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Abstract: Urban areas are now the dominant human habitat, with more influence than ever on
economies, environment and our health. Dynamic urban models are increasingly applied to
explore possible future scenarios of urban development to achieve sustainability. However, it is
still challenging to use these models for prediction, taking into consideration the complex nature
of urban systems, the nonlinear interactions between different parts of the system, and the large
quantities of data output from simulations. The aim of this study is to analyse the dynamics of two
hypothetical dynamic BLV (Boltzmann-Lotka—Volterra) retail models (two-zone and three-zone).
Here, by visualising and analysing the qualitative nature of state space (the space of all possible
initial conditions), we propose an alternative way of understanding urban dynamics more fully.
This involves examining all possible configurations of an urban system in order to identify the
potential development in future. Using this method we are able to identify a supply-demand
balancing hyperplane and categorise two causes of phase transition of urban development: (A)
change in variable values (e.g., building a new shopping centre) that cause the system to cross a
basin boundary, (B) state space change (e.g., construction of a new motorway changes travel costs
in the region) causes the containing basin to be modified. We also identify key characteristics of the
dynamics such as velocity and how the phase space landscape changes over time. This analysis is
then linked with equilibrium-size graphs, which allow insights from state space to be applicable
to models with large numbers of zones. More generally this type of analysis can potentially offer
insights into the nature of the dynamics in any dynamical-systems-type urban model. This is critical
for increasing our understanding and helping stakeholders and policy-makers to plan for future
urban changes.

Keywords: dynamic urban modeling; Boltzmann-Lotka—Volterra retail model; complex systems;
state space; phase transitions; urban development

1. Introduction

1.1. Urban Development and Phase Transitions

Urban areas are now the main habitat we are living in: 55% of the world’s population currently
lives in urban areas and two-thirds of world population is projected to live in cities by 2050 [1].
Understanding how cities and regions evolve is one of the grand challenges of 21st century science [2].
Improved understanding of how cities and region change and grow over time would support more
effective planning and sustainable urbanisation. However, predicting future urban development is
very challenging in the face of nonlinearity and complexity [3] and so new methods of analysis are
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needed to further our understanding of urban dynamics. Urban systems are known to exhibit a form of
discontinuous change known as a phase transition [4]. This is a concept borrowed from physics, which
refers to a significant change in one part of a system caused by a small change elsewhere. Langton [5]
describes a phase transition as a critical balance point. The simplest example of this is the transition
from water to ice with a small change in temperature. Urban modellers use this concept to better
understand radical changes that take place over the course of urban development, associated with
discontinuities of urban changes, such as the transition from rural to urban or from monocentric to
polycentric cities. Historical examples include the transition from “socially disconnected” to connected
settlements in ancient civilisations [6]. Other examples include: the transition from corner shops to
supermarkets in 1950s UK retailing [7], and the appearance of out of town shopping centres, due to a
reduction in the cost of car travel. Gentrification is also an example of a phase transition in the social
demographic makeup of an area related to house prices [8].

Identifying these phase transitions could provide a better understanding of the past and a more
complete picture of the future potential of urban development, as it is widely agreed that the future
evolution of a region could move in one of a number of different directions depending on small
changes caused by urban development or external factors such as a changing climate. However,
the phase transitions of urban development are not yet fully understood—how, when and why these
discontinuous changes occur is still the subject of much research in urban modelling. Complicated
interactions and interdependencies between parts of the system make analysis of future situations
more difficult [3].

1.2. Dynamic Urban Models and the BLV Approach

Urban modelling has emerged from several different traditions [9,10], such as ecology and
economics, including land use/land cover change models, land use and transportation models, system
dynamics models and landscape dynamics models. The first models were static [11-13] and later
dynamic models were developed mainly as a result of increasing computing power [4,14,15] Dynamic
urban models are increasingly applied to explore possible future scenarios of urban development
to achieve sustainability [16,17]. Dynamic urban models explore how urban development reaches a
future state from a current one and so allows exploration of the reasons why phase transitions might
occur. Analytical approaches to understanding dynamic urban models have helped to advance the
theory in a formal way but have not yet provided a way of fully analysing these models largely due to
the nonlinearities that exist in urban systems (see [3] for a fuller explanation).

