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Abstract: Alzheimer’s Disease (AD) is becoming increasingly prevalent across the globe, and various
diagnostic and detection methods have been developed in recent years. Several techniques are avail-
able, including Automatic Pipeline Methods and Machine Learning Methods that utilize Biomarker
Methods, Fusion, and Registration for multimodality, to pre-process medical scans. The use of
automated pipelines and machine learning systems has proven beneficial in accurately identifying
AD and its stages, with a success rate of over 95% for single and binary class classifications. However,
there are still challenges in multi-class classification, such as distinguishing between AD and MCI,
as well as sub-stages of MCI. The research also emphasizes the significance of using multi-modality
approaches for effective validation in detecting AD and its stages.

Keywords: Alzheimer disease; biomarker methods; automated pipeline methods; fusion based
methods; machine learning methods

1. Introduction

Alzheimer’s disease (AD) is a debilitating disease that affects millions of people world-
wide, leaving them and their families struggling to cope with the devastating consequences.
It is a progressive disorder that gradually destroys cognitive functions, including memory,
language, and perception, making it a heart-breaking experience for both the patient and
their loved ones [1]. Initially, those affected by AD may experience problems with memory,
apathy, and difficulty performing everyday tasks [2]. Despite years of research, there is
still no cure for AD, which is why early diagnosis and intervention are crucial for man-
aging the symptoms and slowing down its progression. As the condition advances, the
individual may experience difficulties with communication, thinking, behaviour, speaking,
swallowing, and movement [3]. According to recent statistics, over 6.5 million individu-
als are affected by AD. People aged 65 or older living with AD are most common, with
2.41 million in the age range of 75–84 and 2.31 million aged 85 and over. Unfortunately,
there is no definitive test to detect AD; it must be diagnosed during its early stages in order
to be identified accurately. Machine learning and other AI-based approaches can be used
to help detect the disease [4].

A number of biomarkers, such as sMRI, genetics, and clinical and biological specimens,
are necessary to spot AD [5]. Biomarkers represent the raw information used to detect
AD. It is essential to determine the right biomarker, as there is no definitive evidence as to
which one is the most reliable [6]. Spatial features, such as CT measurements of the cortex,
brain volume and brain surface area, can be discerned after processing, thereby increasing
their diagnostic value [7]. Biomarkers are processed using both handcrafted and deep
learning techniques for extraction, allowing these features to be extracted automatically.
Commonly used Automatic Pipeline Methods, like FSL, Free Surfer, SPM12 and ANT, can
be employed as handcrafted methods for processing biomarkers, whereas deep learning
techniques, like CNN and Transfer Learning Methods, are usually used for Alzheimer’s
detection [8]. Deep learning-based methods use 2D T1-weighted MRI for accurate diagnosis
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and stratification of AD stages. Utilizing a shallow CNN architecture, the pipeline offers a
fast and accurate diagnosis module and global (normal vs. MCI vs. AD) and local (VMD,
MD, MoD) classifications [9]. The Ensemble method and ANN-based approach are also
used for AD detection. The ANN achieves a sustainable accuracy as compared to Gradient
Boosting & Voting Classifier [10]. Hybrid Deep Learning Approach with the Long Short-
term Memory algorithm and magnetic resonance imaging aims to distinguish patients with
cognitive normality from those with MCI and facilitate early detection and treatment [11].
In the Multimodality approach, MRI and PET scans are the most common biomarkers used
to diagnose AD; Wavelet transform-based multimodality fusion of the two scans is utilised
for early detection [12]. A hybrid deep-learning framework consisting of a 3D convolution
neural network (3D CNN) and a bidirectional recurrent neural network (BRNN) to diagnose
AD early explores the effect of fusing MRI with cross-sectional biomarkers [13]. This
research looked into the numerous types of artificial neural networks (ANNs) that can
be utilized to identify and anticipate AD based on the brain imaging of people with mild
cognitive impairment (MCI) [14]. The most relevant articles were chosen based on an in-
depth subject matter assessment. There are also other methods Like EEG deep learning (DL)
architectures-modified convolution (CNN) and convolution auto encoder (Conv-AE) neural
networks (NNs) for categorizing subjects into AD, MCI, and healthy control (HC) based
on scalp EEG recordings [15]. Disease comprises various subtypes and stages, running
from cognitive normal (CN) to MCI and from MCI to AD. The accuracy of a single class or
binary class for detecting AD is quite high, particularly when distinguishing between AD
and CN, AD and MCI, and CN and MCI [16]. However, multi-class detection, especially
with three or four classes, as well as subclasses of MCI, can still be improved. Binary and
multiple-class detection for the subtypes of MCI is still not satisfactory. Therefore, many
research methods have been adopted to discover the appropriate pipeline for detecting
these stages. Furthermore, some pipelines have demonstrated acceptable accuracy in
recognizing AD across different classes. In this review, the most significant research works
are screened and investigated significantly. The first part of the study involved a review
of biomarkers to assess their effectiveness in detecting AD and its various classes. In
the second part, the study investigated various handcrafted methods, such as automatic
pipelines, to determine which could provide the best pre-processing approach for the
different AD-oriented MRI scans and to determine their statistical features in terms of
volume, area, max of the different cortical regions of the brain. In order to obtain the muti
and hybrid range of features from the different scans, which pipelines were best for fusion
and registration approach for the multimodality were considered. After the multimodality
approaches, the classification techniques are analysed in the last section of the study, and
various Ml and DL techniques are reviewed based on accuracy and binary and multi-class
classification. Hence, the extensive research methodologies are outlined in Figure 1.

Therefore, Figure 1 describes the review organization. This organization uses biomark-
ers as indicators and methods for detecting AD. To understand its significance, Section 2
describes Biomarker methods for the detection of AD. In Table 1, some questions were
framed to obtain the appropriate and sustainable mode or method for detecting AD and
its stages.

Table 1. Research Question based on Contribution.

Question Description

Q1 How can Medical Image Modalities be used for the detection of
Alzheimer’s disease and its various classes?

Q2 Does Multi-Modality Diagnosis approach improve the diagnosis accuracy
of Alzheimer Disease?

