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Abstract: The identification of dynamical systems from data is essential in control theory, enabling
the creation of mathematical models that accurately represent the behavior of complex systems.
However, real-world applications often present challenges such as the unknown dimensionality of the
system and limited access to measurements, particularly in partially observed systems. The Hankel
alternative view of Koopman (HAVOK) method offers a data-driven approach to identify linear
representations of nonlinear systems, but it often overlooks the influence of external control signals
(inputs) and disturbances. This paper introduces a novel input-aware modeling method for unstable
linear systems using data-driven Koopman analysis. By explicitly incorporating the impact of inputs
and disturbances, our method enhances the accuracy and robustness of system identification, even in
the face of incomplete observations. The proposed approach leverages Koopman operator theory
on augmented state-input data to capture both the intrinsic dynamics and the system’s sensitivity
to external control. Through extensive numerical examples, we demonstrate the effectiveness of
our method in accurately identifying and predicting the behavior of various dynamical systems,
including real-world nonlinear systems and simulated unstable linear systems with and without
disturbances. The results highlight the potential of our approach to advance the field of system
identification and control, offering a powerful tool for modeling and analyzing complex systems in
diverse applications.

Keywords: system identification; sparse modeling; HAVOK; koopman; dynamical systems

1. Introduction

In the field of scientific and engineering, it is essential to have an accurate mathe-
matical model of dynamical systems, as it underpins control design, optimization, and
performance analysis [1–4]. However, real-world systems are often intricate, demanding
a deep understanding of their dynamics for optimal behavior. A major challenge arises
in practical applications where only a subset of the system’s state variables are directly
measurable. This limitation, known as the closure problem [5,6], renders direct inference of
the complete state vector (x) from the available measurements (y) impossible.

The closure problem presents a significant hurdle for scientific modeling due to several
factors. Limited access to observations can render closed-form models infeasible, making
the construction of explicit models for hidden variables impractical [7]. This ultimately
hinders the accurate simulation and prediction of the system’s behavior.

Conversely, statistical learning, machine learning, and system identification are inter-
related fields that deal with extracting knowledge from data. At its core, this knowledge
extraction process aims to transform raw data into actionable insights and predictive
models. Statistical learning provides the foundation by analyzing data to reveal hidden
patterns and relationships [8,9]. These patterns can range from simple correlations to com-
plex, multi-dimensional structures. Machine learning builds on this, creating algorithms
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that automatically learn and improve on specific tasks from data, such as classification
or prediction [10]. This learning process often involves adjusting internal parameters to
minimize errors and optimize performance. System identification, a specialized field within
machine learning, focuses on building mathematical models of dynamical systems from
input-output data [11,12]. These models can be used to simulate, predict, and control the
behavior of complex systems like robots, power grids, and even biological processes. In
essence, statistical learning provides the groundwork for understanding data, machine
learning allows algorithms to learn and improve on tasks, and system identification lever-
ages this learning to create models of real-world systems.

However, traditional system identification techniques heavily rely on input-output
(I/O) data, model structure (order and type), and selection criteria (rank and cost func-
tion) [13]. However, this approach presents a significant challenge to balancing model
complexity with real-world applicability. While a high-order model can theoretically
capture the exact dynamics of a system, regardless of its nature (linear/nonlinear, time-
invariant/time-variant), it comes at a cost [14–17]. Increased model complexity can lead
to difficulties in validation, as the model may fit noise alongside the actual system be-
havior. Additionally, designing control algorithms for such high-order models becomes
cumbersome, hindering practical implementation.

On the other hand, Koopman operator theory offers a robust framework for identi-
fying and controlling nonlinear dynamical systems by transforming them into a higher-
dimensional linear space [18]. Through the utilization of singular value decomposition
(SVD) for approximate the Koopman operator, recent advancements have focused on
data-driven methods that leverage input-output data to construct Koopman-based mod-
els capable of handling disturbances and inputs effectively [19,20]. For instance, these
methods have been applied to control robotic systems with high precision, despite the
presence of nonlinearities and external disturbances [21]. Similarly, they have been used
to design power system stabilizers that enhance the stability of power networks under
various disturbance conditions [22–24].