Numerical simulation paired with visualisation is one of the most common methods for making
progress with dynamic models. Clear and effective visualisation of dynamic model runs is important so
that we can intuitively see and interpret the modelled behaviour(s) [18]. Dynamic urban models tend
to either be bottom-up (ABM or CA) or top-down aggregate (BLV or similar). Bottom-up modelling
supports the generative approach [19] which allows large scale structure to emerge. Top-down models
contain fewer degrees of freedom but are more amenable to analytical approaches and, in general,
require much less computing power especially when applied to urban systems given the size and
complexity of most cities and regions. In this paper we focus on top-down aggregate BLV models in
order to make use of the low numbers of variables and quick run times in these more parsimonious
model types.

The BLV retail model [20,21] is a well-established top down dynamic urban model. It is a combination
of the entropy-based retail spatial interaction model and Lotka—Volterra-type dynamics. There is a lot
of complexity in the dynamics which are controlled by a system of nonlinear simultaneous differential
equations. Progress has been made in terms of analysing the number of solutions in the state space of
a BLV model [22] as well as particular kinds of bifurcations [23]. There are many other models in the
complete family of BLV-models including house price dynamics and housing provision dynamics [24].
Wilson [4] provides a thorough introduction to the analysis of the dynamics in this kind of model from
the point of view of both catastrophe theory and bifurcation theory, which can be further analysed
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using modern simulation and data visualisation techniques. Wilson [17] provides a useful overview of
the current state of the art in terms of dynamic modelling. A phase transition in BLV retail model terms
is defined as a zone changing from being feasible to not feasible (or vice versa) and this concept can
be explored at system level involving multiple zones [21]. Retail model zone-graphs help to explain
zonal phase transitions [20]. Zone graphs for a residential BLV model [8] demonstrate that there is the
potential to apply similar analytical techniques across multiple different kinds of subsystem. Progress
has been made in developing simulations that include multiple linked BLV-type subsystems [8]. This is
important for real-world planning applications because looking at how the whole urban system
evolves provides more insight into possible futures than just looking at one system. The BLV retail
model has been used to explore phase transitions within retail systems [25,26].

The type of urban structures that emerge from a wide range of possible exogenous parameter
values across the parameter space of the BLV retail model has been explored [25,26]. As a result of this
exploratory work, we know that phase transitions often occur at critical values of the main parameters.
The analogue of parameter space exploration for the endogenous variables in a BLV retail model is
state space exploration. This may be a useful area to explore given how successful the parameter space
exploration is.

1.3. State Space and Basins of Attraction

State space, also called phase space, is fundamental to the understanding of dynamical systems.
It is an abstract space that contains all possible system states. As a system changes over time it moves
through the state space. It is helpful to understand how one state transitions to another, as so-called
tipping points represent critical thresholds in dynamic systems [27]. Although the use of state space
has been widely applied in the study of system’s dynamics in many branches of science, including a
wider range of social system behaviour [28], ecology [29,30], management [31], etc., it is not sufficiently
generalized and applied in urban science to understand how urban systems change over time. A state
space representation of the BLV retail model was presented in the original Harris and Wilson [20]
paper and further developed in Wilson [4]. Vandermeer and Yodzis [29] used state space features to
model discontinuous change in ecosystems, looking specifically at how basin boundaries can collide
and cause discontinuous change to occur. A state space approach was used by Weidlich and Haag [32]
for a dynamic model of migration between zones. The three-zone version of the model was restricted
to a triangular hyperplane because of a constant total regional population. By drawing the trajectories
in state space, the behaviour of the model with different levels of agglomeration could be explored
and phase transitions identified. The urban systems we deal with here have every initial condition
evolving towards a stable attractor. Building on this, groups of initial conditions that all evolve to the
same stable attractor are called a basin of attraction. The boundaries of these basins indicate where a
dynamical system will start to evolve in a completely different “direction”. An example of this might
be a system evolving towards a centralised retail system changing direction to start evolving towards
a more decentralised pattern.

