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Abstract

This paper presents an optimization-based scheduling strategy for battery energy storage
systems (BESS) in alternating current microgrids, considering both grid-connected and
islanded operation. The study addresses two independent objectives: minimizing energy
losses in the distribution network and reducing carbon dioxide emissions from dispatchable
power sources. The problem is formulated using a full AC power flow model that
simultaneously manages active and reactive power flows in BESS located in the microgrid,
while enforcing detailed operational constraints for network components, generation
units, and storage systems. To solve it, a parallel implementation of the Particle Swarm
Optimization (PPSO) algorithm is applied. The PPSO is integrated into the objective
functions and evaluated through a 24-h scheduling horizon, incorporating a strict penalty
scheme to guarantee compliance with technical and operational limits. The proposed
method generates coordinated charging and discharging plans for multiple BESS units,
ensuring voltage stability, current limits, and optimal reactive power support in both
operating modes. Tests are conducted on a 33-node benchmark microgrid that represents
the power demand and generation from Medellín, Colombia. This is compared with
two methodologies reported in the literature: Parallel Crow Search and Parallel JAYA
optimizer. The results demonstrate that the strategy produces robust schedules across
objectives, identifies the most critical network elements for monitoring, and maintains
safe operation without compromising performance. This framework offers a practical and
adaptable tool for microgrid energy management, capable of aligning technical reliability
with environmental goals in diverse operational scenarios.

Keywords: AC microgrids; multi-objective optimization; batteries’ energy management;
energy losses; CO2 emissions

1. Introduction
The integration of distributed energy resources (DERs) into modern power networks

is reshaping the operation and planning of electrical systems. Renewable technologies
such as photovoltaic (PV) and wind generation significantly reduce fossil fuel dependence
and greenhouse-gas (GHG) emissions. However, their intermittent and variable nature
causes voltage deviations, higher technical losses, and reduced system stability, challenges
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that are especially relevant in distribution networks strongly affected by local demand and
generation patterns. Recent studies introduce distributed control strategies for BESS, which
are shown to effectively regulate voltage in distribution networks with high PV penetration,
minimizing instability caused by renewable variability [1]. In this context, microgrids (MGs)
have emerged as a versatile and reliable solution for managing local generation, storage,
and loads. Their capability to operate in both grid-connected mode (GCM) and islanded
mode (IM) enables flexible operational strategies depending on main grid availability and
the local balance between supply and demand. Unified dispatch strategies enable seamless
transition between grid-connected and islanded microgrid operation, improving reliability
and operational flexibility in complex power networks [2].

Battery energy storage systems (BESS) are fundamental to enhancing both the
technical and environmental performance of MGs. When optimally scheduled, these
systems can reduce active power losses, support voltage regulation, and decrease
reliance on high-emission generation units. Several optimization strategies have been
developed using master–slave architectures, where a metaheuristic optimizer computes
the control setpoints and a power flow model verifies technical feasibility. Parallel
implementations have shown faster convergence and improved scalability for real-time
energy management in microgrids [3,4]. For example, one study proposed a Gray Wolf
Optimizer (GWO) combined with Successive Approximations (SA) to manage wind
generation, BESS, and D-STATCOM units, achieving notable cost reductions and improved
voltage regulation in a 33-node MG under both GCM and IM [5]. Another work developed
a parallel implementation of the Multi-Verse Optimizer (MVO) integrated with SA, aiming
to minimize energy losses and CO2 emissions, and reported significant performance
improvements over other metaheuristics in both operational scenarios [6].

Recent work demonstrates that coordinated control strategies can enhance the
multifunctional performance of BESS. Advanced control architectures achieve simultaneous
frequency regulation, voltage stabilization, and power loss reduction, improving power
quality in large-scale networks [7]. Hybrid energy management systems (EMS) combining
rule-based logic with optimization modules reduce operational costs by over 20% and
CO2 emissions by up to 30%, while dynamically managing reactive power through BESS
and PV inverters [8]. This capability aligns with broader energy transition goals, where
inverter-based resources (IBRs) are expected to replace conventional synchronous machines
as the leading providers of reactive power in future grids [9]. New research in AI-driven
control strategies also complements the development of optimization-based scheduling.
For example, Akarne et al. [10] proposed a robust PI controller tuned with the sparrow
search algorithm for photovoltaic integration in smart microgrids, achieving improved
dynamic stability and power quality. Such contributions highlight the increasing role of
bio-inspired and AI-based approaches

Beyond operational control, the role of BESS in low-carbon network planning is also
gaining prominence. Integrated models that combine carbon emission flow (CEF) analysis
with robust optimization under uncertainty have proven effective in enhancing the spatial
and temporal distribution of carbon emissions while improving system economics [11].
Moreover, the coordinated use of BESS for network reconfiguration and reactive power
compensation, when coupled with optimization algorithms such as Kruskal-based topology
reconfiguration and Simulated Annealing, has shown significant potential to minimize
active power losses while respecting operational switching constraints [12].

Technical advances in converter control are also expanding the operational envelope
of BESS. For example, strategies that decouple battery packs from the power conversion
system to boost DC-link voltage have been shown to triple the reactive power capability
of BESS-STATCOM units at low state-of-charge levels, without additional hardware [13].
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Hierarchical model predictive control strategies have been successfully applied to both
grid-connected and islanded microgrids, efficiently coordinating multiple distributed
resources for improved resilience and operational flexibility [14]. Similarly, current-constrained
active and reactive power scheduling methods for PV–BESS inverters have demonstrated
notable improvements in reducing inverter losses, extending lifetime, and mitigating
voltage-dependent underperformance in real-world conditions [15].

Research has also focused on the economic optimization of MG operation. A comparative
analysis of four metaheuristics for managing wind-based distributed generators identified
the population-based genetic algorithm (PGA) as the most cost-effective and stable option
under realistic variability conditions [16]. In another approach, PV and D-STATCOM units
were optimally integrated using a discrete–continuous variant of MVO with a matrix power
flow method, producing superior results compared to alternative master–slave strategies
in both 33- and 69-node systems [17]. Further studies have applied the Generalized
Normal Distribution Optimizer (GNDO) for BESS scheduling, targeting the simultaneous
optimization of technical, economic, and environmental metrics, and benchmarking
against other well-established algorithms to confirm its robustness [18]. Additionally,
the integration of lithium-ion batteries with varying technical characteristics has been
addressed using a hybrid PDVSA–PSO strategy, achieving measurable reductions in both
energy losses and emissions [19]. Another important issue is cybersecurity. Recent studies,
such as [20], have highlighted the vulnerability of microgrids to cyberattacks and the
necessity for optimization frameworks that simultaneously address operational efficiency
and resilience. However, the integration of safety constraints in adversarial scenarios has
not been thoroughly explored.

