can be purchased with a
minimal budgets. Given these scenarios of data availability are globally applicable and time-efficient
for 3D building generation (where 2D building footprints are available), our proposed methodology
has the potential to accelerate the production of 3D city models, and thus to facilitate their dependent
applications (e.g., disaster management) wherever commercial 3D city models are unavailable.

Keywords: low-cost 3D city model; AW3D DSM; GMTED2010; open data; OpenStreetMap

1. Introduction

Three-dimensional city models have become an important resource for planning, development,
and policymaking in urban areas [1–5]. A 3D city model is a digital model of an urban environment
with a three-dimensional geometry of urban structures, as well as related objects belonging to urban
areas [6]. Applications using 3D city models have increased in their scope and complexity [7], spanning
from the analysis of electromagnetic propagation for telecommunications through environmental
simulations analysing irradiation distribution [8,9] and noise propagation [10] to virtual or augmented
reality applications [11,12]. This proliferation of applications is, in turn, driving an increasing demand
for the creation and maintenance of reliable 3D city models. A standard approach to creating city
models at a large scale automatically or semi-automatically is to apply stereo vision on aerial or satellite
remote sensing imagery [3]. This, however, can be an expensive and/or time/labour-consuming process,
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particularly if high levels of accuracy in model outputs are required [13]. As a result, large-scale 3D
city models are mostly available in countries with developed economies and/or those with national
mapping agencies, while countries, including many that are transitioning their economies (and where
this information is perhaps of most value), do not have the resources available to produce them [4].
An approach underpinned by suitable open data could fill this gap in capability.

Three-dimensional city models are characterized by their level of detail (LOD) [14]. The CityGML
standard defines five levels of details (LOD) from LOD0 to LOD4. The coarsest level, LOD0, represents
the lowest level of geometry as a 2.5D DTM (digital terrain model) with building footprints or roof
edge polygons. It is used for regional and landscape applications. LOD1, is well-known as a block
model. In LOD1, the building height would be extruded with flat roofs. It is used for city and region
coverage. In LOD2, buildings have differentiated roof structures and thematically differentiated
boundary surfaces based on LOD1 models. It is applicable for city districts. LOD3 will add specific roof
and wall structure details, such as doors and windows, to LOD2 models and it denotes architectural
models. This one is widely used for landmarks. LOD4 gives interior structures, like doors, stairs, etc.,
within the buildings [15–17]. An increase in the LOD of a model enables more applications, but it also
increases data demands and their processing involves higher computational costs [14,18,19].

Many applications of 3D city models require only low level of details—LOD1 (e.g., vulnerability
models, disaster mitigation, climate change and energy models). Here, we investigate the production
of spatially reliable and globally replicable 3D city models using open-licensed data in order to
support that category of user. This research forms part of a wider project, ‘Sustaining Urban Habitats:
An interdisciplinary approach’, which aimed to explore ways of combining environmental and
economic modelling with social and cultural ethnographic work. The focus of the project was on two
contrasting cities: a growth city in China (Shanghai) and a relatively stable city in Europe (Nottingham).
During the implementation of the wider project, the dearth of accurate 3D models for many cities
globally, including Shanghai, was observed. The project had very little budget to acquire data and
thus raised the challenge of how to produce a 3D city model from open data. This study did not aim
to alternate commercial 3D city models with 3D city models from open data, instead, it focused on
presenting a method that produces 3D city models from open data (only) to serve those regions that
cannot acquire commercial data. Given that open datasets are usually characterized by low resolution,
we present a method capable of producing the desired LOD 1 city model for anywhere.

Possibilities of extracting building heights from open digital surface models (DSM) and digital
elevation models (DEM) have previously been attempted [20,21]. These include extraction of building
heights from the Shuttle Radar Topographic Mission (SRTM), the Advanced Spaceborne Thermal
Emission and Reflection Radiometer Digital Elevation Model (ASTER DEM), Advanced Land Observing
Satellite ALOS World 3D (AW3D) DSM, and TerraSAR-X add-on for digital elevation measurements
(TanDEM-X). However, using DSMs alone cannot provide exact building heights or shapes. Rather it
will result in more generalized individual building heights and distorted shapes due to issues of mixed
pixels [21]. Using 2D data of building footprints along with high resolution DSMs can be a possible
solution to extract individual building heights without distorting the building shapes. The approach
is predicated on the availability of open-source 2D spatial datasets, such as OpenStreetMap (OSM),
albeit with varying degrees of completeness and reliability, to provide building footprint geometries.
However, the third dimension is poorly represented in these datasets; less than 2.5% of the nodes
in the OSM database carry an elevation attribute [22,23]. The recently available satellite-derived
elevation datasets provide an opportunity for data fusion by incorporating the elevation data with
open-licensed 2D building data to generate 3D models. Indeed Bagheri et al. generated LOD1 height
values using multisensor and multimodal DEM fusion techniques—TanDEM-X DEM and Cartosat-1
DEM data were joined with OpenStreetMap building footprints [24]. This study confirmed that simple,
prismatic building models can be reconstructed by combining OpenStreetMap building footprints
with remote sensing-derived geodata. However, the assumption of a flat terrain at a constant height
restricts globally applicability of this approach. Furthermore, Cartosat-1 data are not currently global
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in availability. Required, therefore, is a methodology that considers the terrain underlying the urban
area of interest and uses datasets that are available worldwide.