1.4. Aim of This Work

In this paper, we begin to address the question of whether a state space view of a BLV retail model
can offer any new insights into urban evolution, especially phase transitions. The aim in this study
is not to make a full-scale detailed and realistic-looking urban system, of the sort that might be used
by planners. Instead we aim to explore the qualitative nature of the state space of regions containing
two or three shopping centres (i.e., zones). By exploring a number of state spaces under different
conditions, we can identify regularities and differences. The main features of state space that we are
interested in this paper are initial conditions, trajectories, basins of attraction and attractors. We are
looking for qualitative features of state space that will enable us to make progress in the analysis of
the system.
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2. Method

In order to explore the insights available from state space, we construct two hypothetical regions:
region R1 with two retail zones (0 and 1) and five residential zones, and region R2 with three retail
zones (0, 1 and 2) and 20 residential zones. Appendix A contains full details about each region.
The spatial arrangement of zones in each region is shown in Figure 1.
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(a) Region R1. (b) Region R2.

Figure 1. (a) Hypothetical two-shopping-centre system with five residential zones; (b) Hypothetical
three-shopping-centre system with 20 population zones (retail zones are marked by squares and
residential zones by circles).

We then apply the BLV retail model to construct the associated state space. The model software is
written in C# and C++ to allow for fast model runs. The intention of the BLV retail model is to identify
profitable locations and sizes for retailers in a region of interest. The main model equations for the
BLV retail model are specified as follows. For a retail zone j the attractiveness is W; which is normally
specified as the floorspace. For a residential zone i the spending per head on retail is ¢; and the total
population is P;. The travel cost between each pair of zones i and j is given by ¢;;. The parameter «
represents the impact of size on consumer decisions about where to shop. The parameter j represents
the impact of travel cost on consumer decisions about where to shop. The flow of money from
residential zone i to retail zone j is S;;:

Sij = Awei Pk el ~Fei) 1)

The balancing factor A; enforces a constraint that the total money flowing out of a residential
zone should equal the total spending power there (here the index k ranges across all retail zones in

the region):
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The total money flowing into a centre is D;:
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K is the retail centre running cost for a unit of floor space. The dynamics given below will
determine the rate of change of each retail zone size:

aw,
The parameter ¢ determines the rate of response of retailers to market forces. The general
assumption here is that if a retail zone is profitable it will grow and if it is not profitable it will shrink.

The equilibrium position of each zone is given by:
D; = KW; (6)

We explore the state space of each hypothetical region by running a BLV model for each unique
point on a regular grid covering the entire state space. The resolution of the grid is important: if the
spacing is too large we may miss important details of state space features; if the spacing is too small we
will not be able to compute the result in a reasonable amount of time. If we choose the grid resolution
to be M samples along each dimension then we are sampling M possible sizes of each shopping centre.
From the point of view of urban planning we are seeking to identify critical thresholds in the sizes
of the retail zones and so we need to use a large enough number of sampling points to identify them
accurately. In two dimensions we explore an M x M grid and in three dimensions we explore an M X
M x M grid. We can vary the resolution of our sampling grid to fit each situation. The values of «
and B used for these hypothetical regions lie within the plausible parameter ranges for this model and
were in all cases chosen to demonstrate some phenomena of interest in the hypothetical model state
space being viewed.

Each model run ends once it moves through a pre-specified number of iterations N with no change
in any endogenous variable greater than x% where x is very small (e.g. 0.001). There are significant
problems with wrongly characterising very low velocity regions of state space as attractors—we
overcame this by setting parameter N very large. We save the start and end point of each model
run and then group the trajectories by the attractor they reach—from this we can build the basins of
attraction. One useful feature of state space exploration is that it is a perfectly parallelizable technique
given that the workload is made up of large numbers of unrelated model runs that vary only in the
initial conditions. This makes it very fast when run on parallel computing platforms, e.g., multi-core
CPUs or GPUs.

