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Density Function Estimated by K-Moments
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GR 157 80 Zographou, Greece; dk@itia.ntua.gr

Abstract: Whilst several methods exist to provide sample estimates of the probability distribution
function at several points, for the probability density of continuous stochastic variables, only a gross
representation through the histogram is typically used. It is shown that the newly introduced concept
of knowable moments (K-moments) can provide smooth empirical representations of the distribution
function, which in turn can yield point and interval estimates of the density function at a large
number of points or even at any arbitrary point within the range of the available observations. The
proposed framework is simple to apply and is illustrated with several applications for a variety of
distribution functions.
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1. Introduction

The concepts of distribution function (F(x)) and probability density ( f (x)) of a stochastic
(or random) variable (x with realizations x; notice the notational convention to underline
stochastic variables—the Dutch convention) are central in Kolmogorov’s foundation of
probability in 1933 [1,2] and its applications. (Here, we adhere to the original Kolmogorov’s
terms, noting that in the English literature F(x) is also known as the cumulative distribution
function.) Their estimation, based on a sample of x, is crucial in most applications.

The standard estimate of F(x) was again introduced by Kolmogorov [3], who termed
it the empirical distribution, and is still in common use [4], sometimes under the name sample
distribution function. Denoting x(i:n) the ith order statistic in a sample of size n, i.e., the ith
smallest of the n variables arranged in increasing order (x(1:n) ≤ x(2:n) ≤ . . . ≤ x(n:n)), the
standard estimate is:

F̂(x) =
nx

n
, x(nx−1:n) < x ≤ x(nx :n) (1)

where nx is the number of the values in the observed sample that do not exceed x (an
integer). The function F̂(x) has a staircase form with discontinuities at each of the observa-
tions xi (see Appendix A for an illustration and more details). If x is a continuous variable,
almost certainly the values xi are distinct and the jump of F̂(x) at xi equals 1/n. Apparently
then, the representation of the continuous F(x) by the discontinuous F̂(x) is not ideal. This
representation has two additional problems, i.e., (a) for x < x(1:n) the resulting F̂(x) is
0, and (b) for x ≥ x(n:n) the resulting F̂(x) is 1. Both these are problematic results if the
variable x is unbounded.

Both the latter problems are usually tackled with the notion of so-called plotting
positions (e.g., [5])—a rather unsatisfactory name. There is a variety of plotting position
formulae, each of which is a modification of Equation (1) by adding one or two constants in
the numerator and/or the denominator. A review of these formulae and their justification
is provided by Koutsoyiannis (2022) [6], along with a set of new proposed ones, derived
using the theoretical properties of order statistics.
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One could also think to tackle the discontinuity problem by replacing the staircase
function by some type of interpolation (e.g., linear or logarithmic). However, the thus
resulting function would again be too rough for practical applications. In particular, a
rough function, where the roughness is a statistical sampling effect rather than an intrinsic
property of the distribution function, cannot support reliable estimation of derivatives.
Since the density f (x) is the first derivative of the distribution F(x), the above framework
cannot be used to estimate the former. An illustration of the roughness of F(x) and f (x), if
the former is estimated from Equation (1) and the latter by the numerical derivative of the
former, is provided in Appendix A (in particular, in Figure A1).

Methods for a detailed estimation of the probability density at different points x
are lacking. Instead, a gross estimation based on the histogram constitutes the standard
representation of the density. Yet, the estimation of the density is necessary for several tasks,
e.g., those involving hazard (where the hazard function is defined as f (x)/(1− F(x));
see [7]) or entropy (where entropy is the expectation of – ln f (x) properly standardized; see
Section 3.3).