Despite the variety of methodologies proposed, gaps remain in the literature. First,
many studies focus on a single objective function (often cost minimization) without isolating
and independently evaluating technical and environmental indicators such as losses and
emissions. Second, the robustness of optimization algorithms under variable demand and
generation conditions in both GCM and IM has been less frequently explored, particularly
with large-scale statistical validation. Finally, while several metaheuristics have been tested
in MG optimization, comparative assessments of parallelized implementations remain
limited, even though parallelization can significantly improve computational performance
for real-time applications.

Motivated by these gaps, this study investigates optimal BESS scheduling in a 33-node
AC microgrid modeled with real load and PV generation data from Medellín, Colombia.
Two independent objectives are analyzed: (i) minimization of technical energy losses and
(ii) minimization of CO2 emissions. Three parallel metaheuristic optimizers, PPSO, PCSA,
and PJAYA, are implemented and compared. Each method is tested in both GCM and
IM, with 100 independent runs per scenario to assess solution quality, repeatability, and
computational efficiency under realistic variability in load and PV generation.

Unlike previous studies that often focus on a single objective or employ serial
implementations of optimization algorithms, this work explores a parallelized framework
that enhances convergence speed and robustness, which is essential for real-time microgrid
scheduling. The novelty also resides in combining this methodological approach with
real-world operational data from Medellín, Colombia, enabling an assessment that reflects
both technical and environmental realities of a specific urban microgrid. This dual
contribution—methodological advancement and contextual application—distinguishes the
present study from prior work.

The main contributions of this study are:
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• Development of an optimization framework for BESS scheduling in AC microgrids
under both GCM and IM, with independent objectives for loss and emission
minimization.

• Systematic comparison of three parallel metaheuristic algorithms, assessing best,
average, and variability metrics, as well as computational performance.

• Incorporation of realistic demand and PV generation profiles, enabling a more practical
evaluation of algorithm performance.

• Comprehensive statistical analysis to validate robustness and consistency across
multiple independent simulations.

By combining mode-specific operational constraints, real-world data, and parallelized
metaheuristic optimization, this work provides a balanced technical and environmental
evaluation of BESS scheduling strategies. The findings offer practical guidance for selecting
optimization methods in microgrid applications, supporting both operational efficiency
and emissions reduction.

2. Mathematical Formulation
This section presents the mathematical model used to determine the optimal hourly

operation of battery energy storage systems (BESS) in an AC microgrid over a 24-h horizon.
Two independent optimization problems are formulated: one minimizes total network
energy losses, and the other minimizes CO2 emissions from dispatchable generation units.
Both formulations include the complete set of operational and physical constraints to
ensure technical feasibility and compliance with system limits.

The first objective minimizes resistive power losses in the distribution lines, which
depend on the current magnitude it ∈ RL flowing through the L branches at each time step
t ∈ T = {1, 2, . . . , 24}. Line resistances are represented by the diagonal matrix R ∈ RL×L,
where each diagonal entry corresponds to the ohmic resistance of a branch. The total losses
across the entire scheduling horizon are calculated as:

OFLoss = min
x

{
24

∑
t=1

∆t · i⊤t Rit

}
(1)

In this expression, ∆t = 1 h is the interval duration and x represents the vector of
decision variables, including active and reactive power dispatch, voltages vi,t, phase angles
θi,t, and BESS power flows. The quadratic form in (1) reflects how energy loss increases
with the square of the current, which is physically consistent with Joule’s law.

OFCO2 = min
x

{
24

∑
t=1

∆t ·
[
(ϵgc)⊤pgc

t + (ϵdg)⊤(adg
t ◦ pdg

t )
]}

(2)

The second objective minimizes the total CO2 emissions over the 24-h horizon.
Emissions originate from conventional generators (CG) and diesel-based distributed
generators (DG), represented by active power vectors pgc

t and pdg
t , respectively. Each

generator type is characterized by an emission coefficient vector ϵgc or ϵdg in kg CO2/kWh.
The solar availability factor for each DG unit is captured by adg

t ∈ [0, 1]N , which modulates
their effective generation capacity at each time step. The objective function for emissions
minimization is:

The Hadamard product (◦) represents element-wise multiplication. This formulation
allows the emissions from CG and DG units to be separately evaluated, accounting for both
dispatch levels and availability constraints.
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Both optimization problems share identical network and equipment constraints.
Power balance is enforced at each node i for both active and reactive components, as
expressed below:

pgc
i,t + ppv

i,t ± pb
i,t − pd

i,t = vi,t ∑
j∈N

Yijvj,t cos
(
θi,t − θj,t − φij

)
(3)

Here, pgc
i,t and ppv

i,t represent the active power produced by CG and PV generators at
node i, pb

i,t is the power injected (positive) or absorbed (negative) by the BESS, and pd
i,t

is the local load demand. The right-hand side models the active power injected into the
network using voltage magnitudes vi,t, the real part of the admittance matrix Yij, and the
angle difference between nodes θi,t − θj,t with φij being the admittance phase angle.

The corresponding reactive power balance is expressed by:

qgc
i,t − qd

i,t ± qb
i,t = vi,t ∑

j∈N
Yijvj,t sin

(
θi,t − θj,t − φij

)
(4)

In this equation, qgc
i,t is the reactive power from CG units, qd

i,t is the reactive demand,
and qb

i,t is the reactive exchange from the BESS. This term is bounded by the converter’s
capacity and allows for power factor correction.

Conventional generator outputs are constrained to operate within minimum and
maximum limits for both active and reactive power:

Pcg,min
i ≤ pcg

i,t ≤ Pcg,max
i (5)

Qcg,min
i ≤ qcg

i,t ≤ Qcg,max
i (6)

Under islanded operation, the diesel generator at the slack bus acts as the main energy
supplier, constrained between 40% and 80% of its nominal capacity:

0 ≤ Pcg
i,t (7)

PDiesel,min
i ≤ Pcg

i,t ≤ PDiesel,max
i (8)

PV generation is bounded by availability and device rating, expressed as:

Ppv,min
i ≤ Pdg

i,t ≤ Ppv,max
i Gdg

t (9)

where Gdg
t reflects the hourly solar irradiance profile in per-unit terms.