Moreover, the Koopman operator framework has been extended to incorporate control
inputs, leading to the development of bilinear models that offer enhanced control capabil-
ities [25,26]. These models allow for the integration of modern control techniques, such as
model predictive control (MPC), to manage complex dynamical systems efficiently [27,28].
While Koopman operator theory offers significant advantages, a key challenge lies in its
infinite dimensionality. For practical applications, finite-dimensional approximations are nec-
essary. Existing methods like Dynamic Mode Decomposition (DMD) [29,30], Extended DMD
(EDMD) [31,32], and Tunable Accuracy Symmetric Subspace Decomposition (T-SSD) [33].

In this paper, the Koopman operator is applied within the Hankel Alternative View
of Koopman (HAVOK) method for scenarios involving partially observed systems by
proposing a novel-aware modeling method for unstable linear systems. The traditional
HAVOK method offers a data-driven approach to identifying nonlinear systems through
linear representations that focus on state dynamics, our proposed method comprises the
influence of the input and offers robustness to external disturbances. The organization
of this work as follows. In Section 2, we represent the problem formulation and the brief
reviews of the Koopman operator. Moving on, Section 3 describes the proposed method
for identifying an input influences dynamical system through a data-driven Koopman
operator, Low rank approximation method also was presented to approximate a given
matrix with lower rank based on linear algebra technique. In Section 4, we showcase
numerical examples to demonstrate the effectiveness of the proposed method based on
3 cases of dynamical systems (real-world nonlinear system, simulated unstable linear
system, and simulated an unstable linear system with input disturbance). Finally, we
conclude the proposed approach to the system identification based on the data-driven
Koopman Analysis with a novel input-aware modeling technique in Section 5.
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2. Background
2.1. Problem Formulation

In system identification scheme, due to the fact that most of real-world dynamical
systems are nonlinear, the main objective is to identify the nonlinear dynamical system

ẋ(t) = f (x(t), u(t)), (1)

where x(t) ∈ Rn denotes the state variable, u(t) ∈ Rm represents the input, and f (·, ·)
is a nonlinear function that describe the dynamics. According to Koopman Operator
Theory [34], the system (1) can be linearized and approximate to linear state space model
of the form {

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

, (2)

where y(t) ∈ Rl signifies the measured output. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, and
D ∈ Rl×n are the matrices with appropriate size to be determined.

This poses a challenge in determining whether the available measurements are suffi-
cient for accurately modeling the system. For instance, the dimension l of the measured
output might be smaller than the actual state dimension n of the state space. In this work,
we focus specifically on the scenario where D = 0 and l = 1, meaning the system has no
feed-forward and we have access to only a one-dimensional time-series measurement for
the system.

It’s important to note that the dimensionality of the underlying dynamics is often un-
known in practice, and the choice of measurements may be limited by various constraints.

2.2. A Brief Review on Koopman Operator Theory

In 1931, B.O. Koopman established a foundational framework for the analysis of
nonlinear dynamical systems, demonstrating that any autonomous nonlinear system can
be represented as a linear system of infinite order within a Hilbert space [34].

Consider a continuous-time autonomous nonlinear dynamical system described by
the following equation:

ẋ(t) = F (x), (3)

where F : Rn → Rn defines the system dynamics. We are interested in a set of observables,
denoted by g(x) : Rn → R, which are scalar-valued functions of the state that represent the
system’s output. The Koopman operator, denoted by K ∈ B(x)→ B(x), where B(x) is the
space of bounded measurable functions, acts on observable functions g ∈ B(x) according to

Kg(x) = g ◦ F (x). (4)

where ◦ represents the composition operator, which essentially applies the function F to
the state vector and then evaluates g on the resulting state. Then, a subspaceH ⊂ B(x) is
said to be Koopman-invariant if

K(H) ⊆ H. (5)

In other words, a Koopman-invariant subspace is a collection of observable functions
such that the Koopman operator, when applied to any function within the subspace, also
produces a function within the same subspace. This property allows us to restrict the
Koopman operator to the Koopman-invariant subspace, effectively reducing the problem
to a finite-dimensional analysis withinH.
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By analyzing the spectral properties of the Koopman operator, valuable insights into
the system’s behavior can be obtained. These properties enable the expression of system
dynamics as a linear system in a higher-dimensional space as

ẋ(t) = Kg(x) = Ax(t) . (6)

In this equation, A represents a linear operator derived from the Koopman operator
and g. It governs the state propagation over time, despite the original system dynamics
being nonlinear.