The histogram representation is constructed by choosing (a) an interval [a, b] that
contains all observations (often called the range) and (b) a number k of equally spaced bins,
so that the width of the bins is

w =
b− a

k
(2)

The number k is usually small, typically chosen by the old Sturges’ rule [8]:

k = log2(2n) = 1 +
ln n
ln 2

(3)

For example, for a sample size n = 100, this results in k ≈ 8. The underlying rationale for
the rule and comparisons with additional rules are provided by Scott [9]. Once a, b, k are
chosen, the density estimate is

f̂ (x) =
nxi+1 − nxi

n w
, i = 1, . . . , k, nxi < x ≤ nxi+1 , xi = a + (i− 1)w (4)

The entire framework for the construction of histogram entails subjectivity, and lacks detail
and accuracy.

As an alternative to constructing a smooth empirical density function, Rosenblatt [10]
and Parzen [7] proposed the use of kernel smoothing. They have been followed by sev-
eral researchers who developed the method further [11–14]. This is regarded as a non-
parametric method, but it uses a specified kernel function which contains parameters,
where both the function expression and its parameters are arbitrarily chosen by the user.
Typical kernel functions include uniform, triangular, quadratic (Epanechnikov), biweight,
triweight, normal, and even atomic kernels [15,16]. While the methods of this type may
provide a smooth function, their reliability is questionable, and the results are affected by
a great deal of subjectivity owing to user choices. These characteristics are illustrated in
Appendix A (in particular, in Figure A2).

Here, we propose a new method of estimation of the probability density based on the
concept of knowable moments, abbreviated as K-moments. As shown in [6] (pp. 147–249) and
summarized in the next section, the noncentral K-moment of order p, K

′
p, can: (a) yield a

reliable and unbiased estimate K̂
′
p from a sample, up to order p equal to the sample size n,

and (b) be assigned a value of return period, or equivalently distribution function estimate,
F̂
(

K̂
′
p

)
. In addition, the sequence of estimates F̂

(
K̂′p
)

form a smooth function which can
be used in estimating the probability density at a large number of points (as opposed to the
roughness implied by Equation (1)—or other versions thereof based on plotting positions
and eventually on order statistics—and as illustrated in Figure A1 of Appendix A). The
estimate K̂′p is based on the notion of order statistics but, contrary to their standard use,
where only one sample value is used at a time, the K-moment framework combines many
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order statistics simultaneously, thus converting a rough arrangement to smooth, without
involving any subjectively chosen kernel function.

2. K-Moments and Their Relevance
2.1. Definition and Interpretation

We recall that the noncentral (or raw) moment of order p of a stochastic variable x is
defined as the expectation:

µ′p := E[xp] =

∞∫
−∞

xp f (x)dx (5)

with µ
′
1 = E[x] =: µ representing the mean. Let x1, x2, . . . , xp be independent copies of x,

forming a sample. Then, the standard estimator of µ
′
p from the sample is

µ̂′
p
=

1
n

n

∑
i=1

xp
i (6)

It is well known that the estimator of the noncentral moment is unbiased, i.e.,

E
[
µ̂′

p

]
= µ′p (7)

While unbiasedness is theoretically guaranteed, the convergence of µ̂′p to µ
′
p is ex-

traordinarily slow if p is not very low [17]. In practice, for large or moderate p (greater
than 2 or 3, depending on the sample size), what we actually calculate by applying the
standard estimator, is an estimate of some extreme quantity, rather than an estimate of the
moment µ

′
p. To see this, we recall that for positive xi and for large (or even modest) p the

approximation
n
∑

i=1
xp

i ≈
(

max
1≤ i≤n

(xi)

)p
holds, so that

µ̂′p =
1
n

n

∑
i=1

xp
i ≈

1
n

(
max

1≤ i≤n
(xi)

)p
(8)

Thus, unless p is very small, we cannot infer the value of µ
′
p from data, i.e., it is

unknowable (Koutsoyiannis, 2019 [18]; see also [6], pp. 125–126). This is the case even if
the sample size n is extraordinarily large [6,18]. This reduces the power of the concept of
moments for statistical inference, which is the formal probabilistic induction (the modern
version of the Aristotelian epagoge/
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) and is based on expectations, estimated
from samples by virtue of stationarity and ergodicity.