The BESS is modeled with power limits for both charging and discharging, given by:

Pcharg_max
B,i ≤ PB

i,t ≤ Pdisch_max
B,i (10)

These limits are computed from the battery energy capacity CB
i and predefined

charge/discharge times tcB
i and tdB

i :

Pdisch_max
B,i =

CB
i

tdB
i

, Pcharg_max
B,i = −

CB
i

tcB
i

(11)

To prevent inverter overload, the reactive power is limited by the converter’s
apparent-power rating Sb

i :

qb,max
i,t =

√(
Sb

i
)2 −

(
pb

i,t

)2
(12)

−qb,max
i,t ≤ qb

i,t ≤ qb,max
i,t (13)
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The battery’s state of charge (SoC) evolves according to the power exchanged and the
battery’s energy rating Eb

i :

SoCb
i,t = SoCb

i,t−1 − φb
i pb

i,t∆t (14)

φb
i =

1
Eb

i
(15)

Initial and final SoC levels are fixed to maintain operational consistency and extend
battery lifespan:

SoCb
i,0 = SoCb,initial

i , SoCb
i,24 = SoCb,final

i (16)

To maintain power quality and protect the infrastructure, node voltages must stay
within prescribed limits:

Vmin
i ≤ vi,t ≤ Vmax

i (17)

In addition, line currents must not exceed their thermal ratings:

|Iij,t| ≤ Imax
ij (18)

This mathematical formulation supports two distinct optimization problems: one
focused on technical efficiency through loss minimization, and the other on environmental
sustainability through emission reduction. Both share the same physical and operational
constraints.

3. Optimization Framework
This section formulates the optimal active P and reactive Q dispatch of BESS in a

33-bus AC microgrid. Two objectives are solved independently: minimization of technical
energy losses and minimization of CO2 emissions, each under grid-connected (GCM) and
islanded (IM) operation.

To address this problem, three metaheuristic algorithms were implemented in parallel
form: Parallel Particle Swarm Optimization (PPSO), Parallel Crow Search Algorithm
(PCSA), and Parallel JAYA (PJAYA). In all cases, the optimization process is coupled with
an AC power flow solver based on the Successive Approximations (SA) method. This
master–slave architecture allows the master stage (the optimizer) to generate candidate
operating schedules, while the slave stage (the SA solver) evaluates their technical feasibility
and computes the value of the objective function.

3.1. Representation of Decision Variables

Each candidate encodes a 24-h profile per BESS with hourly P and Q setpoints subject
to inverter and SoC limits. By convention, P < 0 indicates charging and P > 0 discharging.
For reactive power, Q > 0 denotes injection and Q < 0 absorption. The apparent-power
constraint is enforced as

SBESS,h =
√

P2
BESS,h + Q2

BESS,h ≤ Srated.

Table 1 illustrates the encoding scheme adopted for representing the 24-h operating
profile of a battery energy storage system (BESS) within the optimization process. The
schedule is divided into two sections: the first block corresponds to the active power (P)
profile, where positive values indicate discharging periods and negative values represent
charging periods. The second block corresponds to the reactive power (Q) profile, in which
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positive entries denote reactive power injection and negative entries indicate absorption,
depending on the voltage support requirements of the microgrid.

This encoding approach allows the optimization algorithm to simultaneously determine
both energy management and voltage regulation actions for each BESS unit.

Table 1. Encoding of the 24-h BESS schedule. Block 1 stores active power P (discharge P > 0, charge
P < 0); Block 2 stores reactive power Q (injection Q > 0, absorption Q < 0). This structure lets the
optimizer co-decide energy management and voltage support while respecting inverter limits.

Battery Schedule 1 h 2 h ... 23 h 24 h

Active Power 0.96 −2.51 ... −2.30 1.25

Reactive Power 2.25 3.65 ... 0.00 0.89

3.2. Evaluation of Candidate Solutions

For each proposed schedule, the SA power flow algorithm evaluates the network
operation hour by hour:

1. Input preparation: Active and reactive load demands, PV generation outputs, and
BESS charging/discharging setpoints for each hour are assembled.

2. Power flow solution: The SA method iteratively solves the AC nodal power balance
equations until convergence is achieved for voltage magnitudes and phase angles.

3. Constraint verification: The resulting voltages, line currents, and generator outputs
are checked against operational limits:

• Bus voltages within ±10% of nominal.
• Current limits on all distribution lines.
• SoC remaining between 10% and 90%.
• Diesel generator output within 40–80% of nominal in IM.

4. Objective function computation: The selected objective is evaluated using the SA
results: total resistive losses per Equation (1) or total emissions per Equation (2),
aggregated over 24 h.

5. Penalty assignment: Violations of voltage, current, generator, or SoC limits incur
additive penalties proportional to the excess (in per-unit or nameplate units),
discouraging infeasible schedules.

3.3. Parallel Metaheuristic Optimization

The optimization stage runs in parallel to accelerate convergence and increase
throughput:

• PPSO: In the parallel particle swarm optimization framework, each particle encodes
a complete 24-h charging and discharging schedule for all BESS units. The position
and velocity of each particle are iteratively updated by combining its own best-known
position (personal best) with the swarm’s overall best solution (global best), enabling
a balance between exploration of new schedules and refinement of promising ones.
The parallel implementation allows the fitness of multiple particles to be evaluated
simultaneously, significantly accelerating the search process.

• PCSA: In the parallel crow search algorithm, each agent (crow) represents a
candidate BESS operation profile. Agents navigate the search space by following
the memorized best positions of other crows, while the awareness probability controls
the likelihood of exploring new regions instead of blindly following. The flight length
parameter determines the step size towards a target solution. By parallelizing the
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evaluation stage, many candidate profiles can be assessed at once, eliminating serial
computational bottlenecks and improving convergence speed.

• PJAYA: The Parallel JAYA algorithm generates new candidate solutions by moving
each one towards the best-performing solution found so far, while simultaneously
moving away from the worst-performing one. This update rule is parameter-free,
simplifying calibration and avoiding dependency on algorithm-specific tuning.
The parallel execution of the evaluation stage enables simultaneous assessment of
numerous candidates, reducing the total runtime while maintaining solution quality.

The three optimization approaches differ mainly in their exploration–exploitation
balance and computational characteristics. PPSO relies on collective swarm intelligence,
where particles share information to converge steadily towards high-quality schedules.
PCSA emphasizes adaptive exploration, with agents dynamically deciding whether to
exploit known good regions or investigate unexplored areas, which can help avoid
premature convergence. PJAYA offers a parameter-free update mechanism, focusing on
consistent improvement by leveraging the best and worst solutions in each generation.
When implemented in parallel, all three algorithms benefit from substantial reductions
in computational time, but their intrinsic search dynamics lead to distinct convergence
behaviors and sensitivities to problem complexity.