Q3 Handcrafted features or deep learning-based solutions can be used to
detect AD diseases. Which method provides the highest chance of
detecting the disease?
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To answer these questions, the segregation of different types of AD research articles
is considered. This review process contains the analysis of 300 articles. Forty-five articles
discuss the causes and factors of AD. Another 55 articles were used to understand the
significance of biomarkers. In the fusion level and pure medical image processing analysis,
100 articles were used, while the remaining articles were taken into consideration for
machine learning and deep learning-based analyses.

2. Biomarker Modalities

AD is a debilitating condition that affects millions of people worldwide. It is a pro-
gressive disorder that causes memory loss, cognitive decline, and behavioural changes.
Biomarker-based research is one of the most important tools in the fight against AD. This
innovative method of studying the disease allows researchers to identify patients with AD
and track its progression through different stages. By using biomarkers, researchers can
also identify other neurological defects that may be associated with the disease. Biomarker-
based research is a critical step in the fight against AD, helping scientists better understand
the disease and develop more effective treatments. In this article, we will explore the
biomarker-based study of AD and its importance in e fight against this devastating condi-
tion. Different neuro defect can be identified by the different biomarkers available. These
defects lead to a brain disorder, which was discovered to be responsible for abnormal
behaviour in Alzheimer’s patients [2]. In order to find the exact region in terms of biologi-
cal reasoning, the Amyloid Precursor Protein (APP) is a small protein found in different
neuro regions [4]. When certain disorders occur, the neurons that have been injured can
regenerate, decompose, and recycle through Amyloid precursor protein (APP). A decrease
in APP can lead to an increase in proteases in synapses, which leads to deficiency in
the neuro region and causes interruptions in the brain. Brain synapses transmit signals
from one neuron to another neuron. These neurons use the APP membrane to protect
themselves from unwanted signals. Hence, inflammation can occur caused by proteases
being bundled outside blood vessels. Inflammation is one of the major causes of AD and
the different stages of the disease. The brain region efficiency levels can be understood
through different biomarkers, Clinical Biomarkers, Genetic Biomarkers, Positron Emission
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Tomography (PET), Biospecimen Biomarkers, Structural Magnetic Resonance Imaging (s
MRI), Cerebrospinal Fluid (CSF), Positron Emission Tomography (PET), Fluid Attenuated
Inversion Recovery (FLAIR), Diffusion Tensor Imaging (DTI), EEG (Electroencephalogra-
phy). Medical professionals, scientists, and researchers use these methods for detecting AD
and its different classes [17]. These biomarkers provide information such as grey matter
content and white matter differences, which are indicative of brain disorders [18]. In order
to determine this disorder, the presence of Amyloid in the brain, PET biomarkers are
used [19]. Biomarkers can contain urine, plasma, serum, or cerebral spinal fluid [20] to
detect diseases described in Table 2.

Table 2. Description of Different Biomarkers.

S.No Biomarkers Description

1 Clinical Biomarker A clinical trial is an analysis of data, from the micro (patient care) to the macro
(clinical trials), that are used in healthcare research (wide applications within a
health system) [21]. Clinical trials collected this data for analysing patient
outcomes. Novel pharmaceuticals, treatment approaches, devices, and other
research are tested in clinical trials.

2 Genetic Biomarker Genetic samples contain sensitive information about an individual’s health and
well-being. An individual’s inherited or acquired genetic characteristics can be
determined by DNA and RNA analysis [22].

3 Positron Emission Tomography (PET) PET is required for analysing cholesterol levels and amyloid proportions in the
brain. This biomarker allows for the measurement of glucose levels in various
parts of the brain and the identification of different subjects with AD. A tesla
scanner is capable of performing both Gamma Ray and PET imaging in patients
with AD using the Amyloid detection method developed by [23].

4 Biospecimen Biomarker The biospecimen data is information about the physical sample taken from an AD
patient and prepared for sequencing analysis [24]. A structural quantification of
the brain involves the collection of information from different parts of the brain
that exhibit minor structural changes and mobility in. Using these biomarkers, one
can track every function of the neuroanatomical structure when a patient suffers
from any deficiency in their ageing process [25].

5 Structural Magnetic Resonance Imaging (s MRI) MRI provides anatomical details about the brain. In AD patients, hydrogen atoms
and resonance enable structural visualization through magnetic resonance
imaging, both in static and magnetic fields
Varghese et al. (2013). Structure analysis, volumetric analysis, cortical thickness
measurement, voxel-based analysis, longitudinal analysis, and anatomical
morphology are all performed by imaging techniques [26].

6 Cerebrospinal Fluid (CSF) The proportions of proteins in CSF biomarkers determine whether a particular
biomarker is applicable for AD detection. CSF analysis can be used to find
differences between AD patients and healthy individuals based on the proportion
of Aβ protein. Diagnoses are made by examining the reduction or increase
in Aβ [27]. Aβ, Aβ40, Aβ42 proteins are found in the brain region as is
phosphorylated tau (p-tau) and tau protein total (t-tau).

7 (APOE e4) The neuro region, the lung region, and the heart region of the human body are
influenced by genetic influences. This information is crucial to diagnosing and
detecting AD patients [28]. A genetic biomarker assists in diagnosing the e4 allele
of Apo lipoprotein E (APOE e4) in the brain which leads to the development of
Alzheimer’s symptoms and limits the production of amyloid in the brain.

8 Fluid Attenuated Inversion Recovery (FLAIR) A flare image, also called a fluid-attenuated inversion recovery image, is a
diagnostic method for AD detection. This biomarker can provide information
regarding an unwanted lesion in the brain or a lesion which suppresses CSF’s role
in the brain [29]. The Flair Modality continues to use the T2 weighted proportion.
It also contains information about the white matter remaining in the different
parts of the brain affected by AD.

9 Diffusion Tensor Imaging (DTI) The diffusion tensor imaging (DTI) technique uses isotropic diffusion to assess the
brain’s axonal (white matter) structure. Diffusion tensor imaging is utilized to
determine the diffusivity of water molecules in tissue in order to identify the fibre
bundles gathered in the affected region of the brain of AD patients [30]. Water
molecules stagger communication between neurons when they do not flow
regularly in the brain. This leads to progressive memory loss,
eventually leading to AD.
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Table 2. Cont.