To obtain a knowable moment of order p, Koutsoyiannis [18] raised x to a low power,
q < p and for the remaining (p− q) multiplicative terms, replaced x with F(x), hence
defining the noncentral knowable moment (or noncentral K-moment) of orders (p, q) as:

K′pq := (p− q + 1)E
[
(F(x))p−qxq

]
, p ≥ q (9)

with the most interesting special case obtained for q = 1:

K′p := pE
[
(F(x))p−1x

]
, p ≥ 1 (10)

Koutsoyiannis [6,18] also introduced other types of K-moments, among which here
we will use, in addition to K′p, the tail-based (noncentral) moments:

K′p := pE
[
(1− F(x))p−1x

]
= pE

[(
F(x)

)p−1x
]
, p ≥ 1 (11)
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where F(x) := 1− F(x) is the tail function.
For an interpretation of K-moments we consider the maximum of p stochastic variables

x1, x2, . . . , xp, which is the largest (pth) order statistic:

x(p) := x(p:p) = max
(

x1, x2, . . . , xp

)
(12)

It is readily obtained that if F(x) is the distribution function of x and f (x) its probability
density function, then those of x(p) are:

F(p)(x) = (F(x))p, f (p)(x) = p f (x)(F(x))p−1 (13)

where the former is the product of p instances of F(x) (justified by the fact that the variables
xi are independent copies of x, by definition of the sample concept), while the latter is
the derivative of F(p)(x) with respect to x. The expected maximum of order p of x, i.e., the
expected value of x(p), is therefore:

E
[

x(p)

]
= E

[
max

(
x1, x2, . . . , xp

)]
= pE

[
(F(x))p−1x

]
(14)

and this is precisely the noncentral K-moment K′p. Likewise, the minimum of the p variables

x(1:p) = min
(

x1, x2, . . . , xp

)
(15)

has expectation:

E
[
min

(
x1, x2, . . . , xp

)]
= pE

[
(1− F(x))p−1x

]
= pE

[(
F(x)

)p−1x
]

(16)

which is the tail K-moment K′p.

It is thus easy to see that the sequence of K′p is non-decreasing and that of K′p is
non-increasing as p increases.

2.2. Estimation of K-Moments

Several estimators of the K-moments have been developed in [6], among which here
we use the unbiased ones [6] (pp. 193–196 and 229–231):

K̂′p =
n

∑
i=1

binp x(i:n), K̂
′
p =

n

∑
i=1

binp x(n−i+1:n) =
n

∑
j=1

bn−j+1,n,p x(j:n) (17)

where

binp :=

{
0, i < p
p
n

Γ(n−p+1)
Γ(n)

Γ(i)
Γ(i−p+1) , i ≥ p > 0

(18)

and Γ(a) :=
∞∫
0

ta−1e−tdt is the gamma function. This allows estimation of the K-moments

for any order p from 1 to n. Thus, from a sample of size n we can estimate a number of

noncentral and tail moments equal to 2n− 1 (notice that K̂′1 = K̂
′
1 = µ̂), with high reliability

and low uncertainty (see [6], p. 195). It can be easily verified that for any order p,

n

∑
i=1

binp = 1 (19)

which is a necessary condition for unbiasedness. Special cases of K-moment estimator
coefficients binp are shown in Table 1.
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Table 1. Special cases of K-moment estimator coefficients (adapted from [6], p. 194).

Case binp Case binp

p = 1 bin1 = 1
n p = n− 1 bn−1,n,n−1 = 1

n , bn,n,n−1 = 1− 1
n

p = 2 bin2 = 2
n

i−1
n−1 p = n bnnn = 1

p = 3 bin2 = 3
n

i−1
n−1

i−2
n−2 i = n bnnp =

p
n

p = 4 bin4 = 4
n

i−1
n−1

i−2
n−2

i−3
n−3 i = p

bpnp = pB(p, n− p + 1) *
symmetry: bpnp = bn−p,n,n−p

(minimum at p = n/2)
* B(a, b) is the beta function.