In this paper, we used open DSM data as a foundation dataset and utility in a globally replicable
methodology to generate 3D city models. Recently available elevation datasets such as the AW3D DSM
(with a horizontal spatial resolution of approximately 30 m) by the Japanese Aerospace Exploration
Agency (JAXA) have an open license (a higher resolution (approx. 5 m) DSM is also produced, but only
as a commercial product [25]). Other common elevation-rich datasets include the ASTER DEM and that
from the SRTM. Although these provide mainly terrain (a digital surface model includes all the natural
and built features on the earth’s surface, whereas a digital terrain model is simply an elevation surface
representing the bare earth referenced to a common vertical datum [26]) elevation values that are freely
available under permissive data licenses [27]. We present a methodology that uses open data of 2D
building footprints, along with DSM and DTM datasets, to generate 3D buildings in two geographically
and morphologically diverse cities, namely the Huangpu district in Shanghai, China, which has a
relatively flat topography, and Nottingham, United Kingdom, which has a more undulating terrain.
Shanghai and Nottingham are inherently different from each other, not only in terms of physiography
but also in terms of level of urbanization. While Shanghai is a rapidly urbanizing city, Nottingham is
stabilized and saturated. Hence, these two cities provide end members to transfer the methods globally.

A secondary objective was to consider scenarios of data availability that could improve the
overall accuracy of the open source 3D building model generated (which we call a foundation model).
Here, we exploited that often higher resolution elevation data are available, though not always, or never,
open source, and/or of limited spatial coverage. For instance, there are a number of examples where
previously proprietary LiDAR datasets are now being opened, though often these are for cities in the
global North [28], or it may be the case that projects to produce 3D city models have a limited budget.
Further, here we used the ALOS DSM to generate building heights. AW3D-30 DSM is produced by
resampling the 5 m ALOS DSM, resulting in accuracy reduction. Thus, it is not possible to use this
low resolution DSM directly in the same way you would with a high resolution commercial dataset.
From high resolution DSMs, roof heights or building heights could be easily measured. Whereas,
in low resolution ALOS DSM, this is not possible. This study thus also explored the optimal approach
to using the ALOS-30m DSM.

2. Materials and Methods

2.1. Study Area

The focus was on two cities of very different scale and character: Nottingham in the UK
and Shanghai in China. These two cities also differ considerably with respect to data availability.
The diverse topographical and urban morphologies of the two cities afforded a robust assessment of
the methodology presented in this paper to produce 3D city models openly.

The city of Nottingham is located 206 km to the north of London, in the East Midlands region
of the UK. The city has a total area of 75 km2 and accommodates a total population of 325,000 [29].
Nottingham is situated on an area of low hills along the lower valley of the River Trent and has
an undulating topography. The average elevation of Nottingham is about 61 m [30]. Although the
population of Nottingham City has recently grown (by 13% between 2000 and 2010 according to the
Nottingham City Economic Review, 2011). Compared to Shanghai, the city is less agglomerated with
greater proportions of small and medium sized buildings, and far fewer high-rise buildings. Shanghai
is also almost two orders of magnitude larger than Nottingham. Four wards were selected from
Nottingham that represent the spatial characteristics of the city.

Shanghai, located on the east tip of the Yangtze River Delta and on the east coast of China, is one of
the most urbanized areas in China. Being one of the most dynamic cities in the world, it is a difficult city
to understand, plan, and manage [31]. With a total area of 6340 km2, it is one of the fastest economically
growing and most densely populated cities in East Asia. In 2014, it had a population of more than
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24 million. The average elevation of the city varies between 3 to 5 m above mean sea level. At present,
Shanghai has 16 districts and one county (Chongming) under its jurisdiction. In the first instance,
our focus was on the Huangpu District, due to the complexity of the morphology and environs across
this area. Huangpu covers an area of 20 km2 and is located in the city centre. It is comprised of a
mixture of very tall buildings (more than 100 m), as well as very old and clustered buildings.

Unlike Nottingham, Shanghai is characterized by flat topography and the average elevation of
the city’s terrain is four meters above mean sea level (msl). While Nottingham is less agglomerated,
with greater numbers of medium and small sized buildings and far fewer high-rise buildings, Shanghai
is occupied by a very dense and complex morphology with large numbers of medium and tall buildings.
The availability of open data, including OSM, is very limited and non-uniform in coverage for Shanghai,
particularly in comparison with Nottingham. Thus, Shanghai is an ideal case to be compared with
Nottingham to gain insights on how our methodology may work across the spectrum of cities in their
geographies and morphologies.

2.2. Data

A DSM affords the extraction a variety of features, including terrain, buildings, vegetation,
and any other surface features [3]. Hence, the basic principle in obtaining the building heights from
the AW3D DSM data was to remove the ground elevation from the DSM. For cities that have a flat
terrain, the building heights can be generated by simply subtracting a mean ground elevation from
DSM values. Whereas in the case of topographically varying city terrains, digital terrain models
(DTM) can be used to obtain the ground elevation. DTMs are similar to DSMs, but exclude surface
features. Thus, the datasets to be used with the OpenStreetMap data for Nottingham and Shanghai to
produce globally replicable 3D city models were: (1) the open source ALOS DSM, which has a spatial
resolution of 30 m and (2) the open source Global Multi-resolution Terrain Elevation (GMTED2010)
dataset—the minimum value layer. Although this has a resolution of 225 m, it is used since it is
a globally applicable dataset. In addition to the globally available ALOS DSM and GMTED2010
DTM datasets, we explored how additional datasets could enhance the quality of the 3D city models
produced for both Nottingham and Shanghai under different scenarios of data availability. For the city
of Nottingham, airborne LiDAR-generated DSM and DTM (2 m spatial resolution) were used and for
Shanghai a commercial high-resolution DSM (AW3D Enhanced at 2 m spatial resolution) was procured
and used. For validation of the 3D city models produced, the BHA MasterMap data set and the AW3D
Enhanced were used for Nottingham and Shanghai, respectively. The composition and provenance of
all datasets are described below and further details about their purpose is given in Table 1.