Prior to conducting the comparative analysis, each optimization method underwent a
dedicated calibration phase to identify the most effective parameter configurations. This
process involved adjusting key settings such as population size, maximum number of
iterations, and, when applicable, algorithm-specific coefficients. By tuning each algorithm
independently under the same test conditions, a fair performance comparison was ensured
while allowing every method to operate at its highest potential.

The calibration was performed using a PSO-based tuning approach configured with a
swarm of eight particles and a limit of 300 generations. The inertia weight decreased linearly
from 1.0 to 0.0 across iterations, while both the cognitive and social acceleration coefficients
were set to 1.494. This arrangement was selected to provide a balanced trade-off between
broad exploration of the search space and focused exploitation around promising regions.

The resulting optimal parameter values for PPSO, PCSA, and PJAYA are reported in
Table 2.

Table 2. Final calibrated parameters for the three optimization algorithms.

Category Parameter PPSO PCSA PJAYA

General setup
Iterations (max) 1600 3000 2000
Population size 100 100 500
Velocity limits ±0.1 – –

PPSO-specific

Max. inertia 0.8709 – –
Min. inertia 0.4006 – –
Cognitive coeff. 2.0000 – –
Social coeff. 1.2756 – –

PCSA-specific Flight length – 3.5 –
Awareness prob. – 0.05 –

3.4. Stopping Criteria and Output

The optimization process terminates when either the maximum number of iterations
is reached or no significant improvement in the global best solution is observed over a fixed
number of generations. The final output is the BESS schedule that yields the lowest value of
the selected objective function while meeting all technical constraints. Since the objectives
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are optimized independently, two distinct schedules are obtained: one for minimum losses
and another for minimum emissions.

This framework leverages the exploration–exploitation capabilities of three different
metaheuristics, the constraint-handling ability of the SA solver, and the computational
advantages of parallel execution. As a result, it provides a robust tool for evaluating
advanced scheduling strategies for AC microgrids under diverse operational modes and
performance objectives.

The choice of PPSO, PCSA, and PJAYA was motivated by their complementary search
strategies and proven effectiveness in power system optimization. PPSO exemplifies
swarm-based learning with adaptive balance between exploration and exploitation, PCSA
offers bio-inspired adaptive exploration through memory-based behavior, and PJAYA
introduces a parameter-free mechanism that avoids dependence on tuning. These methods
provide a representative spectrum of metaheuristic designs, ensuring a fair comparative
analysis while maintaining computational tractability. Although hybrid strategies may
further enhance performance, the present work prioritizes transparency and reproducibility
by benchmarking well-established standalone approaches.

4. Test System and Considerations
To evaluate the performance of the proposed optimization methodology, this work

adopts a modified version of the well-known 33-bus AC microgrid (MG) [21]. The MG is
tailored to represent the typical operational conditions encountered in the city of Medellín,
Colombia, including its daily load patterns and solar availability. The system operates at
a nominal voltage of 12.66 kV and uses a base apparent power of 100 kVA for per-unit
normalization. It consists of 33 nodes interconnected by 32 distribution lines, forming a
radial topology suitable for the simulation of low-voltage urban microgrids. The schematic
layout of the system is presented in Figure 1.

Figure 1. Single-line diagram of the 33-bus AC microgrid [6]. Node 1 is the slack bus (PCC
in GCM, diesel in IM); PV units and BESS placements are shown to contextualize subsequent
scheduling results.

Within this configuration, node 1 is designated as the slack bus and serves a dual
role depending on the operating mode. In the GCM, it represents the point of common
coupling (PCC) to the utility grid, whereas in the IM, it is supplied by a dedicated diesel
generator. This generator is rated at 4000 kW and is operated within a restricted loading
range between 40% and 80% of its nominal capacity (between 1600 kW and 3200 kW) to
ensure stable performance and prolong equipment life, in accordance with manufacturer
recommendations [5].

The microgrid model incorporates time-varying profiles for both power consumption
and renewable energy generation. These were sourced from real-world datasets, with
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demand data provided by Empresas Públicas de Medellín (EPM) [22] and solar irradiance
information obtained from NASA’s climate database. The corresponding normalized hourly
profiles for electricity demand and PV generation are plotted in Figure 2. These curves
reflect typical diurnal fluctuations encountered in the region, with peak demand occurring
during evening hours and solar availability peaking around midday.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

Hour of Day

Po
w

er
(p

.u
.)

Load Demand PV Generation

Figure 2. Normalized hourly demand and PV generation in Medellín. Demand peaks in the evening;
PV peaks at midday.

PV units at nodes 12, 25, and 30 are rated 1125 kW, 1320 kW, and 999 kW, respectively,
and operate under Maximum Power Point Tracking (MPPT).

Energy storage is provided by three lithium-ion BESS installations, located at buses 6,
14, and 31. These systems are differentiated by capacity and cycle duration: Type A delivers
1000 kW of active power; Type B stores 1500 kWh with a 4-h charge/discharge window;
and Type C provides 2000 kWh with a 5-h cycle. To protect battery integrity and ensure
predictable operation, each unit maintains its state-of-charge (SoC) between 10% and 90%,
with both the initial and final SoC fixed at 50%, consistent with IEEE recommendations [23].

The electrical characteristics of the system, including line parameters (resistance,
reactance), nodal power demands (active and reactive), and current ratings, are documented
in [6] to enable reproducibility of results. To comply with regulatory standards for voltage
stability in Colombia, the system maintains voltage magnitudes within a ±10% window
around the nominal level, as stipulated by the NTC 1340 code [24].

Environmental considerations differ between modes. In GCM, emissions are calculated
using a grid emission factor of 0.1644 kg CO2/kWh, whereas IM relies solely on diesel
generation, yielding a higher factor of 0.2671 kg CO2/kWh.

All simulations are carried out over a single representative day. This choice enables
a fair comparison between the two operating scenarios by maintaining identical system
topology and input data. Therefore, any variation in performance metrics such as energy
losses and emissions can be directly attributed to changes in the control strategy or
operating mode, rather than to structural differences.

Lastly, a sensitivity analysis was conducted to explore how fluctuations in demand
and solar generation impact the results. This assessment quantifies the effect of temporal
uncertainty on the objective function, providing insight into the robustness of the
optimization algorithm under realistic daily variability.

5. Results of the Simulations
This section details the outcomes of applying the proposed optimization framework

to a 33-bus AC microgrid, with a focus on evaluating the performance of BESS scheduling
under two different operational paradigms: grid-connected GCM and IM. The simulations
aim to quantify the benefits of the strategy in terms of technical indicators such as energy
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losses and carbon emissions. All computational experiments were carried out in MATLAB
R2024a, running on a high-specification workstation featuring an Intel® CoreTM i9-14900HX
CPU (24 cores, 32 threads at up to 5.8 GHz), an NVIDIA® GeForce RTXTM 4090 GPU, and
32 GB of DDR5-5600 RAM under a 64-bit Windows 11 system.