Our main method of investigation is using interactive data visualisation which is a key method
for detecting patterns in large amounts of data due to benefits including but not limited to panning,
zooming and brushing. The figures presented here are static but illustrate the display output of the
software. Linking this with fast simulations of the BLV model in software allows users to generate new
results on demand in real-time and customise the visualisation in ways that enable new insights to be
detected. The visualisation methods we will make use of are based on vector fields and streamlines.
We visualise the square state space area for two zones and state space volume cube for three-zones,
as each zone adds one more dimension to the state space.

3. Results and Analysis

3.1. Supply-Demand Balancing Hyperplane

The state space of a BLV retail model even with two or three dimensions is a challenge to
comprehend due to the large amount of data present—information overload is a distinct possibility
and so effective visualisation is key. We use a 30 x 30 grid to explore velocity vectors and a 50 x 50
grid to explore streamlines. At these resolutions the two dimensional state space includes hundreds,
or even thousands, of model runs. Figure 2 shows the state space of the two-zone region R1 for two
values of the & parameter. The two values of « were chosen to demonstrate an interesting change in
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a hypothetical model state space. The attractor for each basin is shown as a black circle within the
associated basin area. As the a parameter changes from 1.3 (Figure 2a) to 1.4 (Figure 2b) the green
basin disappears and the other two basins expand significantly.

Fast pom

Supply-demand Streamline
balancing hyperplane Attractor location . velocity

Sample point velocity vector
(colourindicates basin) Slow

Figure 2. The state space of region R1 across two parameter sets: (a,b) 30 x 30 vector field plot showing
three basins, (c,d) 50 x 50 streamlines with velocity colour-coded. Note: § = 0.4.

The attractors in the BLV model’s state space always exist on a supply-demand balancing
hyperplane because the model is in equilibrium when D; = KW; (i.e., when total region spending
power equals total running costs of all shopping centres combined). The streamlines in Figure 2¢,d
show how rapidly the two-zone system moves back to a supply-demand balancing hyperplane if
the initial conditions are away from this. The lines use a colour ramp for slow to fast through black,
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red, yellow, white and cyan. The system is not necessarily at equilibrium when on this hyperplane
but the equilibrium solutions are definitely somewhere on the hyperplane. The hyperplane is a
system-level feature and when the system is away from the hyperplane the whole system will correct
a supply-demand mismatch for the whole region by moving back to the hyperplane. Below the
hyperplane there is undersupply of retail facilities in the region and above the hyperplane we have
oversupply. The subsequent move to an equilibrium solution on the hyperplane then addresses
supply-demand mismatches for each and every zone.

For a retail system it appears intuitive that if the spending power of each residential zone is
increased by an equal percentage then the structure of state space would remain the same given that
the relationships between retail zones are maintained. In Figure 2 the complete shape of each basin
could be predicted from the basin data on the supply-demand balancing hyperplane because the basin
boundaries are linear. As a result, the hyperplane can be used to describe the complete dynamics of the
system. The linearity of the basins in the complete two zone state space comes from the fact that the
size-based attractiveness (W;") of each retail zone relative to all others in the system is constant when
the entire system is scaled (in terms of total floor space supported). In the two-zone case for a particular
point on the hyperplane the two zones Wy and W; are in constant ratio Wy = bW;. Equation (7) shows
that regardless of the absolute size of each W; the same ratio (b*) holds constant. In other words we are
dealing with the same dynamical system regardless of the total system floor space. This appears to
also hold in the three-zone case but needs to be explored for higher numbers of zones.