2.2.1. OpenStreetMap (OSM)

All the required 2D building footprints were gathered from the OSM database [32]. Open GIS
data available for Shanghai, China were downloaded from the website mapzen.com, which relies on
OSM for many of its products. OSM is a collaborative project to create free editable geographic data
and a prominent example of volunteered geographic information [22]. The OSM building footprints
(with relevant attribute information) were extracted for the Huangpu district—where the coverage is
relatively dense (see Figure 1).

OSM data are available for Nottingham from a number of sources, and include similar data
layers as for Shanghai. As with Shanghai, the OSM building layer data for Nottingham is of a higher
density in the city centre, with sparser coverage for the residential suburbs. Building footprints vary
in their complexity and accuracy compared to the detailed mapping available from the Ordnance
Survey’s MasterMap dataset [33] (highest resolution digital mapping available for the UK). For some
buildings, the OSM data are visually comparable to its MasterMap counterpart, although we note that
in some instances, the OSM footprints have a simplified geometry and often do not include building
subdivisions (e.g., between properties of terraced houses).
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Table 1. Data types and pertinent details.

Sl. No. Type of Data Coverage and
Accessibility Purpose of Data Usage Source of Data Terms of

Use/License

1 AW3D-30 DSM of 30 m
resolution Global, free data Foundation model

height generation JAXA Open data license

2
LiDAR DSM & DTM,

resolution of 0.25–2 m and
varies by location

UK, free data
Enhanced model
regression value

parameter creation

Environment
Agency Open data license

3
2D building data for
Huangpu, Shanghai

(vector layer)
China, free data Building foot print

generation OpenStreetMap Open license

4 2D building data for
Nottingham (vector layer) UK, free data Building foot print

generation OpenStreetMap Open license

5
Administrative

boundary—Shanghai
(vector layer)

China, free data Case study area selection OpenStreetMap Open license

6
Administrative

boundary—Nottingham
(vector layer)

UK, free data Case study area selection UK data service
download Open license

7
Nottingham building data
with height (vector layer)

attributes

UK, restricted for
UK research only,

commercial
Validation

MasterMap
and BHA
attribute

EDINA Digimap
educational

institution license

8
AW3D-Enhanced 2 metre

resolution DSM for
Shanghai

Commercial Validation Purchased from
Digital Globe Commercial license

9
GMTED2010 of

7.5-arc-second (225–250 m)
for Nottingham

Global, free data Ground elevation value
generation

USGS and
NGA Open data license
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2.2.2. ALOS DSM (AW3D (at 30 m) and AW3D Enhanced (at 2 m))

The DSM produced by the Japanese Aerospace Exploration Agency (JAXA) is of relatively
fine resolution, at about 0.15 arcsec or approx. 5 m [34–36]. JAXA used the archived data of the
panchromatic remote-sensing instrument for stereo mapping (PRISM) onboard the ALOS to generate a
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DSM for the whole globe, known as “ALOS World 3D (AW3D)” [37]. The AW3D-30 global dataset,
which has a 30 metre spatial resolution (1 arcsec), is a resampled version of the 5 m mesh version of
the AW3D [25]. For this work, we used the latest AW3D-30 product, released in May 2017. For both
Shanghai and Nottingham, 30 m ALOS DSM data are currently the most precise global scale open
source elevation [36] dataset (free to the public since 2015). The AW3D Enhanced product (at 2 m
resolution) was also procured, giving a sample covering 16 sq.km of the high resolution DSM at 2 m
for our study area in Shanghai.

2.2.3. GMTED2010

GMTED2010 is the digital elevation (DEM) model product of The United States Geological Survey
(USGS) and The National Geospatial Intelligence Agency (NGA) to replace the existing model, designed
as Global 30 ArcSecond Elevation (GTOPO30), and has been available to the public since 2010 [38,39].
It is available in three resolutions, i.e., with horizontal spacing of 7.5 arc-second (about 250 m),
15 arc-second (about 500 m), and 30 arc-second (about 1 km), and its main data source is a SRTM version
with 01” resolution restricted to the NGA and not available to the general public [40]. Other data sources
include the Canadian Digital Elevation Data (CDED), SPOT 5 Reference 3D, NED for the continental
USA and Alaska, GEODATA 9 Second Digital Elevation Model for Australia, DEMs for Antarctica
and Greenland from laser altimetry (ICESat and GLAS data) and satellite radar (ERS-1 data) [38,40].
This study used the minimum band of GMTED2010 with 250 m resolution due to its global coverage.

2.2.4. Digital Terrain and Surface Models Derived from Airborne LiDAR Data for the UK

The UK Environment Agency’s LiDAR data archive contains accurate digital elevation data for
over 70% of England [41]. For the city of Nottingham, LiDAR-derived DSM and DTM at 2 m resolution
are openly available. For the present study, we used this dataset to extract the ground elevation value
for the Nottingham study area in order to enhance the 3D city model produced.

2.2.5. OS Mastermap BHA

The building height attribute (BHA) dataset published in 2014 is an enhancement to the Ordnance
Survey (OS) MasterMap Topography Layer. BHA data are not available for the whole country, but it
covers major cities and towns of Great Britain. BHA provides a set of height attributes (ground level,
base of roof, and the highest part of the roof) for topographic area features with a buildings theme
within OS MasterMap Topography Layer. OS publish the data as a single CSV file containing over
20 million records [42,43]. For the present study, we used the BHA data for Nottingham for validation.