There are crucial to determine Koopman-invariant subspace and compute the matrix
A in (6) as the choice of observable functions significantly impacts the resulting Koopman-
invariant subspace and the accuracy of the finite-dimensional approximation. To address
this challenge, various methods have been developed to identify Koopman-invariant sub-
spaces and compute the matrix A in (6). One widely used method is Dynamic Mode
Decomposition (DMD) [29–32]. DMD leverages a technique called Singular Value Decom-
position (SVD) to factorize a data-driven approximation of the system’s state transition
matrix. This factorization reveals the system’s dynamic modes, ordered by their decreas-
ing magnitude.

3. Proposed Method

This section details the proposed methodology for identifying how an input influences
a dynamical system through a data-driven Koopman operator. Additionally, we include
the technique used for low-rank approximation.

3.1. Data-Driven Koopman Operator

Consider a Least Square Estimation (LSE) problem of the form:

ẏ = Θ(Y)ΞT , (7)

where ẏ is a time-derivative of vector y, the library matrix Θ(Y) is

Θ(Y) =

 | | | · · · |
y1 y2 y3 · · · yr
| | | · · · |

, (8)

where Ξ ∈ R(r+1)×r. Each row ξk in Ξ is a vector of coefficients determining the active
terms in the k-th column in the library matrix (8). Then we construct the Hankel matrix of
measured data y(t) as

H =


y(t1) y(t2) · · · y(tp)
y(t2) y(t3) · · · y(tp+1)

...
...

. . .
...

y(tq) y(tq+1) · · · y(tm)

. (9)

This Hankel matrix can be related to the Koopman operator:

H =


Ky(t1) K2y(t1) · · · Kpy(t1)
K2y(t1) K3y(t1) · · · Kp+1y(t1)

...
...

. . .
...

Kqy(t1) Kq+1y(t1) · · · Kmy(t1)

, (10)
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by the used of SVD, as it will be described later, the low rank approximation of H is defined as

Ĥ ≈ UrΣrVT
r , (11)

where Ĥ is rank r approximation of H.
Mirroring the structure of the initial LSE problem, we formulate another LSE problem

using the matrix Vr which represents the system dynamics:

V̇r = Θ(Vr)ΞT . (12)

where V̇r =
[
v̇1 v̇2 · · · v̇r

]T , Ξ ∈ Rr×r+1 each column ξk in Ξ is a vector of coefficients
determining the active terms in the kth column in Θ(Vr).

Given that the measurement data y(t) is sampled with a period ∆t, we approximate
the second-order central derivative of the unitary matrix Vr(t) with approximation error of
O
(
∆t2)

V̇r =
dVr(t)

dt ≈ Vr(t + 1)−Vr(t− 1)
2∆t + O

(
∆t2). (13)

To incorporate the input, the input vector u(t) has been append to the last column of
the library matrix Θ(Vr) as

Θ(Vr) =

 | | · · · | |
v1 v2 · · · vr u(t)
| | · · · | |

. (14)

We can reinterpret the LSE problem as:

V̇r = Θ(Vr)ξ1 + Θ(Vr)ξ2 + . . . + Θ(Vr)ξr+1. (15)

Consequently, we find the values in Ξ by solving a convex l1 regularized Least Abso-
lute Deviations (LAD) regression where ϵ is an arbitrary small positive number:

minimize ∥ξk∥1

subject to∥v̇k −Θ(V)ξk∥1 ≤ ϵ.
(16)