S.No Biomarkers Description

10 EEG (Electroencephalography) Brainwaves are measured by EEG. Routine EEGs have a regular frequency and
shape. The electrical conductivity of AD patients’ tissues varies between
individuals and over time. Prolonged EEGs are used for detecting AD Marcel and
del R [31]. Consequently, the detection of AD becomes smooth and provides a
higher rate of precision than any other detection method.

11 PET (Positron Emission
Tomography)

PET is a form of functional imaging technique that employs a radioactive tracer to
evaluate the metabolic activity of diverse areas of the brain. PET scans can offer
data on how different parts of the brain are performing, including how they react
to different stimuli, and can be employed to identify ailments such as AD,
Parkinson’s disease, and epilepsy [32].

12 CT (Computed Tomography) CT scanning is a type of imaging that uses X-rays to generate representations of
the brain without any invasive measures. With CT scans, the size and shape of
different sections of the brain, along with any irregularities, can be determined.
This method is commonly used to detect conditions such as tumours, intracerebral
bleeding, and stroke [33].

To make the most of the available biomarkers, pre-processing is a key step in refining
the quality of biomarkers. In the case of neuroimaging biomarkers, volumetric-based
pre-processing is the most widely used form of pre-processing. Volumetric biomarkers
are becoming an increasingly important tool in the medical field for the diagnosis and
treatment of various diseases. However, before these biomarkers can be used effectively,
the data must be pre-processed to ensure accurate and meaningful results. In this article,
we will explore the essential volumetric biomarkers that require pre-processing to prepare
the data for feature extraction. We will discuss the importance of segmentation, bias field
correction, and normalization in the pre-processing stage. Furthermore, we will delve
into the different techniques used for each process and how they impact the quality of the
data. A deeper understanding of the crucial role of pre-processing in volumetric biomarker
analysis and how it can enhance the accuracy and effectiveness of medical research and
diagnosis is given in Figure 2.

Prior to the utilization of Machine Learning and Deep Learning for feature extraction,
a number of pre-processing techniques must be applied for structural MRI, PET and CT
Modalities such as De-oblique, Field Inhomogeneity Correction, Non-Brain Tissue Removal,
Bias Correction, Registration, and Segmentation. One of the most critical steps in medical
image analysis is feature extraction, which involves identifying and extracting relevant
information from the images. In the past, this was done using traditional pre-processing
techniques, such as filtering, segmentation, and registration. However, with the advent of
Machine Learning and Deep Learning, there has been a shift towards using these techniques
for feature extraction. In this article, we will explore the importance of pre-processing
techniques for structural MRI, PET, and CT modalities, and why they are still a crucial
part of the feature extraction process. It is of the utmost importance that pre-processing is
carried out correctly so as to enhance the detection accuracy of any AD classes. Additionally,
when it comes to pre-processing PET images, registrations, motion corrections, delineation
of volume interest, partial volume correction, and kinetic modelling are also required.
Generally, registrations and bias corrections are executed before feature extraction for PET.
Similarly, pre-processing is essential in Tractography, which entails a general description of
the motion in the DTI modality, followed by FSL and EDDY current correction.

Table 3 outlines the pre-processing steps which must be completed prior to extracting
features. The biomarkers detailed in the table elucidate their part in detecting AD and
its associated classes. It is essential to determine which biomarkers are most pivotal in
the detection methods of AD. In order to understand the uses of the different imaging
modalities and what are the common data source which is taken for AD Detection are
discussed. Table 4 elaborates on the application of the repository and biomarkers for AD
detection in binary, multiclass, and one-class classifications.



Sci 2023, 5, 13 6 of 24

Sci 2023, 5, x FOR PEER REVIEW 6 of 27 
 

 

To make the most of the available biomarkers, pre-processing is a key step in re-

fining the quality of biomarkers. In the case of neuroimaging biomarkers, volumetric-

based pre-processing is the most widely used form of pre-processing. Volumetric bi-

omarkers are becoming an increasingly important tool in the medical field for the diag-

nosis and treatment of various diseases. However, before these biomarkers can be 

used effectively, the data must be pre-processed to ensure accurate and meaningful 

results. In this article, we will explore the essential volumetric biomarkers that require 

pre-processing to prepare the data for feature extraction. We will discuss the im-

portance of segmentation, bias field correction, and normalization in the pre-pro-

cessing stage. Furthermore, we will delve into the different techniques used for each 

process and how they impact the quality of the data. A deeper understanding of the 

crucial role of pre-processing in volumetric biomarker analysis and how it can en-

hance the accuracy and effectiveness of medical research and diagnosis is given in 

Figure 2. 

 

Figure 2. Volume Based Pre-processing Methods for different Biomarkers. 

Prior to the utilization of Machine Learning and Deep Learning for feature extrac-

tion, a number of pre-processing techniques must be applied for structural MRI, PET 

and CT Modalities such as De-oblique, Field Inhomogeneity Correction, Non-Brain 

Tissue Removal, Bias Correction, Registration, and Segmentation. One of the most 

critical steps in medical image analysis is feature extraction, which involves identifying 

and extracting relevant information from the images. In the past, this was done using 

traditional pre-processing techniques, such as filtering, segmentation, and registration. 

However, with the advent of Machine Learning and Deep Learning, there has been a 

shift towards using these techniques for feature extraction. In this article, we will explore 

the importance of pre-processing techniques for structural MRI, PET, and CT modalities, 

Figure 2. Volume Based Pre-processing Methods for different Biomarkers.

Table 3. General Pre-processing Methods used in Structural Biomarkers.

S.No Preprocessing Methods Description

1 De-Oblique De-oblique pre-processing is a technique used to reduce the effects of
perceptive distortion. This technique works by rotating the images,
reducing any perspective distortion and allowing for easy interpretation.

2 Field Inhomogeneity Correction This pre-processing method also helps in the removal of artifacts from the
data. It helps remove the intensity of tissues not in the observed
mean intensity.