2.3. Methodology

The overall methodology adopted is illustrated in Figure 2. The workflow describes different
steps to be taken that are dependent, first, on the terrain on which an urban area resides and, second,
on whether there are any relevant additional datasets available The foundation workflow yields a
3D model output possible for all urban areas globally, with the possibility of enhancement of that
3D model should other higher resolution data be available (but are not a necessity). Further details
are below.

2.3.1. Generating 3D Buildings from Open Data (Foundation Workflow)

The first stage in applying this methodology is to establish whether the urban area of interest
(AOI) has a terrain that is flat or undulating (workflow chart step 1), since this determines whether
additional data and processing steps are required, on a building-by-building basis, to identify the
building heights. The 2D building polygon data and the AW3D-30 data (i.e., the DSM) subsequently
need to be co-registered, ensuring that there is no shift between the datasets.
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The methodology is developed to extract the optimal elevation results from the low-resolution
AW3D-30 DSM. As stated above the AW3D-30 open dataset has a 30 m spatial resolution (1 arcsec),
which is a resampled version of the 5 m mesh version of the AW3D [25], so already the elevation
values are the average of many adjacent pixel values. In the case of an urban AOI with a flat terrain
(i.e., Shanghai in our example case), the AW3D-30 DSM is joined to the 2D shapefile (workflow chart
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steps 2A to 6A). The ALOS3D-30 is in raster format and the linear interpolation method is used in
to assign the elevation value from raster surface to the vertex of the polygon. This operation will
assign a Z value to each vertex of the 2D building polygon. Out of these values, the maximum Z
of the geometry is taken as the elevation value since this will reduce the effects of shift caused by
different projection systems and to overcome the low resolution of AW3D-30 data. This is because if
we calculate an average Z value it may also include ground elevations (i.e., due to height data relating
to surfaces beyond the building footprint as AW3D-30 is a resampled version of many adjacent pixels),
thereby reducing the overall height value; similarly, if we consider minimum Z there is a chance that
this will give the ground elevation directly. It is worth noting that if the DSM was of higher resolution
(e.g., 2 m resolution), we would have taken the average Z value within a polygon as the building height.
After this process, the mean ground elevation of 4 m (this is the mean elevation of Shanghai) is removed
from the AW3D-30 DSM data in order to obtain the building heights (workflow chart steps 7 to 10).

In the case of an undulating terrain (i.e., Nottingham in our example case), building roof heights
were computed following the same steps as for Shanghai. However, to accommodate for the change in
elevation of the terrain across the urban AOI an alternative workflow is necessary. In this case, to obtain
the buildings’ ground elevation, the GMTED2010 (i.e., a DTM) is joined with the 2D building polygon
using the same interpolate shape function and the minimum Z of the geometry is calculated and
assigned to the attribute table of the 2D building polygon (flow chart step 2B to 6B). Here, the minimum
Z is used to reduce the effect of shift in the process. If we use an average or maximum of Z, there is a
chance that it may reflect the building height values (the converse of the previous case). Once these
steps are complete, the height values of the individual buildings are calculated by subtracting the
maximum elevation value obtained from the AW3D-30 DSM with the minimum elevation value
obtained from the GMTED2010 DTM. The output generated is the estimated heights of individual
buildings (workflow chart steps 7 to 10).

2.3.2. Technical Validation of Building Height (Foundation Workflow)

For Nottingham, our building heights were compared with the building height values provided by
the OSGB MasterMap [33]. The computed heights of 15,000 buildings in Nottingham were compared
with the corresponding building height attributes (BHA) [33] of the OSGB MasterMap for the city,
using arithmetic differencing. Structured Query Languages (SQL) queries were then performed to
count the instances of buildings for which height differences h were <1 m, 1 m < h ≤ 2 m, 2 m < h ≤ 5 m,
and >5 m, together with the corresponding percentages. For Shanghai, a similar validation exercise
was performed. However, for Shanghai, there is no openly available high resolution building height
data. Therefore, to validate our results, we used the AW3D Enhanced product at 2 m spatial resolution.
This product is stated to be derived from the Digital Globe WorldView satellites [44]. Building heights
that are derived from AW3D-30 m could then be cross-checked with the heights derived from this 2 m
DSM, and the resultant height values refined (flow chart step 11 and 12). In total, 2027 buildings were
used in this validation.

2.3.3. 3D Foundation Model Enhancement

The foundation workflow (Section 2.2.1) produces a 3D city model that is globally replicable,
however, it may be the case that higher resolution elevation data are available (open) or could be
procured as per limited budgetary resources. These data could enhance the accuracy of 3D buildings in
the model by computing the error factor for building heights. The error factor is the deviation of height
values generated in the foundation work flow to the height of the corresponding building obtained
from high resolution data for each of the cities. Once computed, these values can be used to correct
the building heights in other similar areas. For enhancement, a high resolution dataset needs to be
available for a representative sample area of the AOI (Figure 3).
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We used consistent 1 m interval categories of maximum building height for the polygon concerned
(e.g., an approximation of a ridge height for pitched roof houses). This interval selection helps in
generating good correlation and is easy to apply to other similar area. For the Nottingham case,
the maximum number of building heights observed within the range of 2 m to 8 m was calculated
using the AW3D-30 dataset (flowchart step 13 to 15). So, regression equations with 1 m intervals were
created for this range (e.g., seven unique categories of building height: 2 ≤ h ≤ 3 m, 3 m < h ≤ 4 m,
. . . , and 7 m < h ≤ 8 m). These 1 m ranges were chosen because they provide improved correlation
over other ranges. In order to obtain the regression equations both ALOS-derived heights and high
resolution derived heights were exported to the excel scatter plot graphs created, from which a linear
regression equation was derived (flowchart step 14). The regression equations derived from different
ranges were then employed to correct building heights for all instances of that category that were
found within the AW3D-30 dataset, both within and outside the high resolution sample area (flowchart
step 16 to 18). The technical validation of the enhanced model was done in a similar way stated for
validation of foundation model. This validation was done over exactly the same buildings using the
same data that were considered for the validation of foundation model.