The main algorithm (Algorithm 1) performs minimization of the L1 norm with an L1
constraint to find an optimal matrix Ξ that best represents the relationship between the
matrices V̇ and Θ. It begins by initializing Ξ and iteratively updating it until convergence
is achieved. In each iteration, a subproblem (Algorithm 2) is solved to refine Ξ. The
subproblem calculates the residual R = V̇ − ΘΞ and finds a feasible direction D that
aligns with the sign of R, adjusting Ξ in a way that minimizes the L1 norm. A line
search is conducted to determine the optimal step size α that minimizes ∥Ξ + αD∥1 while
maintaining the constraint ∥Θ(Ξ + αD) − V̇∥1 ≤ ϵ. This approach ensures that Ξ is
iteratively refined under the L1 constraint, balancing sparsity and accuracy. The iterative
process terminates once Ξ stabilizes, achieving a solution that minimizes the L1 norm
within the given tolerance.

We opt for LAD over LSE due to its robustness against outliers, particularly in the
presence of gross errors or heavy-tailed noise. This strengthens the proposed method’s
resilience to noise and measurement inaccuracies. Â and B̂ are given using matrix of
coefficients Ξ as

Ξ =


ξ1,1 ξ1,2 · · · ξ1,r ξ1,r+1
ξ2,1 ξ2,2 · · · ξ2,r ξ2,r+1

...
...

. . .
...

...
ξr,1 ξr,2 · · · ξr,r ξr,r+1


=

[
Â B̂

]
, (17)
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where

Â =


ξ1,1 ξ1,2 · · · ξ1,r
ξ2,1 ξ2,2 · · · ξ2,r

...
...

. . .
...

ξr,1 ξr,2 · · · ξr,r

 (18)

and

B̂ =


ξ1,r+1
ξ2,r+1

...
ξr,r+1

. (19)

For the matrix Ĉ is determined as the first row of UrΣr.

Algorithm 1 Minimization of L1 Norm with L1 Constraint

Input: Matrices V̇ ∈ Rm×n, Θ ∈ Rm×p, tolerance ϵ
Output: Matrix Ξ ∈ Rp×n

1: Initialize Ξ
2: repeat
3: Ξprev = Ξ {Store previous iterate}
4: Solve subproblem to update Ξ
5: until Convergence

Algorithm 2 Subproblem for Updating Ξ

Input: V̇, Θ, ϵ, current Ξ
Output: Updated Ξ

1: R = V̇ −ΘΞ {Residual}
2: Find a feasible direction D such that
3: sign(Dij) = −sign(Rij) if |Rij| > 0
4: and ∥D∥1 ≤ 1
5: Perform line search to find step size α:
6: α∗ = arg minα≥0 ∥Ξ + αD∥1
7: subject to ∥Θ(Ξ + αD)− V̇∥1 ≤ ϵ
8: Update Ξ: Ξ← Ξ + α∗D

3.2. Low Rank Approximation Method

Low-rank approximation is a fundamental technique in linear algebra, where a given
matrix is represented by another matrix of reduced rank. This process serves multiple
purposes including dimensionality reduction, data compression, and the extraction of
salient patterns from the original data. Given a matrix H, the objective is to identify a
matrix Ĥ of lower rank that optimally approximates H. The quality of this approximation
is typically assessed using a matrix norm.

Figure 1 illustrates the magnitude of singular values across different ranks r, while
Figure 2 offers a closer look at the magnitudes from r = 1 to r = 20. It is evident that only a
few initial terms are required to capture the essential dynamics of the system. Consequently,
the rank r can be determined visually.
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Figure 1. Singular values for the training data. The high singular values of the training data are
outstanding only the lower rank r (column of the matrix) significantly.

Figure 2. Singular values for the first 20 column of matrix.