Two distinct simulation settings were explored to rigorously assess the methodology.
First, a comparative evaluation of three metaheuristic optimization techniques was
conducted to benchmark their effectiveness in controlling BESS dispatch. Second, a
sensitivity analysis was performed to capture the impact of realistic variations in both
power demand and solar irradiance. This dual approach provides insight into the solution
quality, computational consistency, and adaptability of each optimization strategy under
dynamic operating conditions.

It is worth noting that conventional PSO and JAYA have been extensively benchmarked
in the literature for microgrid scheduling [16], while GA [25], MILP [26], and ANN-based
strategies [27] have also shown promising results in related contexts. MILP guarantees
optimality under linearized assumptions but suffers from exponential computational
growth for large-scale AC formulations. GA and ANN methods can achieve competitive
performance but are often limited by slow convergence or lack of generalizability. The
present work complements these studies by evaluating parallel implementations of
metaheuristics, which provide scalable and repeatable results with reduced computational
burden under realistic load and renewable variability.

5.1. Comparative Performance Assessment Against Benchmark Methods

To ensure robustness in the results, each optimization method was executed 100 times
under both GCM and IM. This Monte Carlo-based approach enables a rigorous statistical
evaluation of solution quality, repeatability, and processing time. The primary performance
metrics considered in this study are network energy losses and total CO2 emissions.

Under GCM, Table 3 summarizes the maximum and average reductions in both
losses and emissions obtained by the three optimization methods: PPSO, PCSA, and
PJAYA. Standard deviation values are also reported to quantify consistency, alongside
average computation times per simulation run. The baseline case, which includes only
PV generation operating under MPPT control (without BESS intervention), results in
2484.57 kWh of energy losses and 9.8874 TonCO2/kWh of emissions. These values serve as
a reference to assess the benefits introduced by BESS control.

Table 3. Performance metrics of the 33-bus microgrid under demand and PV generation variation in
the GCM.

Category Metric PPSO PCSA PJAYA

Max. reduction Energy losses [kWh] 1470.63 1519.81 1999.39
Emissions [TonCO2/kWh] 9.7207 9.7266 9.8048

Average result Energy losses [kWh] 1470.79 1545.99 2038.63
Emissions [TonCO2/kWh] 9.7208 9.7310 9.8183

Std. deviation (%) Energy losses 0.0096 1.5448 1.3423
Emissions 0.0002 0.0290 0.0728

Proc. time [s] Energy losses 110.46 344.01 343.12
Emissions 118.83 338.20 366.43

PPSO demonstrated the highest effectiveness among the three algorithms, achieving
the greatest reductions in both energy losses and emissions, with average loss reductions
of 1013.78 kWh (40.8%) and average emission reductions of 0.1666 TonCO2/kWh (1.69%).
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PCSA followed closely with consistent but slightly lower improvements. PJAYA, while still
yielding benefits over the base case, showed the smallest gains and higher variability.

The consistency of the results is particularly evident in the standard deviation
values, where PPSO achieved the lowest variability across all simulations, indicating
high repeatability. Furthermore, PPSO also required the shortest average processing time,
reinforcing its suitability for real-time or near-real-time microgrid control applications.

Figure 3 highlights the percentage improvements achieved by PPSO compared to
PCSA and PJAYA. The most significant advantage was seen in loss reduction, where PPSO
outperformed PJAYA by more than 22% on average. Emission improvements were also
consistent but more modest, with relative gains under 1%. Overall, PPSO combined high
performance, low variance, and reduced computational cost, making it a strong candidate
for intelligent microgrid operation.
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Figure 3. Average PPSO improvements over PCSA and PJAYA for energy losses and emissions
in GCM.

To allow all eight performance indicators to share a common radial axis, the raw
values in Table 3 were first scaled with a min–max transformation applied separately to
each metric:

ẑ(m)
k =

z(m)
max − z(m)

k

z(m)
max − z(m)

min

, m ∈ {1, . . . , 8},

where z(m)
k is the value of method k for metric m, and ẑ(m)

k ∈ [0, 1] is its normalized
counterpart. Because lower values are desirable for every metric (less energy lost, fewer
emissions, smaller variability, and shorter processing time), the numerator is inverted so
that the best performer occupies the outer rim (ẑ = 1) and the worst collapses to the center
(ẑ = 0). The resulting dimensionless scores are displayed in the radar plot below.

PPSO forms an almost perfect octagon that tracks the outer rim of the radar plot,
revealing its dominance across every technical metric when the microgrid is tied to the
primary grid. The algorithm not only yields the minimal resistive losses and the lowest
CO2 emission rate, but it also maintains unrivalled numerical stability (indicated by the
minimal standard deviations) and delivers the quickest convergence in both loss and
emission. In essence, PPSO provides a uniformly high-quality solution without trade-offs
between accuracy and computation time. A benchmark comparison between algorithms is
presented in Figure 4.
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Figure 4. Normalized radar chart comparing PPSO, PCSA, and PJAYA for GCM. A value of 1 denotes
the best performer for a given metric, while 0 marks the worst.

PCSA shows a more irregular footprint. It stays competitively close to PPSO on the
four spokes (maximum and average loss/emission reductions). Still, it retracts sharply
toward the center on the runtime axis and collapses entirely on the variability of loss
reduction (σ Loss). This suggests that while PCSA can approximate PPSO’s technical
improvements, it does so at the expense of longer runtimes and less repeatable outcomes.
PJAYA’s polygon is confined almost entirely to the radar origin except for a small protrusion
on the loss variability and runtime-loss spokes, confirming that in GCM, it remains the
least attractive option for real-time microgrid optimization.

Islanded Mode Results and Analysis

The second case analyzes the microgrid operating in IM, where all power must be
supplied locally by the diesel generator and PV units, with no external grid connection.
Table 4 summarizes the performance of each optimization algorithm in this configuration.
Notably, the system cannot operate under this mode without the assistance of BESS.
Attempting to do so leads to infeasibility due to overload conditions on the diesel generator,
which would require approximately 15% load shedding and 35% PV curtailment [6]. This
observation underlines the essential role of coordinated storage in autonomous microgrids.

Table 4. Performance metrics in the 33-node MG under demand and PV power variation in IM.