3 Bias Correction This method is used to correct the non-uniform shading in an image. In
this technique, the low pass filter is used to remove the high frequency.

4 Non Brain Tissue Removal This is the pre-processing of the removal of non-brain tissue from the
captured image. Non-brain tissue removal is accomplished through a
combination of techniques, including segmentation, morphological
operations, and filtering.

5 FSL and Eddy Current This FSL contain the approach to quantify the temporal dynamic of the
Image, which is based on Fourier Transformation. Eddy Current
pre-processing is used to identify the small changes in an image through
the Eddy Current flows at the time the image is recorded.

Table 4. Identification of usability of AD biomarkers with reference to accuracy achieved in the
different classifications.

S.No Authors Data Base Year Biomarker Binary Class Multi Class Accuracy

1 [34] OASIS DATABASE 2018 MRI
√

X 92% AD
2 [35] HAVARD

MEDICAL
SCHOOL

2019 MRI
√

X Multiclass 95.23
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Table 4. Cont.

S.No Authors Data Base Year Biomarker Binary Class Multi Class Accuracy

3 [36] ADNI 2017 MRI X
√

AD vs. NC 98.88
4 [37] ADNI 2020 MRI X

√
AD vs. NC 99.20

5 [38] OASIS DATABASE 2019 MRI
√ √

92.85% AD
6 [39] ADNI 2020 MRI

√ √
99% AD

7 [40] OASIS 2013 MRI
√

X 90% AD
8 [41] ADNI 2021 MRI

√
X 92% AD

9 [18] ADNI 2019 BIO
SPECIMEN

√
X 99.67% AD

10 [42] GERAD1 2017 GENETIC X X 90% AD
11 [43] ADNI, AIBL 2014 MRI

√
X MCI to AD.86%

12 [44] ADNI 2019 CSF, PET
√

X CSF Abeta-42, Neuronal
Pentraxin decreased

13 [45] DIAN 2019 CSF X
√

NLF rate changed to AD
14 [46] ADNI 2013 AD, MCI X X 92% AD
15 [47] ADNI 2013 CSF, MRI, PET

√
X Misclassification 41.3% to 28.4%

16 [48] ADNI 2019 PET, CSF X X 94% AD
17 [49] ADNI 2003 FDG, PET

√
X Detected AD

18 [50] ADNI 2007 MRI
√

X AD 86.8
19 [51] ADNI 2017 MRI

√
X AD-HC: 94.11%,

MCI-HC: 83.77%
20 [52] NICDS, ADRDA 2000 MRI X X 88.6% AD
21 [53] PRIVATE

HOSPITAL DATA
2006 MRI X X MCI to AD 86%

22 [54] PRIVATE Data Set 1993 CT, MR X X 91% AD
23 [55] PRIVATE Data Set 2010 GENETIC

√
X 28 Score in AD

24 [56] PRIVATE 2011 CLINICAL X X CDE, MMSE score is high in AD
25 [57] PRIVATE 2009 MRI

√
X AD, HC

26 [58] NINCDS-ADRDA 1997 MRCLINICAL X X 95% AD
27 [59] PRIVATE 1996 CLINICAL X X predicted AD
28 [60] ADNI 2013 PET

√
X 64% MCI

29 [61] ADNI 2020 MRI
√

X 96.8% AD vs. CN
30 [62] OASIS Data Set 2020 MRI

√
X 97.75% AD vs. CN

31 [63] MNIST Data Set 2021 MRI
√

X AD vs. Healthy 96.8
32 [64] ADNI 2021 MRI

√
X AD vs. NC 98.73

33 [65] OASIS 2022 MRI
√

X AD vs. NC 98.99
34 [66] ADNI 2022 MRI

√
X AD vs. NC 85.12

35 [67] OASIS 2023 MRI
√

X AD vs. NC 95.48
36 [68] ADNI 2023 MRI

√
X 77% ADNI, 76% OASIS

Several studies have been reviewed in Table 4 to create diagnostic models for AD by
analysing various data types, including brain imaging (MRI, CT, PET), biomarkers, genetic
data, and clinical data. The accuracy of these models varies depending on the type of data
and classification task used, as indicated in the table. MRI is the most frequently used
modality for diagnosing AD, followed by PET and CSF biomarkers. Some studies also used
genetic data and clinical assessments for diagnosis. The classification tasks also varied,
ranging from binary (AD vs. CN) to multi-class (MCI, AD, CN), and the accuracy ranged
from 86% to 99.67%. Overall, the table highlights the diversity of approaches and data
types used in AD diagnosis research and shows ongoing efforts to develop accurate models
for early and accurate diagnosis of AD. Additionally, a multimodality approach may yield
more accurate and reliable results in the detection of AD and its subtypes. Figures 3 and 4
describes the usability of the different biomarkers in different classes the referenced article.

Using biomarkers is a dependable means of detecting AD. By employing both hand-
crafted feature extraction methods and Deep Learning techniques to process these bio
markers, we can better understand the role that Automatic pipelines (Handcrafted Feature
Extraction Methods) play in detecting AD and its various stages. In Section 3, we highlight
the significance of handcrafted feature extraction methods and their importance in the field
of AD and the detection of AD.
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Figure 4. Analysis of binary class and multi class for AD and its stages detection.

3. Automated Pipeline

Automated Pipelines are techniques where various algorithms are packaged up to form
the different pre-processing and operations for the neuro regions. Researchers commonly
use Magnetic Resonance Imaging (MRI) for early and precise detection of structural and
functional brain tissue abnormalities. These pipelines, such as Free Surfer, SPM, AFNI,
FSL, DIPY, NIPYPE, AAL, fMRIPrep and Ants, are used to assess the different neuro
regions of the brain. Through these methods, various areas can be identified by means of
Handcrafted feature extraction techniques, which have significantly enhanced AD detection
and treatment [69]. These strategies are based solely on image processing methods. They
can distinguish the characteristics of AD patients and their subtypes from the Image Data
Set [70]. These Automated tools are generally based on Image data sets which have 3D
or 2D attributes. These automated tools are used for rectifying image abnormalities and
recognizing significant features [71]. These methods require a large amount of computing
power. Therefore, these approaches can better compute the features from the limited data
set, including the areas, volumes, and thicknesses of the cortex at different stages of AD
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and its subtypes [72]. Based on these computed features, a classification model can be
generated to classify the classes. The classification of these methods is detailed below
in Figure 5.
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Many of these techniques are frequently employed to analyse the grey matter and
white matter in the brain that has the biological disorder. In the brain, several factors can
help differentiate a deficient brain from a normal brain. Using this analysis, researchers
looked at Free Surfer, SPM, and FSL, which are designed to better detect AD and its
subtypes. Table 5 explains the automatic pipelines used for detection and their effectiveness.