In cases involving large matrices, the Partial SVD using Matrix Sketching [35] provides
an efficient alternative. This approach constructs a “sketch” that encapsulates the key fea-
tures of the matrix, thereby enabling the approximation of its singular value decomposition
(SVD). A notable advantage of this method is its adaptive rank determination based on
a predefined tolerance, eliminating the need to specify the rank a priori. This results in
faster computation, making it particularly suitable when a full SVD is computationally
expensive or when the appropriate rank is unknown. The accuracy of the approximation is
adjustable through the tolerance parameter, allowing for a balance between computational
efficiency and the desired level of precision. The detailed implementation steps are outlined
in Algorithm 3.
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Algorithm 3 Partial SVD using Matrix Sketching

Input: Matrix H ∈ Rm×n, tolerance tol
Output: Ur, Sr, Vr (approximate SVD of H)

1: Initialize U = [], V = [], S = []
2: k = 0 {Rank of the sketch}
3: while approximation error > tol do
4: k = k + 1
5: Randomly sample a column c from H
6: Orthogonalize c against the columns of U to get uk
7: U = [U, uk] {Add uk to the basis}
8: Randomly sample a row r from H
9: Orthogonalize r against the rows of V to get vk

10: V = [V; vk] {Add vk to the basis}
11: end while
12: B = UT AV {Project H onto the sketch space}
13: [UB, SB, VB] = svd(B) {Compute SVD of the smaller matrix}
14: Ur = UUB
15: Sr = SB
16: Vr = VVB

4. Numerical Examples

To evaluate the efficacy of the proposed method, we selected three distinct dynamical
systems for investigation: a real-world nonlinear system, a simulated unstable linear system,
and a simulated unstable linear system subjected to input disturbances. All experiments
were conducted using MATLAB R2024a on a MacBook Pro (14-inch, 2021) equipped with
an Apple M1 Pro 8-core CPU and 16 GB of unified memory. This hardware configuration
was chosen to assess the method’s performance on a readily available computing platform,
ensuring its accessibility and applicability to a wide range of researchers and practitioners.

4.1. Nonlinear System

For the nonlinear system evaluation, we utilized the dataset and reference models
of the Electro-Mechanical Positioning System (EMPS) [36]. This dataset provides a com-
prehensive representation of a standard drive system configuration commonly found in
prismatic joints of robots and machine tools. The data were acquired using a dSPACE
digital control system with a sampling frequency of 1 kHz and a duration of approximately
25 s, capturing the rich dynamics of the EMPS under various operating conditions.

To assess performance, following a typical machine learning training process, the
measured data have been spitted into train and test sets. The initial 10 s of data were
employed as the training set. The rest of dataset were used as test set. This means 40% of
data was used as train set and 60% is used as test set. The Hankel matrix H was constructed
with q = p = 5000. Our simulation results, as depicted in Figure 3, demonstrate the
capability of the proposed method to forecast at least 20 s of system behavior using only
10 s of training data. Furthermore, the prediction error, visualized in Figure 4, remains
relatively small, further attesting to the accuracy and effectiveness of the method in this
nonlinear system scenario.
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Figure 3. Comparison of actual data and predicted data for EMPS dataset during the training period
(0 to 10 s) and the predicted period (10 to 24 s).

Figure 4. The error between actual data and predicted data for EMPS dataset during the training
period (0 to 10 s) and the predicted period (10 to 24 s).

4.2. Unstable Linear System

Furthermore, the application of Koopman operator theory proves to be particularly
advantageous in the identification process of unstable linear systems, offering a unique per-
spective and analytical tools to understand their complex dynamics. To illustrate this, let’s
examine a representative unstable linear system characterized by the following matrices:

A =


0.99 0.01 0.18 −0.09 0

0 0.94 0 0.29 0
0 0.14 0.81 −0.9 0
0 −0.2 0 0.95 0
0 0.09 0 0 0.9

,

B =


0.01
−0.14
0.05
0.02
−0.01

, C =


0 1 0 0 −1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0

.
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In this system, the vector x(t) =
[
x1(t) x2(t) x3(t) x4(t) x5(t)

]T represented

the state variables, while the outputs are captured by y(t) =
[
y1(t) y2(t) y3(t) y4(t)

]T .
The system is driven by an input signal defined as u(t) = sin(ωt).

For the purpose of this analysis, we make the assumption that only the first out-
put, y1, is available for measurement. This constraint reflects a realistic scenario where
complete state observation might be impractical or impossible, further highlighting the
utility of the Koopman-based approach in extracting meaningful system information from
limited measurements.