Category Metric PPSO PCSA PJAYA

Max. reduction Energy losses [kWh] 1471.14 1536.36 2104.42
Emissions [TonCO2/kWh] 15.7953 15.8116 15.9413

Average result Energy losses [kWh] 1474.47 1578.51 2170.17
Emissions [TonCO2/kWh] 15.7967 15.8249 15.9710

Std. deviation (%) Energy losses 0.0133 1.6317 2.6999
Emissions 0.0123 0.0478 0.1219

Proc. time [s] Energy losses 100.14 331.20 353.88
Emissions 198.81 630.05 607.67

A detailed examination of the results in Table 4 shows clear differences in the
performance of the evaluated algorithms when operating the 33-node MG in IM. In terms of
maximum reduction in energy losses, PPSO reaches the lowest value at 1471.14 kWh, which
represents an improvement of approximately 4.25% compared to PCSA (1536.36 kWh) and
a substantial 30.10% improvement compared to PJAYA (2104.42 kWh). A similar pattern is
observed for the average energy losses, where PPSO records 1474.47 kWh, outperforming
PCSA (1578.51 kWh) by 6.60% and PJAYA (2170.17 kWh) by 32.02%. These differences are
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further reinforced by the standard deviation values: PPSO maintains an exceptionally low
variability of 0.0133%, while PCSA and PJAYA present 1.6317% and 2.6999%, respectively,
indicating that PPSO provides more stable and repeatable solutions under fluctuating
demand and PV generation.

Regarding emissions, PPSO again delivers the best performance. In the best-case
scenario, PPSO achieves 15.7953 TonCO2/kWh, marginally improving over PCSA
(15.8116 TonCO2/kWh) by 0.10% and PJAYA (15.9413 TonCO2/kWh) by 0.91%. The
average results follow the same trend, with PPSO reporting 15.7967 TonCO2/kWh,
compared to 15.8249 TonCO2/kWh for PCSA (+0.18%) and 15.9710 TonCO2/kWh for
PJAYA (+1.10%). In terms of stability, PPSO’s emission variability is minimal (0.0123%),
markedly lower than PCSA (0.0478%) and PJAYA (0.1219%), confirming its robustness in
environmental performance.

From a computational standpoint, PPSO demonstrates a significant advantage. For the
energy loss minimization runs, PPSO requires only 100.14 s, which is roughly 69.77% faster
than PCSA (331.20 s) and 71.70% faster than PJAYA (353.88 s). In emission minimization,
PPSO completes in 198.81 s, outperforming PCSA (630.05 s) by 68.45% and PJAYA (607.67 s)
by 67.27%. This reduction in computational time is critical for real-time or near-real-time
applications in islanded microgrids, where rapid decision-making can prevent instability
or load curtailment.

Figure 5 illustrates the percentage improvements achieved by PPSO over the average
results obtained with PCSA and PJAYA in IM for both energy losses and CO2 emissions. The
plot shows that, in terms of energy loss reduction, PPSO outperforms PCSA by 2.62% and
achieves a significantly larger improvement of 25.49% compared to PJAYA. For emissions,
the relative gains are more modest but still consistent, with PPSO delivering 0.10% lower
emissions than PCSA and 0.91% lower emissions than PJAYA. These results confirm that
while all three algorithms can manage BESS operation under islanded conditions, PPSO
consistently provides a measurable advantage, particularly in minimizing technical losses.
The substantial improvement over PJAYA in energy loss reduction highlights PPSO’s
superior ability to optimize power flows and battery dispatch in a scenario with no external
grid support, where efficient internal resource management becomes critical to system
stability and performance.
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Figure 5. Average PPSO improvements over PCSA and PJAYA for energy losses and emissions in IM.

Figure 6 condenses eight technical indicators into a single visual snapshot, making it
immediately apparent which optimization scheme offers the most balanced performance in
islanded operation. The light-purple polygon corresponding to PPSO hugs the outer rim of
the chart on every axis, confirming that this algorithm simultaneously achieves the lowest
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energy losses, the smallest CO2 footprint, the tightest statistical dispersion, and the fastest
execution time. In contrast, the orange PCSA contour forms a noticeably smaller octagon:
it stays reasonably close to PPSO in the four axes (maximum and average loss or emission
reductions). Still, it collapses toward the center on the two runtime axes and, to a lesser
extent, on the variability indicators. PJAYA, shown in green, barely leaves the plot’s origin
except for a modest excursion on the “Time Emis” spoke, indicating that it lags behind the
other two methods across every metric.

Numerical evidence indicates that PPSO not only provides the most technically
and environmentally efficient operation under islanded conditions but also guarantees
exceptional repeatability and the fastest convergence among the evaluated algorithms.
These features make it a particularly well-suited approach for autonomous microgrids,
where operational reliability and rapid response are paramount.

These patterns highlight the multidimensional advantage of PPSO in standalone
microgrids, where both technical efficiency and numerical robustness are fundamental. The
method’s near-circular, outer-ring footprint means operators would gain lower resistive
losses and smaller greenhouse-gas emissions without sacrificing computational speed.
PCSA represents a workable compromise when slightly longer solution times can be
tolerated, still delivering respectable loss and emission mitigation, but with greater scatter
between runs. PJAYA, however, would require substantial tuning or hybridization before it
could be recommended for field deployment, as its limited reach on the radar plot implies
higher operating losses, larger emission rates, and unacceptable variability compared with
the other contenders.

In the islanded configuration, once again, the PPSO showed the best average
performance in terms of both loss reduction and emission control. It also exhibited the
lowest standard deviations, indicating strong repeatability, and maintained the fastest
computational times across all runs. These results confirm that even under tighter operating
constraints, the proposed strategy can ensure feasible, efficient, and low-emission operation
in standalone energy systems.
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Figure 6. Radar chart of normalized performance metrics for PPSO, PCSA, and PJAYA in IM. A value
of 1 indicates the best performer for a given metric, while 0 denotes the worst.

The comparative results reveal that PPSO achieves superior performance because its
swarm intelligence dynamics exploit both individual memory and collective learning,
ensuring steady convergence toward high-quality solutions with minimal variability.
PCSA, although capable of competitive improvements, exhibits larger dispersion since its
exploration relies heavily on stochastic awareness probabilities, making it less reliable under
uncertain conditions. PJAYA, while attractive for its parameter-free formulation, tends to
converge prematurely due to its lack of adaptive mechanisms, which limits its ability to
escape local optima. These results confirm that the relative performance of metaheuristics
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is not only a function of solution quality but also of their intrinsic search dynamics, with
PPSO offering the most balanced trade-off for practical microgrid scheduling.