Table 5. Analysis of the Automatic Pipelines for AD detection in the Single, Binary and Three or
more class classification.

S.No Author Data
Set

Year Automated
Pipelines

Multiple
Class

Binary Class Accuracy

1 [73] ADNI 2016 SPM12 and VBM X
√

AD vs. HC
99.93

2 [74] NCRD 2020 SPM12 X
√

AD vs. CN
93.33

3 [75] ADNI 2019 SPM12 and FSL X
√

HC vs. mAD,
p < 0.001, p < 0.001

4 [76] ADNI 2019 ANT Tool and SPM12 X
√

AD vs. HC
98.33

5 [77] ADNI 2016 FREE SURFER X
√

MCnc vs. MCic = 73.91
6 [78] ADNI 2015 FSL X

√
CN vs. AD = 0.82

7 [79] Private 2018 SPM X X CSF parameter, AP (p = 0.03)
8 [77] ADNI 2016 NON-Conventional X X AD = 79.9%
9 [30] ADNI 2018 FSL, ANOVA X X Only CSF and Tau Comparison
10 [80] ADNI 2017 SPM8 X

√
AD vs. NC = 88, AD vs. MCI = 75

11 [81] ADNI 2018 FREE SURFER X
√

MCI to AD
p = 1.07 × 10−5

12 [82] ADNI 2016 Verbal Learning Data X
√

AD vs. MCI = R = 0.43, R = 0.050
13 [83] ADNI 2017 FREE SURFER X X NA
14 [84] ADNI 2017 NON Conventional X X NC to EMCI = 0.45
15 [85] ADNI 2017 NEURO QUANT,

NEURO READER
X

√
AD vs. MCI = 0.69

16 [55] Private 2010 IBM SPSS X X AD = 0.90
17 [86] ADNI 2015 FSL X X AD vs. NC = 90.2
18 [87] ADNI 2017 FSL X

√
NC vs. AD= 95

19 [88] ADNI 2013 FSL X
√

CN vs. AD = 90%
20 [89] Klinikum

Rechts-deisar
2012 FSL X

√
AD vs. MCI = 95

21 [90] ADNI 2012 SPM X
√

AD (R = 0.51, p = 2.2 × 10−1)
22 [91] ADNI 2017 Free Surfer X

√
mAD vs. HC = 96.51

23 [92] ADNI 2017 MMSE X X NA
24 [93] ADNI 2017 FSL X X Changes in Hippocampus observed

in EMCI
25 [94] Private 2016 Free Surfer X

√
AD (p < 0.05)
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Table 5. Cont.

S.No Author Data
Set

Year Automated
Pipelines

Multiple
Class

Binary Class Accuracy

26 [95] ADNI 1920 FSL X X AD = 0.98
27 [96] ADNI 2016 MIPAV, SPSS X X AD = 0.001, p < 0.005
28 [97] ADNI 2023 SVM X

√
AD vs. CN
0.92

29 [98] ADNI 2023 Free Surfer X
√

Changes in Hippocampus
30 [99] ADNI 2023 Computer Assisted X

√
AD 89%

31 [100] Amsterdam
Dementia Cohort
(ADC)

2022 Free Surfer X
√

AD vs. NC
98%

32 [101] ADNI 2022 Free Surfer X
√

EYO and white matter corelation
33 [102] ADNI 2022 Free Surfer X

√
Cortical Thickness Calculated

According to Table 5, ADNI is considered one of the most valuable open-source data
sets for AD detection. The feature extraction method appears to work best for the free surfer.

With the FSL, FREE Surfer, over 95 percent accuracy was achieved in identifying
AD, and its subtypes, shown in Figure 6. In multi-class analyses, there was a lack of
accuracy when detecting AD at different stages, but in binary classifications, the accuracy
was higher. Therefore, these automatic pipelines also include methods for identifying the
various types of diseases using multi-modality approaches. These approaches involve the
fusion of images that are registrations as well as the fusion of features in order to detect
AD effectively.

1 
 

 Figure 6. Automatic Pipelines for AD Detection.