(Wo)® _ (bWn)*

W~ e = (bW1)" Wy~ = bWy "Wy~ = bWy () = bt )

By exploring just the hyperplane we can know that we have identified all possible attractors for
the current set of exogenous parameters. Calculating only the hyperplane part of a state space allows
for a great reduction in the workload. Assuming a uniform sampling grid resolution of 100 then for
a three-zone system you would need to sample one million points (100°) for the full state space but
only 5050 if you choose only those points in the uniform sampling grid that fall on the hyperplane.
This reduction in workload by three orders of magnitude is obviously very significant given that each
sample point represents a model run to equilibrium. The workload reduction is even greater at higher
numbers of dimensions, however, visualisation then becomes a significant challenge.

With a three-zone system much of the data has the potential to be occluded in the viewport.
We remove the problem of occlusion by showing only the initial conditions on the supply-demand
balancing hyperplane as discussed above. Figure 3 shows how the state space with three-zones varies
across two values of a. One retail zone (retail zone 2) in this example sits alone in the north of the
region and so has the advantage of being the closest centre for much of the population. Similar with the
two-zone case the state space changes smoothly with the red basin shrinking and the yellow and green
basins growing. The shrinking of the red basin is caused by the increase in the « parameter meaning
that distance becomes increasingly less important and so retail zone 2 starts to lose its prior advantage
of being the closest centre for a large percentage of the consumers in the region. The hyperplane
is a triangle in this case. Above this triangle (away from the origin) there is oversupply of retail
facilities and below it (towards the origin) there is undersupply. With three zones the dynamics have
the potential to be more complicated. The streamlines in Figure 3c,d show that there is the potential
for trajectories within one basin to reverse their direction on one or more axes. This suggests strong
competition for business between pairs of retail zones that can result in one winning out, and so the
other one becomes a non-viable retail zone and shrinks to zero. This shows that in retail dynamics
the route from initial conditions to equilibrium is potentially a turbulent one and not just a smooth
growth or decline along each dimension. The high values of « and low 8 value in this example mean
that there is no co-existence of retail zones.
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Figure 3. The state space of region R2 across two parameter sets: (a,b) 30 x 30 vector field plot showing
three basins; and (c,d) 50 x 50 streamlines with velocity colour-coded. Note: 8 = 0.05.

3.2. Velocity in State Space

It is useful to explore the rate at which the system travels within the state space, as the speed of
urban evolution varies considerably from basin to basin and/or within one basin. This variation relates
to the amount of pressure exerted by the market on retail zones, whether it is pressure to grow due to
high levels of profit or pressure to shrink due to high levels of loss. This is a vector of values—one
for each retail zone. The magnitude of this vector appears to vary considerably across each state
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space and also between different state spaces, implying that the exogenous parameter values affect
the rate of growth in retail systems and how it varies across the state space. It is important to study
velocity because it is a key feature of state space and has the potential to provide many insights into
the dynamics of the BLV model. Figures 2—4 all illustrate how velocity changes across one state space
and also how it changes with parameter modification.

/f////;‘/&!'l‘rﬁmv

M )\

| "'”'I')I,‘b\

1

Key

Fast puum

Attractor location . Streamline

velocity I
Slow

Figure 4. Streamlines with velocity colour-coded for state space of region R2 across two parameter sets.
This demonstrates how a slow subpart of state space can transition into a new stable attractor. (a) Fourth
attractor is present, indicated by white arrow; and (b) the fourth attractor is absent. Note: = 0.3.

Exploring the state space of a BLV retail model using interactive data visualisation makes clear
the way that basins change shape and appear/disappear from state space when exogenous parameter
values change gradually. Basins often change shape smoothly and continuously maintaining many,
if not all, of the main characteristics and just warping the existing features slightly. New basins may
appear anywhere in the state space. As state space is changed through smooth parameter changes
a stable attractor can disappear leaving a very slow subpart of state space in its place. All the initial
conditions that previously moved to the attractor that disappeared now move to another attractor.
The reverse is also possible—then a small portion of an existing basin might “slow down” until a
new stable attractor appears, capturing many initial conditions nearby. This phenomenon of attractor
appearance/disappearance is demonstrated in Figure 4 where a single attractor appears/disappears
with a small change in the « parameter. Slow subparts of state space can also exist on the boundary
between two basins and are potentially the site of unstable equilibrium positions. There is one
well-known contrasting situation to that described above: for low values of B we know that small
parameter changes across the & = 1 line result in the entire state space changing abruptly. This can be
explained by D;/KW; zone graph analysis—see Dearden and Wilson [33] for details.
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3.3. State-Space-Related Causes of Phase Transitions