To evaluate the effectiveness and accuracy of the proposed method, we conducted
simulations of the system with parameters ω = 1 and ∆t = 0.001. Time series data y(t)
was collected from the simulation, spanning from t = 0 to t = 5, resulting in 5000 samples
for the measurement data vector, given the chosen simulation time step. The initial 2 s
of data were employed as the training set. The rest of dataset were used as test set. This
means 40% of data was used as train set and 60% is used as test set. The Hankel matrix H
was then constructed with q = p = 1000.

The outcomes of these time series prediction efforts are showcased in Figure 5, while
Figure 6 provides a visualization of the corresponding prediction error. These figures offer
insights into the method’s performance, particularly its ability to accurately predict the
behavior of the unstable linear system under investigation.

The identified coefficient matrices are

Â =


0.6626 0.2648 0.1426 −0.0217 0
−0.0328 0.4353 0.0342 −0.0042 0
0.2844 −6.4921 −0.0743 −0.0099 0
5.8002 −7.5986 0.1658 1.1511 −0.0001
2.5930 −0.4246 0 17.5583 0.9088

,

B̂ =


0.0040
−0.2799
−0.0047
−0.0242
−0.0362

,

and

Ĉ =
[
1.0022 0.4550 0.0001 0.0133 0

]
.

Figure 5. Comparison of actual data and predicted data for an unstable linear system during the
training period (0 to 2 s) and the predicted period (2 to 5 s).



Sci 2024, 6, 84 11 of 16

Figure 6. The error between measurement data and predicted data for an unstable linear system
during the training period (0 to 2 s) and the predicted period (2 to 5 s).

4.3. Unstable Linear System with Input Disturbance

In addition to investigating the unstable linear system in Section 4.2, we also explored
the influence of disturbances on the identification process. We introduced a disturbance
generator into the linear system, described by

ẋd(t) = Adxd(t)
yd(t) = Cdxd(t)

. (20)

This disturbance generator was then incorporated into the original plant model, lead-
ing to an augmented system;

ẋ0(t) = A0x0(t) + B0u(t)
y0(t) = C0x0(t)

, (21)

where x0 =

[
x
xd

]
, A0 =

[
A BCd
0 Ad

]
, B0 =

[
B
0

]
, and C0 =

[
C 0

]
.

For our numerical example, we retained the same parameter matrices A, B, and C
from the previous unstable linear system case, and introduced the following matrices for
the disturbance generator:

Ad =

[
0 1
−10 0

]
, Cd =

[
1 0

]
.

Similar to the previous example, the Hankel matrix H was constructed with parameters
q = p = 1000. Applying the proposed method to this augmented system yielded the
following identified matrices:

Â =



−0.0764 0.8656 −0.0002 0.1047 −0.0366 −0.1479 0.0000
−1.1933 1.8177 −0.1190 0.3936 −0.0763 −0.2691 0.0001
0.2463 0.0093 −0.1991 −3.1713 0.2899 0.0625 0.0001
−0.5049 1.5165 3.1884 0.3364 −0.0775 −0.7332 0.0002
−0.2920 0.6841 1.1492 0.0762 0.3508 −0.4892 0.0001
−0.0532 −0.8513 0.1012 −1.4484 6.1917 −0.0324 0.0000
−0.6698 −5.8829 1.5594 −5.4843 1.8886 −0.0000 0.9133


,
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B̂ =



−0.0043
−0.0112
0.0002
−0.0464
0.1669
−0.0020
−0.0115


,

Ĉ =
[
−3.7384 2.1729 1.0037 1.3466 −0.3981 −0.1606 −0.0002

]
.

Finally, to recover the original system matrices A0, B0, and C0, a similarity transforma-
tion can be applied, utilizing the relationship A0 = TÂT−1, B0 = TB̂ and C0 = ĈT−1

The outcomes of these time series prediction efforts, even in the presence of distur-
bances, are illustrated in Figure 7. Correspondingly, Figure 8 visualizes the prediction
error associated with these forecasts. These figures offer valuable insights into the ro-
bustness and performance of the proposed method, particularly highlighting its capacity
to accurately predict the behavior of the unstable linear system even when subjected to
external disturbances.