Fusion Based Methods

Image registration is the act of adjusting two or more images of the same modality
or object to one another, which have the same reference frame. The purpose of image
registration is to identify the transformation that best fits the images, so that they can be
compared or amalgamated for study. Image registration is one of the most significant
steps of fusion, which helps to improve the detection rates of AD and its subtypes in
Multimodality. Registration is the process of transforming data into a single coordinate
system [103] Figure 7. Image fusion is the process of combining multiple Images of the
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same modality or object into one image that contains all the data from the initial pictures.
Image registration is a key factor in image fusion, as it ensures the input images are aligned
before they are blended. By aligning the images, image registration decreases the effects
of misalignment and distortion due to varied viewing angles, camera positions, or other
aspects. This alignment can combine the images through several image fusion techniques,
such as weighted averaging, maximum likelihood estimation, or multi-resolution analysis.
Image registration is a critical step in many image-processing applications, including
remote sensing, medical imaging, computer vision, and robotics. It is used to improve
the accuracy and quality of image analysis, as well as to enhance the visualization and
interpretation of image data. MRI (Magnetic Resonance Imaging) is a medical imaging
technique that uses a strong magnetic field and radio waves to generate images of the
body. MRI is commonly used to visualize soft tissues, such as the brain, spinal cord, and
joints. The two different modalities are aligned with respect to the template image to ensure
that the images are in the same spatial orientation and have the same resolution. After
that, the specific ROI contains information of interest for further analysis. Then region
matching is the process of identifying and aligning the corresponding regions of interest
in multiple MRI images. This is important for comparing the same region across multiple
images, such as tracking changes over time or between different patients. Then after ROI, a
directional vector is calculated, a representation of the orientation and direction of an object
or region within an MRI image. Directional vectors can be used to describe the orientation
of structures such as nerves, blood vessels, or muscle fibres. Geometric transformation
refers to the process of transforming the MRI image from one spatial orientation to another,
such as rotating, scaling, or translating the image. Geometric transformation is used to
align the MRI images, match the ROIs, and adjust for any distortions or variations in the
image. Resampling refers to the process of changing the resolution or size of the MRI
image. Resampling is necessary when geometric transformation is applied to ensure that
the resulting image has the desired resolution and size. In summary, the steps involved
in MRI image processing, from modality to resampling, include acquiring MRI images,
aligning the images, identifying regions of interest, matching the ROIs, using directional
vectors to describe the orientation of structures within the images, applying a geometric
transformation to align the images and adjust for any distortions, and resampling the
images to ensure the desired resolution and size. These steps are crucial for the accurate
analysis and interpretation of MRI data in various medical applications.
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In medical imaging, registration is used to combine data from several modalities,
such as computed tomography (CT), magnetic resonance imaging (MRI), SPECT, and PET.
Combining images reduces data while creating easier-to-process images more effective for
detecting AD and its stages [105]. Hence, these registrations of the images contain the steps
mentioned in Figure 8. This enables the creation of more appropriate models for detecting
AD and its various subtypes. In this way, the detection rate of AD and the corresponding
classes can also be improved. A number of factors need to be considered when choosing
an appropriate registration method [106]. Due to the diversity of image registration tasks,
there is no universal method. In order to extract the hybrid set of features, it is best to use
the Hit and Trail method, which is both rigid and non-rigid. This approach also has a high
success rate in detecting AD. The detailed analysis of the fusion and registration method is
described in Table 6.
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Table 6. Fusion and Registration methods for AD and Subtypes Detection.

S.No Author Date Set Year Subjects Fusion Methods Results Feature
Level Fusion

Pixel
Level Fusion

1 [107] ADNI 2014 ADNI AD, NC fusion of classifiers AD vs. NC = 92%
√

X
2 [108] ADNI 2014 MRI and

(FDG-PET),
AD 204, MCI 76,
128 MCI,
101 NC

fusion of classifiers AD vs. NC = 93.35%
√

X

3 [109] ADNI 2016 93 AD, 204 MCI 76
MCI, (MCI-C),
128 MCI (MCI-NC),
and 101 NC

Multi modal fusion
MRI-PET

AD vs. NC,
MCI vs. NC 96.93
and 82.75

X
√

4 [110] ADNI 2016 CT and PET Multispectral
fusion for CT and
PET Modalities

Multispectral fusion
shows the
Promising result

X
√

5 [111] ADNI 2017 44 CN, 45 MCI and
45 AD, LCCN 52,
97 MCI, and 13 AD

Label Fusion automatic
segmentations

X
√

6 [112] ADNI 2017 147 AD, 75 MCI
and 35 (NC).

Multi-Modality
Fusion

AD vs. NC 98 % X
√

7 [113] PRIVATE 2018 411 AD and
540 NC

Multi fusion Effective ness of ITL
was more

√
X

8 [114] ADNI 2019 AD CT, MRI
and SPECT

Fusion of features Fusion approach of
NCST and NSst
provides better

√
X
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Table 6. Cont.

S.No Author Date Set Year Subjects Fusion Methods Results Feature
Level Fusion

Pixel
Level Fusion

9 [115] ADNI 2019 AD Fusion of Imaging
Modalities

MRI + PET modality
acceptable ACC

X
√

10 [116] ADNI 2018 60 HC, 60 MCI,
60 cMCI, 60 AD

Fusion of Features Modalities based
Fusion

√
X

11 [117] ADNI 2021 CT, MR Multispetial Fusion AD 702 ACC X
√

12 [118] ADNI 2021 419 CN, 473 MCI,
140 MCI

Decision Fusion 84.73 ACC
√

X

13 [119] ADNI 2021 AD, CN, EMCI,
LMCI

Decision Level
Fusion

92.6 ACC
√

X

14 [120] ADNI 2021 MRI, MCI, AD Decision Level
Fusion

80.9 ACC
√

X

15 [121] ADNI 2021 AD, MCI Multimodal Fusion MRI + PET = 0.97
ACC

X
√

16 [122] ADNI 2021 AD Feature Level
Fusion

90% ACC
√

X

17 [123] ADNI 2021 AD Adversely
Hyper-graph
Fusion

93.0 ACC
√

X

18 [124] ADNI 2021 95 AD, 160 MCI Image Fusion 94.11 ACC X
√

19 [125] ADReSS 2021 AD Late Fusion 84–90 ACC
√

X
20 [126] Private Data 2020 29 HC, 27 MCI Attribute Level

Fusion
94% HC vs. MCI

√
X

21 [127] Private Data 2020 AD Auto phagosome-
lysosome
fusion

Pathological
intervention

X
√

22 [128] ADNI 2023 MRI, PET and DTI Feature Level
Fusion

99% AD X
√

23 [129] ADNI 2023 MRI, PET Feature Level
Fusion

AD vs. CN 93.3 X
√

Multi modal imaging techniques typically incorporate hybrid level features as part
of the detection process, primarily for the detection of MCI-AD [130], In comparison
with feature level fusion and image level registration, both have acceptable accuracy for
detecting Alzheimer’s Subtypes. These steps constitute the process of pre-processing for the
multimodality approach to detecting AD sub types. These features can be used in machine
learning to generate models and this will classify the different types of AD. However, in
Deep Learning no specific features are required. In addition, they can extract features and
classify different types of AD. In order to bring more clarity, a systematic analysis is done
in the Figure 8.