3. Results

3.1. Nottingham

After obtaining the foundation 3D model (Figure 4 shows a sample area) for Nottingham
(i.e., AW3D-30 derived building heights), we compared these building heights with MasterMap
BHA to assess the accuracy of this preliminary result. This revealed that 27.7% of all buildings fall
within the accuracy level of +/−1 m elevation, and 51.45% and 84.47% within +/−2 m and +/−5 m,
respectively. About 15.53% of buildings were above +/−5 m accuracy level. When we compared
both sets of height values, it was observed that a higher level of height difference occurred in the
case of taller buildings. The percentage of buildings falling under each error ranges are shown in
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Figure A1 Appendix A. The low- and medium-rise buildings showed relatively good correlation with
the MasterMap BHA values.
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generated from AW3D-30 as DSM and GMTED2010 as DTM data.

In the application of the accuracy enhancement method by way of a sample of high-resolution
elevation data, it was determined that the majority of building heights fall within the range of 2 m
to 8 m (established using the AW3D-30 dataset). Hence, a regression equation with a 1 m interval
was created for this range of 2 m to 8 m in order to enhance the accuracy of the foundation 3D model
(Figure A2). This 1 m interval was chosen to obtain good correlation between two datasets of generated
AW3D-30 height values and high resolution LiDAR data. The regression equations derived from these
categories are given in Table 2 and these were applied to obtain an enhanced 3D city model.

Table 2. Correlation values for different ranges and linear equation for accuracy enhancement
(Nottingham).

Sl. No. Height of Buildings
in Meters

Height Difference Range Used for
Creating Equation in Meters

Linear Equation Used
for Accuracy Increase

1 2 to 3 1 to 2 y = 0.984x − 1.358
2 3 to 4 0 to 2 y = 0.936x − 0.554
3 4 to 5 No equations required as the values already have good correlation
4 5 to 6 −1.7 to 0.4 y = 0.986x + 0.610
5 6 to 7 −3.6 to 0 y = 1.017x + 1.239
6 7 to 8 −4.1 to −1.2 y = 1.041x + 2.080

3.1.1. Technical Validation of Enhanced 3D Model

Validation of the enhanced 3D model demonstrated that applying the regression equations to
the foundation model had the impact of improving its accuracy across the board. The proportion of
buildings in the model having an accuracy level of +/−1 m increased from 27.7% to 32.81% (Table 3),
having an accuracy level of +/−2 m increased to 57.43% from 51.45, an accuracy level of +/−5 m
increased to 88.46% from 84.47%, and buildings having an error value above +/−5 m were reduced
from 15.73% to 11.54%. It was noticed that even after enhancement, there was no significant height
value correlation increase in the case of taller buildings.

It is worth noting that, as stated in methodology, we considered maximum elevation value within
a polygon as the AW3D-30 DSM height. Using the height generated via the minimum and average
elevation value within was not as accurate.
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Table 3. Validation results showing percentage of buildings within each interval before (foundation 3D
model) and after accuracy enhancement (enhanced model), for Nottingham.

Sl. No. Height Extracting Method
Percentage of Buildings

Having Accuracy of
Percentage of Buildings
Having an Error More

than +/−5 m+/−1 m +/−2 m +/−5 m

1
Foundation 3D model developed

using AW3D 30 m DSM and
GMTED 2010 DTM

27.7 51.45 84.27 15.73

2 Enhanced 3D model via a sample
of high resolution lidar (2 m) 32.81 57.43 88.46 11.54

3.1.2. Replacing GMTED 2010 Ground Elevation Data with High Resolution Ground Elevation Data

To understand how the GMTED 2010 DTM data impact on the quality of the foundation 3D model,
the model was again constructed using high resolution LiDAR DTM as the ground elevation input
along with the AW3D 30 m DSM. Validation using the MasterMap BHA values demonstrated that
about 31.43% of total buildings achieved an accuracy within +/−1 m elevation and 60.14% were within
+/−2 m (Table 4). Deviations for only 5.27% of all the buildings exceeded +/−5 m, but a significant
proportion of the cases having this largest deviation were due to errors in the MasterMap BHA dataset
or within AW3D-30 dataset (these errors were identified by cross-checking these individual sites with
other datasets like Google Earth™, where open street views are available).

Table 4. Validation results showing percentage of buildings under each interval when ground elevation
was extracted using high resolution LiDAR DTM data (Nottingham).

Sl. No. Height Extracting Method
Percentage of Buildings

Having Accuracy of
Percentage of Buildings
Having an Error More

than +/−5 m+/−1 m +/−2 m +/−5 m

1
Foundation 3D model developed
using AW3D-30m DSM and 2 m

LiDAR DTM
31.43 60.14 94.73 5.27

3.2. Shanghai

We considered only a sample of the 2027 OSM buildings of the Huangpu District of Shanghai
to generate the 3D model, as well as to calculate a correlation coefficient. The modelled building
heights from AW3D-30 DSM for Huangpu District have been compared with the commercial 2 m
accuracy DSM that was procured for the study area. Unlike Nottingham, Huangpu, Shanghai has very
tall buildings (Figure 5), hence the range of difference between the real height and generated 3D building
heights were higher than for Nottingham. It was observed that about 33% of buildings fall within the error
range of +/−2 m and about 30% of buildings within an error range of +/−2 m to +/−5 m (see Table A1).
The regression equations used to enhance the accuracy of foundation model are given in Table 5.