It is possible to identify two different causes of phase transitions in model terms. This may
help to unpick cause and effect in model runs, something that is often difficult especially in large,
complicated simulations. In the BLV retail model there appear to be two possible causes for phase
transitions: (A) exogenous change and (B) endogenous change. Details of each cause is given in Table 1.
An example of a Type A phase transition would be expansion of an existing shopping centre which
results in the system being placed into a new basin of attraction. The expansion will likely result
in oversupply in the retail system but the basin crossing argument still applies and the system is
likely to be under pressure to proceed quickly back to the hyperplane. An example of a Type B phase
transition would be construction of a new motorway affecting travel cost in the region which then
changes the basins in the state space so that the system is then contained by a new basin. Simultaneous
endogenous and exogenous change might actually prevent a phase transition from occurring if the
system is manually moved in state space to stay in the same basin. This relates to the idea that an
urban planner might seek to avoid some phase transitions while welcome others depending on how
well they meet the master plan [3]. Wilson [4] first explored the idea of phase transitions that cross a
separatrix or basin boundary. Our work here is similar but we are using numerical experiments to
delineate the boundaries for hypothetical systems.

Table 1. Categorization of phase transition causes using the features of state space.

Type Cause Real-World Description Model Description
Endogenous Results from intervention modifying the Corresponds to a manual change in
A initial conditions such that the system is .
change . endogenous variables {Wj }
moved across a basin boundary.

Results from changes in exogenous
parameters modifying the configuration of
basins in the state space and as a result
placing the system in a different basin (i.e.,  of: [e,-, P, a, B, {c,-j}, K] .
with a different attractor).

Corresponds to a manual change in

Exogenous exogenous parameters, one or more

change

3.4. Large Numbers of Zones

In order to extend the analysis to real systems with large numbers of zones (i.e., more than three)
we introduce the equilibrium-size graph [8]. This is constructed by probing the state space along
one dimension from a point of interest (e.g., the current system state). This is a great simplification
for higher numbers of dimensions where the state space is too difficult to comprehend but allows
us to use the terminology of state space, e.g., basin boundaries and attractors. Figure 5 shows an
equilibrium-size graph constructed from the centre point of the state space shown in Figure 3a along
the W, zone dimension. The chart shows that below a critical size of ~18,000 m? retail zone Wj is
zero at equilibrium. More importantly this shows a one-dimensional view of state space and allows
us to identify the boundary between two basins. In one basin retail zone W, is zero at the attractor
and in the other basin it is 200,000 m? at the attractor. The benefit of using this graph is to know the
nearby and reachable “other basins” and so identify other possible potential development paths for
the current city, e.g., by opening a new shopping centre. In more complicated state spaces this kind of
chart could identify more than the two basins shown in this simple example. There is a great potential
to explore the state space of more complicated models using this technique, e.g., a multi-system BLV
model. The chart is really only exploring on the hyperplane because however far above or below it gets
from the current hyperplane it will just find the same set of basins on another identical hyperplane.
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Figure 5. Equilibrium-size graph for retail zone W in region R2—note: uses the same parameter set as
Figure 3a.

4. Discussion

This study proposed exploring (with interactive data visualisation) the range of output available
when the initial conditions vary. Our methodology provided new insights into the following areas:

e  The dynamics of the BLV retail model is largely constrained to a supply-demand balancing hyperplane.

e  The causes of BLV retail model phase transitions can be usefully categorised and described using
state space into those caused by endogenous change and those caused by exogenous change.

e  The landscape of state space can change in both gradual and abrupt ways.

e New attractors can appear in regions of state space where velocity is very low (the reverse would
mean an attractor would disappear leaving a region of low velocity state space).

e  Equilibrium-size graphs can extend the analysis to systems with more than three zones.