The Table 6 provides information about various fusion methods used for analysing
medical data sets related to AD and Mild Cognitive Impairment (MCI). The fusion methods
used in the studies include Adversal Hypergraph Fusion, Anchostic Fusion, Attribute Level
Fusion, Autophagosome Lysosome Fusion, Decision Fusion, Feature Level Fusion, Fusion
of classifiers, Fusion of Features, Fusion of Imaging Modalities, Gating Mechanism, Label
Fusion, Multimodal Fusion, Multi-Modality Fusion, Multispectral fusion, Multispatial
Fusion, and Multifusion of algorithm. The data sets used in the studies include ADNI,
ADReSS, and Private Data. The years of the studies range from 2014 to 2021. The subjects
in the studies include AD, CN, EMCI, LMCI, MCI, HC, and cMCI. Some studies have used
multiple subjects. The accuracy achieved by the fusion methods ranges from 88% to 97%.

4. Machine Learning Methods

Machine learning and deep learning are used in research to categorize and evaluate
patients, predict treatment outcomes, and assess risks. Researchers used deep learning
and machine learning methods to classify neurodegenerative disorders caused by AD
and their stages through imaging-based detection. Automatic pipelines utilize feature
extraction techniques which are based on a variety of biomarker methods. As a result of
Deep Learning, it can preprocess the biomarkers itself and extract the features, as well as
develop a model to identify AD and its stages, SVM, ANN, and DNN are some of the most
commonly used classification techniques for AD. The following table provides a brief of
common classification methods. Therefore, researchers and scientists in the field of medical
image processing commonly use these methods to detect AD at various stages. There are
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also the various classification methods available which can also provide the subsequent
analysis in the field. Figure 9 shows the different classification methods which used in the
field of Alzheimer.
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In the detection of AD, these classification methods are widely used. A proper and
systematic analysis of the Alzheimer detection is conducted in order to understand the
significance of which methods provide the best classification of the different stages in Table 7.

Table 7. An analysis of the different classification methods for AD.

S.No Article Data Base Year Modality F E Methods Accuracy Multi Class Binary Class

1 [131] AD, CN 2007 fMRI ROI 81 X
√

2 [132] CN, FTD 2008 MRI, PET VBM 93 X
√

3 [133] CN, AD 2009 sMRI Morphometry 89 X
√

4 [134] CN, AD 2010 SPECT ROI 89
√ √

5 [135] CN, AD 2012 sMRI VBM 82
√ √

6 [136] CN, MCI 2013 sMRI SAE 89 X
√

7 [137] CN, AD 2013 sMRI Voxel 87 X
√

8 [138] CN, MCI 2014 sMRI ROI 91 X
√

9 [139] AD 2017 sMRI SVM 74 X
√

10 [140] MCI
CN

2019 sMRI CNN 98 X
√

11 [141] AD
CN

2019 sMRI CNN 97.52
√ √

12 [142] AD
ADNI

2009 MRI SVM 97.13 X
√

13 [143] ADNI 2015 MRI, PET PCA 91.4 X
√

14 [144] ADNI 2016 FMRI Google Net 100 X
√

15 [145] ADNI 2014 MRI SVM 98.8 X
√

16 [146] ADNI 2019 MRI CNN, RNN 98 X
√

17 [147] ADNI 2019 MRI 2D Convolution
Network

98 X
√

18 [148] ADNI 2019 MRI 3D CNN 94 X
√

19 [149] EEG, ADNI 2019 MRI Convolutional96 Deep
Boltzmann Machine

96 X
√

20 [150] ADNI 2020 sMRI ADNet-DA 52.3 X
√

21 [151] OASIS 2020 sMRI 12-Layer CNN 97.75 X
√

22 [152] ADNI 2020 sMRI Hog-CNN 98 X
√

23 [153] ADNI 2022 sMRI Res-NET, DenseNET 97 X
√

24 [154] ADNI 2023 sMRI JD-CNN 94.20 X
√

25 [155] ADNI 2023 sMRI RNN, Neural Network 90 X
√

Based on Table 7, The table shows the relation between the year and the feature
extraction method accuracy in MRI studies. The accuracy is expressed as a percentage and
ranges from 52% to 100%. The data includes various feature extraction methods such as
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ROI, VBM, Morphometry, SAE, and CNN, among others, and covers a period of 17 years,
from 2007 to 2023. From the bar chart at Figure 10, we can see that there are some notable
trends in the accuracy of different feature extraction methods over time. For example,
SVM and VBM had high accuracy in the earlier years but declined over time. In contrast,
CNN-based methods had lower accuracy in the earlier years but have since become more
accurate, with some achieving near-perfect accuracy in recent years. Overall, this data
suggests that the accuracy of feature extraction methods in MRI studies has been steadily
improving over time, with newer, more advanced methods showing promise for achieving
even higher accuracy.
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However, it is worth noting that the accuracy of different methods can vary depending
on the specific application and the quality of the data being used. Convolution neural
networks provide the most accurate classification of ADs and their classes. The accuracy of
the binary class is higher than that of all other types of AD. In the multi class classification of
AD, the SVM outperforms other methods. However, there is still room for improvement in
the detection of AD classes. Currently, the level of accuracy in the multi class is unacceptable.
In order to classify and analyze MCI’s sub classes, Deep Learning and Machine Learning
methods still require improvement. According to a recent study, machine learning is more
effective at detecting AD than deep learning and works on smaller data sets.

5. Discussion

Identification of structural differences in the brains of patients with neurological
conditions versus healthy brains, neuroimaging is the most effective tool. The technique
of analyzing biomarkers can provide both 2D and 3D structural information, which is
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particularly helpful in understanding the dimensions of cortical regions affected by AD.
Biomarkers such as Diffusion Tensor Imaging (DTI), which measures the amount of water
molecules and fibers in various areas of the brain at different stages of AD, are useful for
assessing brain conditions. Other biomarkers like PET modality, CSF analysis, and genetic
biomarkers can also be used to differentiate between healthy brains and those with AD
with good precision. However, MRI and PET biomarkers are the most commonly used and
have an acceptable level of accuracy in detecting AD. Classifications are usually done at
either a binary or multi-class level, with binary class accuracy being greater than 95%, but
multi-class accuracy being less than 85%. While the accuracy of accessing from AD to CN
and MCI to CN is acceptable, going deeper into stages shows unacceptable accuracy at
MCI, AD to MCI.