The fact that binp = 0 for i < p suggests that, as the moment order increases, pro-
gressively fewer data values determine the moment estimate, until it remains only one
(the maximum for the noncentral moment and the minimum for the tail moment), when
p = n, with bnnn = 1. Furthermore, if p > n then binp = 0 for all i, 1 ≤ i ≤ n, and therefore
estimation becomes impossible.

2.3. Estimation of the Distribution Function at K-Moment Values

Order statistics have an important advantage over other statistics, as to each of them
we can assign a value of the distribution function, or equivalently, the return period. We
recall that for a specific event A the return period, T, is defined to be the mean time between
consecutive occurrences of the event A. Assuming that the event is the exceedance of a
certain level x, i.e., A := {x > x}, the return period is related to the distribution function by

T
D

=
1

F(x)
=

1
1− F(x)

(20)

where D is a time window width (time scale or time step) used to define the metric x (e.g.,
D = 1 year if x is the annual rainfall total). This is known as the return period of maxima.

Likewise, for the non-exceedance of the value x, i.e., A := {x ≤ x}, the return period
(of minima) is

T
D

=
1

F(x)
(21)

As seen above, the K-moments are closely related to order statistics and therefore it
becomes possible to assign return periods to K-moment values. Intuitively, we can expect
that the pth noncentral K-moment (the value x = K

′
p) will correspond to a return period

of about 2pD. This is precise for a symmetric distribution and for p = 1, as K′1 is the mean
value which has return period 2D. (For instance, the mean of annual rainfall is exceeded, or
non-exceeded, on the average, every two years). As we will see below, the return period
cannot be much lower than 2pD for any p and for any distribution.

Generally, we can expect that the return period is an increasing function of the moment
order p, with a relationship of approximate proportionality:

T
(

K′p
)

D
∝
˜

p (22)

As justified above, a coefficient of proportionality equal to 2 can be used as a first rough
approximation (rule of thumb that helps intuition). However, more precisely, the coefficient
of proportionality, call it Λp, depends on the distribution function and the order p, but its
variation is not wide. The precise definition of Λp is:

Λp :=
1

p
(

1− F
(

K′p
)) (23)
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For given p and distribution function F(x), K′p, T
(

K′p
)

, F
(

K′p
)

and Λp are analytically
or numerically determined from their definitions, but this might be complicated. However,
the small variation of Λp with p makes possible a very good approximation if we first
accurately determine (a) the value Λ1 for p = 1, and (b) the asymptotic value Λ∞. The
value Λ1 is very easy to determine, as it refers to the return period of the mean:

Λ1 =
1

1− F(µ)
(24)

and can also be reliably estimated from a sample by Equation (1).
Furthermore, in a number of customary distributions, specifically those belonging to

the domain of attraction of the Extreme Value Type I distribution (see [6] (pp. 76–79 and
235–236), Λ∞ has a constant value, independent of the distribution:

Λ∞ = eγ = 1.781 (25)

where γ is the Euler constant. For heavy tailed distributions Λ∞ depends on the higher tail
index only. Details are given in [6] (pp. 208–215), while for the distributions examined in
this study, which are listed along with their main characteristics in Table 2, they are shown
in Table 3.

Table 2. Main characteristics of the distribution functions used in the illustrations.