Technical Validation of Enhanced 3D Model

It was observed from the validation results that the overall accuracy of the foundation 3D model
has improved using the accuracy enhancement method. The difference in the percentage of buildings
with different accuracy level ranges before and after applying accuracy enhancement methods are
given in Table 6. Higher rates of accuracy enhancement were observed for the lower ranges (i.e., up for
+/−1 and +/−2). Where the difference in values between the actual height and the generated height
increased, there was an observed decrease in accuracy enhancement level. For example, after accuracy
enhancement in the range of +/−5 m, the total percentage enhanced from 62.26% to 64.54% only and
there was no accuracy increase for +/−10 m accuracy range (Table 6). In lower height deviations
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(1 or 2 m) level we obtained a good accuracy increase by correlation, but in higher deviation sections
(5 or 10 m), the accuracy improvement was relatively lower or null.
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Figure 5. Sample of foundation 3D model generated from AW3D-30 data and classified according to the
elevations, Shanghai (green colour represents low-rise buildings, brown colour represents medium-rise
buildings, dark brown represents high-rise buildings).

Table 5. Correlation values for different ranges and linear equations for accuracy enhancement
(Huangpu District, Shanghai).

Sl. No. Height Difference in
Meters

Correlation Obtained/R2 Value
for Huangpu, Shanghai

Linear Equation Used
for Accuracy Increase

1 5–6 0.997 y = 1.001x − 0.071
2 6–7 0.985 y = 1.006x − 0.314
3 7–8 0.989 y = 0.978x − 2.880
4 8–9 0.989 y = 0.997x + 3.362
5 11–12 0.988 y = 0.975x − 6.329
6 14–15 0.990 y = 0.999x + 7.160
7 16–17 0.961 y = 0.953x − 12.33
8 18–19 0.971 y = 1.005x + 13.602
9 >20 0.222 y = 0.256x + 5.020

Table 6. Percentage of buildings under each level before (foundation 3D model) and after accuracy
enhancement (enhanced model) for Huangpu District, Shanghai.

Sl. No. Height Extracting
Method

Percentage of Buildings Having Accuracy of Percentage of Buildings
Having an Error More

than +/−10 m+/−1 m +/−2 m +/−5 m +/−10 m

1
Foundation 3D model

developed using
AW3D-30 DSM

17.66 32.96 62.26 79.78 20.22

2

Enhanced 3D model via a
sample of high resolution

commercial 2 m DSM
(AW3D Enhanced)

28.3 41.69 64.54 79.78 20.22

Shanghai is characterized by high-rise buildings, hence the ranges considered for accuracy
assessment were from +/−1 to more than +/−10 m. Whereas for Nottingham, the maximum range



Urban Sci. 2020, 4, 47 13 of 21

was +/−5 m, since the city is occupied by low-rise buildings. The proportion of buildings having an
accuracy of +/−1 m was low (17.66%) in the case of Shanghai, which increased to 28.3% after accuracy
enhancement. This contrasts with an accuracy of 27.7% for Nottingham, or 32.81% after accuracy
enhancement. While 64.54% of buildings were found to be within the accuracy range of +/−5 m for
Shanghai, this was much higher for Nottingham at 88.46% (after enhancement in both cases). Further,
even after accuracy enhancement, 20% of all the buildings in Shanghai’s Huangpu District were found
to have an error of +/−10 m in their modelled height.

4. Discussion

Three dimensional building models form useful data inputs for many analytical tasks, but their
creation typically relies upon time-consuming editing, expensive proprietary datasets, or both. Here,
we present a simple method of generating 3D buildings from open data that can be applied globally.
The results presented in this paper show that AW3D-30 DSM data provide more accurate results in
the case of low- and medium-rise buildings, and that errors can be improved through a calibrated
enhancement process. Using OSM in combination with the medium-resolution AW3D-30 DSM, a set
of building footprints with height information were created and their quality ascertained. We then
evaluated enhancements to height accuracy through statistical analysis of a small sample area of
high-resolution data (thus limiting expense where these data are not freely available).

The approach presented can be applied by any user that has 2D building footprint data and
AW3D data and terrain information (i.e., from GMTED2010). AW3D-30 is the most suitable open DSM
for building height generation, in comparison with ASTER, SRTM, and TanDEM-X [21]. However,
while using AW3D-30 DSM there is a challenge of dealing with mixed pixels due to instances when
buildings in the AW3D-5 digital building height range with a ground footprint of approximately 30 m
or less were split into adjacent 30 m resolution pixels, each with a lower height than the original [21].
Thus one of the important advantages of using OSM together with AW3D-30 DSM is that it helps to
avoid the issues of mixed pixels and provides more accurate individual building heights and shapes.
To the authors’ knowledge, this is the first attempt at combining OSM data with AW3D data to generate
3D models. We built upon previous studies that fused OSM with satellite-derived elevation data [24],
however in our study, we provided a method to generate 3D models for both flat and undulated terrain
using open data, which makes it feasible to replicate globally with any kind of terrain. Our study also
demonstrated ways to increase the accuracy of the generated 3D city models using a sample high
resolution DSM and DTM data. Our work also demonstrated that the usage of high resolution DTM
for ground elevation extraction can result in higher accuracy of building height values. This paper
recommends the use of high-resolution digital terrain models (DTMs) wherever possible and in the
absence of the same, GMTED 2010 data shall be used as ground elevation for undulating terrain
and can use mean elevation value as ground elevation for flat terrains like Shanghai. The study also
highlighted the need for a geospatial community to generate a global open access high-resolution DTM.
The need for generating global high-resolution DEM in open access was also highlighted by Schumman
and Bates, 2018 [45]. There are also initiatives like ‘Open Topography’, which facilitates community
access to high-resolution topographic data [46]. These high-resolution data (metre to sub-metre scale)
are derived from LiDAR and other technologies. This free access to high-accuracy terrain data further
sheds light to the extensive potential of generating highly accurate 3D city models using open data.