After the Analysis of biomarker level we organized the systematic review in Automatic
pipelines for detection of AD and there stages. Various studies used automated pipelines to
classify patients with AD from healthy controls (HC) or mild cognitive impairment (MCI).
The studies used different datasets, software, and classification schemes. Most studies
reported high accuracy in binary classification, but there is a need for improvement in
multiclass classification. Several studies reported significant differences in brain regions or
biomarkers between AD and HC/MCI. Some studies used non-conventional methods or
proprietary software, which may limit reproducibility. Overall, the studies highlight the
potential of automated pipelines for AD classification and biomarker discovery but also
indicate the challenges and limitations of this approach. Automated pipeline approaches
like Free Surfer and FSL (FMRIB SOFTWARE LIBRARY) are additionally popular for the
detection of AD and its stages. Generally, these techniques are more effective when the data
sample is small. In general, the AD dataset is not very large for a particular population.
These strategies employ multiple preprocessing techniques that are arranged in a pipeline
for classifying subjects. The three or four classes of classification or the subgroups of MCI,
require more improvement than the other categories.

Various studies that have used fusion techniques to improve the accuracy of AD
diagnosis. The review utilized different data sets, including ADNI and private data, and
different modalities such as MRI, PET, CT, and SPECT. Some analysis used decision-level
fusion, where the results of different classifiers were combined, while others used feature-
level fusion, where different features from different modalities were combined. There were
also review that used both feature-level and decision-level fusion. The results showed
promising accuracy rates ranging from 80.9% to 98%, depending on the fusion technique
used. The combination of multiple modalities or features can significantly improve the
accuracy of diagnosis, as demonstrated by the studies in the table. As more advanced deep
learning techniques continue to be developed, it is likely that further improvements in
diagnosis accuracy will be achieved in the future. However, it is important to note that
more research is needed to validate the results of these studies and ensure that they can
be applied in clinical practice. The result of fusion and registrations validation are totally
depend upon the ml and dl methods. The details study of ML and DL methods where
made. Various analysis conducted on the application of machine learning techniques for
the diagnosis of AD using different imaging modalities such as MRI, PET, SPECT, and fMRI.
The review also use different methods such as ROI, VBM, SVM, CNN, PCA, and deep
learning networks for feature extraction and classification. The accuracy of the classification
varies between them, with some achieving high accuracy rates above 90%, while others
have lower accuracy rates. The fusion of multiple modalities and the use of deep learning
networks, such as CNN and RNN, have shown promising results in achieving higher
accuracy rates. Most of the studies have also applied the classification models to both
binary and multi-class classification tasks. This review highlight the potential of using
machine learning techniques for the early and accurate diagnosis of AD.



Sci 2023, 5, 13 17 of 24

6. Future Directions and Challenges

AD is a growing concern worldwide, affecting millions of people and their families.
Early detection of the disease is crucial for effective treatment and management, but current
diagnostic methods can be costly and invasive. However, a recent review has uncovered
exciting findings that could revolutionize the detection of AD. The review recommends the
use of Handcrafted Feature Extraction, Fusion, and Machine/Deep Learning methods to
detect AD and its stages. This approach combines the strengths of multiple techniques to
create a more accurate and reliable diagnostic tool. As a highly skilled assistant specializing
in digital marketing, I understand the importance of staying informed about the latest
developments in technology and healthcare.

• Biomarker methods achieve high accuracy in binary classification for AD detection,
they fall short in multi-group classification, indicating the need for improvement. To
address this, handcrafted feature extraction and classification through Machine Learn-
ing Approaches are suggested. Multi-modality approaches require proper registration
and preprocessing of the biomarker to overcome specific issues.

• In the recommendations, such as the Handcrafted Feature Extraction method, Fusion
methods, and Machine/Deep Learning methods, for detecting AD and various classes
of AD. Previous research has been conducted on Handcrafted Feature Extraction
methods in binary or single modes to detect AD. However, fusion approaches have not
been as successful researched or adopted in multi-modality and levels of investigation
for AD detection is required. To improve fusion approaches, different image modalities
can be used. Additionally, there have been significant advances in both conventional
and non-conventional approaches to feature extraction and categorization strategies.

• Two approaches using Machine Learning Deep Learning can be employed to develop a
model for detecting AD. The first method involves creating a model based on features,
while the second method extracts features to build a model for detecting AD and
their classes. Both of these methods have been used in several studies to detect AD.
While binary classes have been accurately identified, non-conventional approaches
are needed to improve accuracy for more than two classes. Structural bio markers in
handcrafted feature extraction methods have shown promising results, but there is
potential for multi-modal improvement in the classification of AD patients. Machine
Learning approaches, particularly SVM, have enhanced the accuracy of classification
and are increasingly utilized to automatically detect AD and its classes.

7. Conclusions

According to the results, the identification of AD and its different stages greatly relies
on the use of structural MRI. Other methods like DTI, PET, and FLAIR can also be effective
in detecting AD. These bio markers allow for the analysis of multiple classes and the
use of various approaches to identify the different phases of AD, including CN vs. AD,
MCI vs. AD, EMCI vs. AD, LMCI vs. AD, AD vs. LMCI vs. EMCI, and CN vs. AD vs.
MCI. In addition, feature extraction methods that were manually imparted, which yielded
the most suitable and optimal set of features in order to develop an improved model of
AD and its various categories. The handcrafted feature extraction method demonstrated
superior accuracy in identifying binary classes compared to models that identified multiple
classes. The prominent techniques for feature extraction and 3D medical data preprocessing
are primarily FREE Surfer and FSL.The research study aims to enhance the precision of
identifying AD and its classes in both binary and multi-class classification. Fusion-based
methods demonstrate substantial accuracy in feature-level and multi-modality level. The
most effective approach for identifying AD and its classes is Machine Learning and Deep
Learning. The research study reveals that Deep Learning Methods are more accurate in
detecting AD and its classes. However, deep learning methods require a larger dataset
compared to handcrafted feature extraction methods for the detection of diseases.
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