5.2. Technical Validation of the Proposed Methodology

Figure 7 presents the percentage loading of the 32 distribution lines for the four
analyzed cases: Losses—GCM, Losses-IM, CO2-GCM, and CO2-IM. In all situations,
the results confirm that no thermal constraints are violated. The highest utilization is
observed on Line 13, which remains slightly below the 100% limit in all scenarios (99.9994%
for Losses-GCM and 99.999998% for CO2-IM). Other heavily loaded lines are 22 and
24, with loadings around 94% and 93%, respectively, followed by Lines 14, 15, and 19
(between 90% and 92%), and Lines 23, 30, and 31 (between 81% and 85%). The lowest
loading values appear in Lines 21 and 32, operating at approximately 37% and 29%. These
results indicate that the proposed strategy redistributes current flows without creating new
thermal bottlenecks.

When comparing grid-connected and islanded operation under the same optimization
objective, the differences in loading are minimal. For the loss minimization case, the
maximum variation between GCM and IM is about 1.8% points across all lines. Similar
differences are observed for the CO2 minimization case, also remaining below 1.8%
points. This behavior indicates that removing the primary grid connection primarily
results in minor adjustments to current distribution, rather than substantial changes in
network stress.

For a fixed operating mode, the two objectives produce almost identical loading
profiles. In GCM, the differences between the loss and CO2 cases are typically below 0.3%
points. In IM, the variations are slightly larger, but still modest, with the largest change
around 1.3%. This confirms that both optimization approaches maintain nearly the same
operating envelope without compromising thermal headroom.

All four configurations respect the ampacity limits of every line. Even for the most
loaded segment (Line 13), a positive margin to the thermal constraint is maintained in all
cases, despite being numerically very small. This compliance is ensured by the SA-based
power flow validation and the penalty mechanism incorporated in the optimization
process. Most lines operate between 55% and 75% loading, with only a few trunk segments
exceeding 90%, while downstream sections remain below 85%.
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Figure 7. Unified line loading comparison for losses and CO2 emissions in GCM and IM.
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Figure 8 shows the hourly voltage deviation profiles for the four analyzed cases. In
all scenarios, the deviations remain well within the acceptable range, confirming that the
proposed optimization strategies maintain adequate voltage regulation throughout the
24-h period. The highest deviations occur during the early hours of the day, with values
close to 6.35%, while the lowest deviations appear between hours 19 and 20, with values
near 3.73%. These variations reflect the combined effect of load patterns and PV generation
availability on voltage conditions.

When comparing grid-connected and islanded operation for the same objective, the
differences in voltage deviation are minimal. For the loss minimization objective, the
most significant difference between GCM and IM does not exceed 0.0013%. For the CO2

minimization objective, the deviations between modes follow a similar trend, with changes
generally below 0.002%. This indicates that the absence of grid support has only a marginal
impact on the voltage profile, as the BESS dispatch effectively compensates for local
voltage fluctuations.

For a fixed operating mode, the two objectives produce almost identical deviation
curves. In GCM, the loss and CO2 cases are essentially overlapping, showing that both
optimization goals lead to similar voltage regulation performance. In IM, the differences
are slightly more noticeable at some hours, but remain very small, confirming that the
change in objective does not compromise voltage quality.
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Figure 8. Unified voltage profiles comparison for losses and CO2 emissions in GCM and IM.

Figures 9 and 10 present the SoC trajectories of the three BESS units over the 24-h
horizon for the two optimization objectives: loss minimization and CO2 emission reduction,
each evaluated in GCM and IM. In all scenarios, the batteries operate strictly within the
technical band of 10–90% SoC, as defined by the dashed reference lines, and converge to
the preset 50% target by the end of the day to maintain energy neutrality. This consistent
adherence to operational constraints demonstrates the effectiveness of the optimization in
coordinating energy use without compromising battery health.

When the objective is loss minimization, the SoC patterns reveal a coordinated
discharge–charge strategy adapted to each unit’s location and capacity. In GCM, Battery
A undergoes a moderate early discharge, reaching around 45% by mid-morning, then
charges steadily to the upper limit in the afternoon before partially discharging toward
the evening. Battery B exhibits a sharper morning discharge, touching the minimum
SoC near hour 8, followed by an extended charging phase to full capacity and a gradual
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return to the final target. Battery C follows a more tempered profile, with a smooth
descent to about 40%, a steady climb to the maximum limit, and a controlled evening
discharge. In IM, these patterns are preserved but with subtle timing shifts: Battery A
starts recharging earlier, Battery B spends less time at the minimum SoC, and Battery
C advances its midday charging window. These adjustments help balance the more
constrained generation–demand dynamics in the absence of grid support, ensuring that no
unit approaches unsafe limits.

For the CO2 minimization objective, the SoC trajectories share many qualitative
similarities with the loss minimization case but exhibit small differences in the depth
and timing of charging and discharging, reflecting the environmental priority. In the
GCM, Battery A begins with a modest discharge, quickly recovering through a steady
midday charge to reach the maximum limit by late afternoon. Battery B again experiences a
pronounced morning discharge to the lower bound, remains there briefly, and then charges
to full capacity before tapering toward the target. Battery C adopts a smoother discharge
to its minimum level, followed by a gradual and continuous charge to full capacity and a
measured discharge in the final hours. In IM, the general behavior remains consistent. Still,
timing shifts are evident: Battery A initiates charging earlier in the day, Battery B reaches
its minimum slightly sooner, and Battery C adjusts its charging period to better align with
the local PV generation profile. These adaptations ensure that demand is met efficiently
while keeping SoC within safe margins, even without external grid support.
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Figure 9. State-of-charge profiles of each BESS unit for Losses objective in GCM and IM.

Across both objectives and operating modes, the SoC curves confirm that the
scheduling strategy produces stable and well-coordinated battery operation. The
differences between loss and emission optimization are subtle, suggesting that the proposed
framework achieves its technical and environmental targets without introducing drastic
changes to the storage behavior. This robustness is necessary for practical implementation,
as it indicates that the system can switch between objectives or adapt to varying grid
conditions with minimal disruption to battery operation. Moreover, the balanced use of all
three BESS units demonstrates effective spatial coordination, with each unit contributing
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according to its rated capacity and network location to support voltage regulation, loss
reduction, or emission mitigation while respecting operational and longevity constraints.
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Figure 10. State-of-charge profiles of each BESS unit for Emissions objective in GCM and IM.