The accuracy assessment of the two distinctive cities shows that the 3D model developed using
this methodology will have higher accuracy in cities like Nottingham, where majority of the buildings
are of a low rise and where growth is relatively saturated. Whereas in cities like Shanghai, where the
percentage of very tall buildings is high, the accuracy will be reduced. In our study, for Nottingham,
we could generate 27.7% of buildings with +/−1 m accuracy, 51.45% with +/−2 m accuracy, and 84.27%
with +/−5 m. In Shanghai, the accuracy was much lower than that of Nottingham—the percentage
of buildings within the accuracy levels of +/−1 m, +/−2 m, and +/−5 m were 17.66, 32.96, and 62.26
respectively. The accuracy reduction in Shanghai is explained by the increased number of tall buildings
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compared to city of Nottingham. It is significant to observe that the AW3D-30 DSM provides more
accurate results for low- and medium-rise buildings, but exhibits relatively large errors in height
for very tall buildings. This result echoes findings of Alganci et al. [36], but contradicts the finding
of Misra et al. [21]. Accuracy assessments of different DSMs by Alganci et al. [36] revealed that the
AW3D-30 DSM performed worse for high-rise buildings compared to SPOT DSM and PHR DSM,
and that AW3D-30 DSM has a high accuracy level in residential areas. In contrast, Misra et al. [21]
reported that AW3D-30 is most suitable for observing buildings taller than 9 m in height. However,
this is in comparison with ASTER- and SRTM-based building heights, which are less suitable for
extracting building height variation [21]. In our study we considered all buildings with height above
2 m and results showed good accuracy. Hence, using the presented method, even without any accuracy
enhancement, will provide better accuracy in cities with low- and medium-rise buildings compared to
cities with high-rise buildings. Once our accuracy enhancement method was applied (by way of a
sample of high resolution elevation data), this improved the reliability of 3D models from open data
(in Nottingham we demonstrated enhancements in the percentages of buildings within an accuracy
level of +/−1 m from 27.7% to 32.81%, and for accuracy level of +/−2 m from 51.45% to 57.43%).
However, this method is limited to the containment of only systematic errors; random errors are not
accounted for.

Using OSM in combination with AW3D-30 DSM data has substantial potential for future scientific
research due to the former’s ever-growing size and the latter’s global coverage [24,34–36,47]. Studies
have reported that there has been a considerable increase in OSM building data in recent years.
For example, from 2012 to 2017 alone there has been a 20 times increase in OSM building data in
China [48]. Effective derivation of elevation values for OSM data will likely extend its utility [22].
However, the absence of a global completeness assessment may hamper the use of OSM for urban
planning and development, unless it is resolved [49]. One of the major concerns in using OSM data is the
quality. Most OSM data are provided by nonprofessionals and hence both the coverage and the quality
of the data are questionable [50–52]. Despite this disadvantage, OSM is a good source of 2D building
data, especially where free 2D building data are unavailable, as in China, where authorized building
data are not freely available [48]. Studies have also revealed that the rate at which OSM is receiving
contributions from users has been constantly increasing and is continuing to grow; complemented
by collaborative mapping efforts amongst the OSM community to check and improve the quality of
contributions [53].

AW3D-30 DSM also has considerable future potential, particularly for low- and middle-income
countries, given its global coverage and open license. The JAXA released its first version AW3D-30 m
DSM with a horizontal resolution of approx. 30 m mesh, free of charge in May 2015. This dataset was
generated from the DSM dataset (5 m mesh version) of the precise global digital 3D map ALOS World
3D” (AW3D), which was the world’s first and the most precise 3D map covering all global land scales
with a 5 m mesh [37]. Although the AW3D-30 DSM had a 30 m grid spacing, it could be deduced that
this was due to the acquisition of strong signals from the original 5 m DSM, which was produced from
the 2.5 m images [36]. In March 2017, version 1.1 was released, filling the void height values with
existing DEMs in cloud and snow pixels between 60◦ north and 60◦ south. In April 2018, AW3D was
upgraded to version two [54]. Continuous enhancements of AW3D-30 DSM are expected, improving
its future utility.

Thus, one of the great advantages of our methodology is that 3D models can be generated from
any 2D building data in combination with any DSM, which means not just using OSM and AW3D-30
DSM data. Wherever any 2D building data are available, the user will be able to generate the building
elevation in combination with DSM data. Currently, only AW3D provides free DSM data. Even though
ASTER DEM and SRTM provide elevation data, they are not surface models, hence those datasets
are not usable to generate 3D building elevation. However, in the future there will likely be higher
resolution DSMs. LiDAR DSM and ICESat-2 data are examples. Many countries are already providing
accurate LiDAR DSM data. For example, LiDAR DSM data are already available for about 70%
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of England from the UK Environmental Agency [41]. ICESat-2 (ICE, CLOUD, and Land Elevation
Satellite) is an ambitious mission from NASA, which will provide a global distribution of geodetic
measurements of both the terrain surface and relative canopy heights and it will also survey urban
areas [55]. Further, Global Ecosystem Dynamics Investigation (GEDI) LIDAR from NASA, with its
dense track sampling and precise geolocation, forms the basis of an important dataset of ground
control points to validate and calibrate global and regional DEMs and serves as a reference for surface
elevation change [56]. Thus, we hope that when more accurate DSMs become available, it will enable
the user to produce more accurate 3D models with better shape descriptions of buildings, especially
roof modelling, thereby generating higher LODs using the defined methodology. Knowing the nature
of the terrain in the modelling area is a factor in our method. For cases with flat terrain (e.g., Shanghai),
the mean ground elevation is deducted from the DSM data to obtain the building height, whereas in
cases of undulated terrain (e.g., Nottingham), terrain elevation can be obtained from multiple sources,
such as contour topographic data or from satellite-based sources like GMTED2010 and LiDAR DTM.