Rather than being merely a description of what happened during large numbers of model runs,
the state space actually contains a large amount of information about the system dynamics—the basin
boundaries are critical thresholds that determine the direction of evolution of the whole region. On one
side of a basin boundary a particular configuration of stable sizes is present (whether zero or non-zero)
and on the other side these stable sizes are different (again whether zero or non-zero). All positions in
state space represent some ratio of the retail centre sizes and these lines or surfaces are no different.
In two-dimensional models this will be a constant ratio along an exactly straight basin boundary.
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In three zone models the ratio is likely to vary as you move along the boundary between two basins.
The reason for this is the interactions and interdependence between centres because each shopping
centre’s size and position affects all the other shopping centres.

State space provides a way of mapping the possible phase transitions for a system—these are
visible as basin boundaries in both the phase space for the current parameter set and also in all other
parameter sets. State space analysis renders in detail the idea of urban systems that are far from an
equilibrium solution which may then cross critical thresholds during their evolution. If a retail system
is not at an attractor its natural inclination to move towards equilibrium could potentially be disrupted
by type A or type B phase transitions which then cause it to move towards a different equilibrium state.
This study provides the state space equivalent of the parameter space exploration shown in Dearden
and Wilson [33], where parameter space exploration is used to demonstrate the range of output of
an urban model when varying the exogenous parameters. An exploration of parameter space in this
way can be categorised as exploring type B phase transitions in the methodology developed in this
study. Although currently it is not possible to visualise the state space of models with more than three
zones, there is the potential to build on this study and work towards presenting the information in a
manageable way for systems with large numbers of zones. The state space of the kind shown here
is similar to a bifurcation diagram, which shows all the stable states possible for one specific zone
across a range of parameter values. However, an interactive state space view provides more detail on
a particular parameter set, for example, we can see critical sizes/basin boundaries, detail on multiple
zones at the same time, and information on how particular solutions relate to each other.

As already demonstrated, equilibrium-size graphs can in some cases identify a critical size below
which a zone is not present at equilibrium. This study has allowed us to explain the graph in state
space terms. This kind of analysis can help identify both types of causes for phase transitions as
demonstrated in Dearden and Wilson [8] where the critical size of a retail zone changes in this kind
of graph when external conditions (the exogenous parameters) are modified manually—implying a
basin boundary moving over the current initial conditions. This points the way forward for using
the insights that state space offers in higher dimensional systems—the examples given in Wilson and
Dearden [26] work with a 215-dimensional retail system and explore different ways to present the
data, e.g., plotting the critical size for each zone on a map of the retail system. Equilibrium-size graphs
and the idea of a critical minimum viable size for a retail zone also help to explain how thin basins can
occur along a state space edge where at least one zone is zero size across the whole basin—something
regularly visible in the outputs of the BLV retail model state space software in use for this study.

The results presented in this paper show how state space can be used to identify why particular
phase transitions occur and categorise them based on the underlying reasoning. The categorisation of
causes of phase transition is related to the modelling framework containing exogenous and endogenous
components. We cannot make everything in a model endogenous and so this is always likely to be
the case. This does not take away from the categorisation it is just a way of simplifying an otherwise
very complicated situation and allows us to regard some factors as external to the situation being
analysed. Phase transitions caused by apparently external factors may become ever more likely as
cities and regional areas are more connected distant cities and places (e.g., as a result of globalisation,
faster transportation systems interlinking cities, telecommunications, etc.). Generally exploring the
qualitative nature of low dimensional versions of urban models appears to provide new insights into
the dynamics of cities and regions and aid hypothesis generation for future studies. More specifically
it can help us build an intuitive grasp of how the state space of a model changes with exogenous
parameter change—potentially laying the groundwork for a higher-level understanding of the structure
of state space.