Analysis Under Solar and Demand Uncertainties

To assess the robustness of the proposed methodology under realistic operating
conditions, a stochastic framework was adopted in which variable daily profiles of
photovoltaic generation and active power demand replaced deterministic assumptions.
Specifically, 100 distinct scenarios were constructed using historical measurements from
Medellín, Colombia, capturing the natural variability and correlation between local solar
irradiance and load patterns, see Figure 11. These scenarios were evaluated using the
PPSO-based scheduling strategy to determine its effectiveness in minimizing the selected
objective functions under uncertain conditions.

In the GCM, the PPSO achieved an average reduction of 37.28% in energy losses
compared to the base case, while also lowering CO2 emissions by 1.69%. These results
highlight the method’s ability to preserve high technical efficiency despite the stochastic
nature of renewable generation and demand, with emission reductions primarily linked to
reduced reliance on high-emission generation during peak-load intervals.

In the IM, the algorithm exhibited a similar trend, with average improvements of
37.65% in losses and 1.67% in emissions. The slightly higher percentage reduction in losses
compared to GCM can be attributed to the greater impact of optimized BESS dispatch when
the diesel generator is the main dispatchable source. However, emission reductions in IM
are inherently limited by the fixed emission factor of diesel generation, making technical
loss minimization the dominant driver of performance gains.

In absolute terms, the proposed PPSO achieved average reductions of 927.05 kWh
and 935.62 kWh in daily energy losses under grid-connected and islanded operation,
respectively, corresponding to more than 39% of baseline resistive losses. In terms
of environmental performance, daily emissions were reduced by 0.1667 TonCO2 in
GCM and 0.2680 TonCO2 in IM. While the relative percentage reductions in emissions
may appear modest, their impact becomes substantial when accumulated over longer
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horizons. For instance, the annual reduction corresponds to approximately 60.8 TonCO2

in grid-connected operation and 97.8 TonCO2 in islanded operation, which demonstrates
the tangible and scalable benefits of the proposed scheduling framework for sustainable
microgrid management.
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Figure 11. Active power demand and PV generation profiles considering uncertainty in Medellín,
Colombia.

The dispersion across scenarios was notably small, indicating that PPSO consistently
identified operating schedules that adapt to the variability in both PV output and demand.
This stability is necessary for microgrid operators, as it ensures predictable benefits even
when weather patterns deviate from forecasts. The findings confirm that the methodology
is not only effective in deterministic settings but also resilient to operational uncertainties,
making it suitable for real-world deployment in microgrids exposed to renewable and
demand variability.

6. Conclusions and Prospects for Future Research
This work presented a parallel population-based Particle Swarm Optimization

approach for the optimal scheduling of BESS in AC microgrids, considering both
grid-connected (GCM) and islanded (IM) operating modes. The methodology was
evaluated using a master–slave framework, where PPSO determined the operational
setpoints of the storage units and a successive approximations method guaranteed the
technical feasibility of the resulting solutions.

In the deterministic case study with fixed photovoltaic generation and demand
profiles, the proposed PPSO algorithm demonstrated clear superiority over alternative
metaheuristics. In GCM, PPSO achieved the lowest operational indicators, reducing average
energy losses by more than 21% and emissions by nearly 0.9% compared to benchmark
methods. In IM, where the reliance on local resources intensifies the optimization challenge,
PPSO achieved even greater improvements, with average reductions of approximately
25% in losses and nearly 1% in emissions. These results confirm that PPSO not only
minimizes technical inefficiencies but also contributes to lowering the carbon footprint
under constrained operating conditions.
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To extend the evaluation beyond fixed conditions, an uncertainty analysis was carried
out using 100 realistic daily scenarios of solar PV generation and active power demand from
Medellín, Colombia. This stochastic assessment revealed that PPSO maintains consistent
performance despite variations in input conditions. In GCM, PPSO achieved average
reductions of 37.28% in losses and 1.69% in emissions across all scenarios, while in IM,
the reductions reached 37.65% and 1.67%, respectively. The findings highlight PPSO
as a reliable optimization tool for microgrid scheduling, capable of adapting to both
deterministic and uncertain conditions while securing improvements in energy efficiency,
emissions reduction, and computational performance.

The proposed PPSO achieved daily reductions of 927.05 kWh and 935.62 kWh in energy
losses under grid-connected and islanded operation, respectively, corresponding to more
than 39% of baseline resistive losses. In terms of environmental impact, daily CO2 emissions
decreased by 0.1667 TonCO2 in GCM and 0.2680 TonCO2 in IM. When accumulated over
one year, these values correspond to approximately 60.8 TonCO2 and 97.8 TonCO2 avoided,
respectively. It is important to note that these figures were obtained under multiple
uncertainty scenarios, which confirms that the proposed scheduling framework remains
effective under realistic operating conditions.

The results confirm that the proposed scheduling strategy maintains the feeder within
safe thermal limits for all operating modes and optimization objectives. The similarity in
line loading patterns across cases demonstrates that the methodology generates robust BESS
dispatch plans that are not strongly dependent on the selected objective or the operational
mode. Lines 13, 22, 24, 14, 15, and 19 are consistently the most heavily loaded and should be
prioritized for monitoring, while the rest of the network operates with sufficient headroom.
If greater margins are desired on the most stressed segments, operational adjustments
such as fine-tuning the SoC trajectory or modifying reactive power setpoints could be
implemented without altering the core optimization framework.

Voltage deviation results show that all scenarios remain well within the acceptable
range defined by Colombian NTC 1340 standards, ensuring regulatory compliance.
The consistency of the voltage profiles between grid-connected and islanded operation
highlights the ability of the BESS scheduling to provide reliable voltage support even
under significant variability in demand and PV generation. Together with the line loading
results, these findings confirm that the proposed methodology can meet both technical and
environmental goals without compromising network operational integrity.

The robustness of the method is further supported by the SoC profiles, which remain
within the defined limits as they converge to the target end-of-day value. The minimal
differences between loss and emission minimization cases indicate that the optimization
framework can shift priorities without causing disruptive changes to battery operation, an
important feature for practical deployment in dynamic environments.

Future research could extend this work in several directions. One avenue is the
inclusion of multi-objective formulations that simultaneously balance technical, economic,
and environmental criteria, allowing for real-time trade-offs between competing goals.
Another is the application of the methodology to larger and more complex distribution
networks, incorporating uncertainty from renewable generation forecasts and demand
variations through stochastic or robust optimization techniques. The integration of
degradation-aware battery models would enable schedules that not only meet system
constraints but also optimize asset lifetime.An interesting and promising research direction
involves coupling the proposed optimization strategy with cyber-resilience mechanisms.
Finally, coupling the proposed approach with advanced forecasting and adaptive control
strategies could support its implementation in real-time energy management systems,
enhancing its applicability to practical microgrid operations.
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