The method presented in this paper affords the development of 3D models with LOD1 for any
urban setting globally. High-resolution 3D datasets with higher LODs are, of course, possible but
are very expensive to produce and many applications do not require very precise height datasets.
Often, a model with LOD1 data is enough. Studies shows that LOD1 models provide a relatively
high information content and usability compared to their geometric detail [57,58]. LOD1 model
is the simplest volumetric 3D city model and fundamentally considered coarse and inferior to an
LOD2. However, it may be more valuable than an LOD2 model for certain scenarios, especially
when a finer footprint is more useful than the acquired roof shape [59]. Examples of such cases
include: climate change and urban climate modelling, property registration, energy modelling [60],
energy demand estimation [61,62], shadowing simulations [63,64], navigation, estimation of noise
pollution [65], design of urban green spaces, crisis management, vulnerability assessments for disaster
mitigation and management, simulating floods [66], for analysing wind comfort [67], global change
assessments [68,69], and visualisation [70]. Computation of the net internal area of a building is another
application area of LoD1 data, useful for energy estimations, real estate valuation, and population
counts [71–74].

LoD requirements are task-specific and data volume-dependent [75–78]. Should LOD1 be
appropriate, the method presented here will also allow users to generate data in a cost-effective manner.
Indeed, studies have attempted to assess the possibilities of 3D model generation from the OSM data
used here and have already identified the huge potential of OSM for fulfilling the requirements for
CityGML LoD1 [79–81]. Further, free and open earth observation data (e.g., Landsat and Sentinel)
offer great potential for large-area mapping of human settlements [68]. As our method relies on open
datasets, we hope that it will be of great use in developing and low-income countries to generate
3D data at no cost and with minimal effort. Furthermore, as this method uses freely downloadable
open source datasets, it helps to save time and effort. Usually, generating 3D data is very tedious
and time consuming and also requires a through lengthy process of data procurement procedures.
Many applications, like hazard and risk management or crisis management, require faster results and
our data generation technique will be very handy in these circumstances.

As this study intended to develop LOD1 models, we did not consider topological errors. If the
2D topological relationships between the footprints are not taken into account, the resulting 3D city
models will not necessarily be topologically consistent (i.e., primitives shared by 3D buildings will be
duplicated and/or intersected and overlapped building parts etc.) [82–84]. Models with topological
inaccuracies often cannot be accepted by downstream analytical applications that demand 2-manifold
exterior shells [82,83]. However, our objective was to develop LOD1 3D city models, which do not
require higher levels of accuracy. We removed all incomplete and irregular buildings after creating the
3D city model. However, we did not check for any minor errors, nor for topological accuracy. We used
2D polygons from OSM, hence, if there are any topological errors in this dataset then these errors
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will be reflected in our results. We recommend consideration of topology should higher accuracy in
resultant models be required (i.e., LOD2+).

One of the main disadvantages observed related to using AW3D-30m data was that the accuracy
limitation with high-rise buildings. As the accuracy of very tall buildings (more than 100 m) were found
to be less in AW3D-30 DSM, building height data from websites like Skyscraper (which publishes the
tall building information data from Council on Tall Buildings and Urban Habitat) can be used to replace
the height values of these buildings, thereby increasing overall accuracy. Further, as the accuracy level
reduces with the increasing percentage of tall buildings, it would be advantageous to know about
the characteristics of a particular city before applying this methodology. Further, though we used
AW3D-30 DSM data that were published in 2017, this dataset utilized the 2011 satellite data as base
data. Hence, there could be accuracy difference for the buildings that were constructed after 2011.
While using this method, it is also recommended to cross-check the results of building elevations
with low height values for larger 2D footprints, as tall buildings may have a large low height podium.
This can be done by visual interpretation from Google Earth satellite images. The original AW3D-30
DSM has some data-void regions and these values are filled with the values from adjacent pixels [44].
So, some accuracy difference could arise due to this procedure. Large digitization errors or shifts in the
2D building footprints can result in the misrepresentation of height information.

5. Conclusions

This paper demonstrated a globally replicable methodology to generate 3D buildings from
open data. Generation of 3D buildings exclusively using open data was the highlight of this paper.
This method is cost-effective, making it particularly attractive to users in low- and middle-income
countries, where free 3D building data are not available. Further, this largely automated method
requires minimal time to generate 3D city models, and also has flexibility for improvement in accuracy
should higher resolution data be available. Given the use of relatively low resolution open data,
this methodology will be of particular relevance to studies that do not require high resolution 3D
models, such as for global environmental change studies, global climate change and urban climate
modelling, disaster vulnerability models, and energy models. Real world simulations for 3D games
may be another potential area of interest.

Finally, the methodology presented in this paper can, in the future, be employed in conjunction
with alternative 2D input data, for example as quality checked OSM data become more abundant,
and with more accurate height data, as upgrades to AW3D-30 are published, or other sources become
available, such as those derived from LiDAR measurements.
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