5. Conclusions

In this study we analysed the qualitative features of state space in a hypothetical BLV retail model
containing two or three shopping centres. In particular we categorised the causes of phase transitions
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depending on how they relate to state space features and changes. All phase transitions that occur in
the BLV model are analysable from a state space point of view whether by looking at the “current”
state space or by exploring the difference between one state space map and another (produced by
exogenous parameter change). Examining all possible configurations of an urban system in a region
allows us to identify the potential for growth in future. The benefit of this approach is that it provides
a relatively intuitive “map” of the abstract space through which an urban system moves when it
evolves. This is feasible because BLV model solutions can be calculated very quickly on modern
desktop computers. We also identified the hyperplane in state space as being a strong indicator of the
nature of the dynamics off the hyperplane and explored qualitatively how state space changes across
the parameter space.

There is the potential to compare and contrast the qualitative nature of state space of different
urban models in order to gain insights. For example, how do the dynamics of different urban
subsystems (that may exist together in the same state space) vary in their response times and how do the
shape of the basins differ between for example retail, house price and housing provision BLV models.
A limitation is that high dimensional state spaces cannot be visualised easily. Dearden et al. [34] offers
a starting point for extending this methodology to higher dimensional systems using linked viewports
and high dimensional visualisation techniques such as parallel coordinates, node-link graphs and
vector field matrices. Already mentioned is the use of equilibrium-size graphs [26] to identify basin
boundaries in systems with large numbers of zones. Stochastic versions of the BLV model [35] are
potentially interesting to explore in phase space because the basin boundary would be fuzzy to some
extent with the impact of the noise potentially determined by the direction and magnitude of the
velocities along each boundary. Validating the theory relating to urban models and development
is difficult and in the case of abstract structures like state space. A way of exploring this might be
to calibrate a model for a historical system, build the state space and then see if the combination
of “natural evolution” and known interventions result in what actually happened at that point in
history. By visualising how state space changes as exogenous parameters are changed across a range
of values, we can better understand the potential for stabilising different retail system configurations.
A planned alteration to a retail system could potentially be synchronized with other external changes
to ensure that a stable attractor was moved as close as possible to the hoped-for stable situation. More
generally, this type of analysis can potentially offer insights into the nature of the dynamics in any
dynamical-systems-type urban model. This is critical in increasing our understanding of the evolution
of city regions, as well as helping stakeholders and policy-makers to plan for future urban changes.

Author Contributions: A.W. developed the model. ].D., A.W., M.]. developed method and framework. J.D. coded
the software and visualised results. ].D. and Y.G. drafted the manuscript, with inputs and contribution from
all authors.

Funding: This work was partially funded by a Leverhulme Grant (REF: RPG-2013-190).
Conflicts of Interest: The authors declare no conflict of interest.
Appendix A Hypothetical Region Details

In both regions each travel cost ¢;; is calculated from the straight-line distance between the

two zones.
Region RI:
° ¢ =0.01.

e Contains two retail zones and five residential zones.

e  Each population zone has a spending power (e; P;) of £100,000.

e  Retail rent is £25 per m2.

e Total floor space (and also the maximum for any retail zone) is 20,000 m?.
e  Approximately 5 km?.
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Table A1l. Zone centroids for region R1.

Zone Type Easting Northing

Retail zone 805.317 1482.571

Retail zone 4229.061 4181.103
Population zone 0 2523.716
Population zone 1512.762 720.295

Population zone 2949.575 5249.2522
Population zone 5098.8824 3605.135
Population zone 2549.174 3085.36

Region R2:

e ¢=0.001.

e  Contains three retail zones and twenty residential zones.

e  Each population zone has a spending power (e; P;) of £1,000,000.

e  Retail rent is £25 per m?.

e Total floor space (and also the maximum for any retail zone) is 200,000 m?.

e  Approximately 25 km?.
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