Figure 7. Comparison of actual data and predicted data for an unstable linear system under the
influence of disturbance during the training period (0 to 2 s) and the predicted period (2 to 5 s).

Figure 8. The error between actual data and predicted data for an unstable linear system under the
influence of disturbance during the training period (0 to 2 s) and the predicted period (2 to 5 s).
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4.4. Comparison to Existing System Identification Methods

This subsection presents a detailed evaluation of the proposed system identification
method, comparing its performance against established techniques within the field. A sin-
gle pendulum system is employed as a benchmark, ensuring a consistent and transparent
assessment of each method’s capabilities. The comparative methods include the widely
used N4SID algorithm [37], known for its robust performance across various applications;
the Derivative-Based Koopman Operators [19], a newer approach with promising advan-
tages in nonlinear system identification; and the proposed method, which seeks to address
specific limitations of current techniques. This comparative analysis aims to highlight the
strengths and weaknesses of each approach, providing insights into the proposed method’s
effectiveness relative to established alternatives.

To generate the training dataset and train the Derivative-Based Koopman Operators
model, we utilize Python code from [19], simulating 500 uniformly sampled initial states
for 0.04 s with time steps of ∆t = 0.001 s. The N4SID model is trained using MATLAB’s
system identification toolbox. The test dataset was generated for 0.3 s with time steps of
∆t = 0.001 s. Thus, 13% of data was used as train set and 87% is used as test set.

Figure 9 illustrates the time-series prediction performance across various techniques,
where the proposed method and N4SID exhibit better performance in long-term predictions.
In Addition, Table 1 presents a detailed comparison of training and testing normalized root
mean square error (NRMSE) across the selected system identification methods, highlighting
the performance differences in handling the single pendulum system. The N4SID method,
utilizing LQ decomposition and singular value decomposition (SVD), achieves a training
NRMSE of 0.0486 and a notably lower testing NRMSE of 0.0096, demonstrating reliable pre-
dictive performance in linear scenarios but showing some limitations in the training phase.
In contrast, the Derivative-Based Koopman Operators, which apply high-order derivatives,
excel with a very low training NRMSE of 0.0028, suggesting effective internal learning of
system dynamics. However, it exhibits a high testing NRMSE of 8.3228, indicating reduced
capability for long term prediction. The proposed method, which also leverages SVD,
yields the lowest NRMSE values in both training (0.0010) and testing (0.0011), underscoring
its robustness and ability to generalize across varying conditions.

Figure 9. Comparison of the prediction performance of the proposed method, N4SID, and [19] based
on simulated trajectories of the single pendulum system.
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Table 1. Comparison of some existing system identification methods for the single pendulum system.

Method Basis Generation Train NRMSE Test NRMSE

N4SID LQ decompostion and SVD 0.0486 0.0096
[19] High-order derivative 0.0028 8.3228

Proposed SVD 0.0010 0.0011

5. Conclusions

This paper introduced a data-driven methodology for the identification of the Koop-
man operator in dynamical systems, with a particular emphasis on accurately capturing the
influence of inputs on the system’s dynamic behavior. The proposed approach effectively
leverages the power of low-rank approximations and the inherent robustness of Least
Absolute Deviations regression to extract meaningful representations from potentially
noisy and incomplete measurements. The efficacy of this method has been rigorously
validated through its application to a diverse range of dynamical systems, encompassing
both real-world nonlinear systems and simulated linear systems, with and without the
presence of external disturbances. The results unequivocally demonstrate the method’s
proficiency in both system identification and time-series prediction tasks.

The proposed method’s strong performance in terms of accuracy and generalization
suggests that it could be valuable for applications requiring precise system identification
in nonlinear environments, such as robotics, control systems, and predictive maintenance.
However, as the proposed method is open-loop identification method, the ability in closed-
loop identification are still not covered in this study as the input may cannot measured.
Despite those limitation, the method’s stability in prediction could lead to improved
reliability and performance in these applications, supporting decision-making and sys-
tem optimization.
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