Name, Parameters *,
Domain

Probability Density
Function, f(x) Mean, µ’

1 Variance, µ2 Entropy Φ

Exponential
µ > 0, x ≥ 0 e–x/µ/µ µ µ2 ln eµ

Normal
µ ∈ R, σ > 0, x ∈ R

exp
(
− (x−µ)2

2σ2

)
√

2πσ

µ σ2 ln
(√

2eπ σ
)

Lognormal
ς > 0, λ > 0, x ≥ 0

exp
(
− 1

2ς2 (ln( x
λ ))

2
)

√
2π ςx

e
ς2
2 λ eς2

(
eς2 − 1

)
λ2 ln

(√
2eπ λς

)
Pareto
ξ > 0, λ > 0, x ≥ 0

1
λ

(
1 + ξ x

λ

)−1− 1
ξ λ

1−ξ
λ2

(1−ξ)2(1−2ξ)
ξ + ln eλ

* Parameter notation: µ mean; σ standard deviation; λ scale parameter, ξ upper tail index; ς shape parameter
other than tail index.

Table 3. Characteristic Λ values for the distributions of Table 2.

Distribution Λ1 Λ∞ Λ1 Λ∞

Exponential e = 2.718 eγ = 1.781 * e
e−1 = 1.582 1

Normal 2 eγ = 1.781 2 eγ = 1.781
Lognormal 2

erfc(ς/23/2)
eγ = 1.781 2

2−erfc(ς/23/2)
1 †

Pareto (1− ξ)−1/ξ Γ(1− ξ)1/ξ 1
1−(1−ξ)1/ξ 1

* γ = 0.577 is the Euler’s constant. † The theoretically consistent value is eγ, but the convergence to the limit is
very slow and thus the value 1 (like in the exponential and Pareto distribution) provides more accurate numerical
results for typical sample sizes.

Given Λ1 and Λ∞, the coefficient Λp for any order p can be satisfactorily (see [6],
(pp. 216–218)) approximated with the following simple relationship:

Λp ≈ Λ∞ +
(Λ1 −Λ∞)

p
(26)

while more accurate approximations are given in [6] (pp. 208–215) and also discussed in
Section 4 below. Equation (26) yields a linear relationship between the return period T
and p:



Sci 2022, 4, 50 7 of 23

T
(

K′p
)

D
= pΛp ≈ Λ∞ p + (Λ1 −Λ∞) (27)

from which we find
F
(

K′p
)
= 1− 1

Λ∞ p + Λ1 −Λ∞
(28)

Likewise, for the tail moments we have:

Λp :=
1

p F
(

K′p
) (29)

with
Λ1 =

1
F(µ)

=
Λ1

Λ1 − 1
(30)

while the limiting value Λ∞ depends only on the lower tail index and is Λ∞ = Λ∞ = eγ for
the normal and other symmetric distributions, and Λ∞ = 1 for distributions with lower-tail
index equal to one such as the exponential and Pareto distributions (see Table 3).

Again we can use the approximation:

Λp ≈ Λ∞ +
Λ1 −Λ∞

p
(31)

and find
F
(

K′p
)
=

1
Λ∞ p +

(
Λ1 −Λ∞

) (32)

3. Results
3.1. Estimation of Probability Density

Based on the above framework, we can estimate 2n− 1 values of K-moments K̂′p and

K̂
′
p, namely the ordered values K̂

′
n ≤ K̂

′
n−1 ≤ . . . ≤ K̂

′
1 ≡ K̂′1 ≤ K̂′2 ≤ . . . K̂′n−1 ≤ K̂′n.

To each one of them we can assign an empirical estimate of the distribution function

F̂
(

K̂′p
)

and F̂
(

K̂
′
p

)
. This is similar to the distribution function values assigned via the

order statistics (the plotting positions) except that (a) the number of values in the K-
moments framework is twice that of the case of order statistics, and (b) the arrangement
of point estimates in the former case is smooth, while in the latter is rough. The smooth
arrangement allows a direct estimate of the probability density for 1 ≤ p ≤ n− 1. As at

points x = K̂′p and x = K̂
′
p, the values of the distribution function have been estimated from

Equations (28) and (32), i.e., F(x) = F̂
(

K̂′p
)

and F(x) = F̂
(

K̂
′
p

)
, it is then straightforward

to approximate the derivative f (x) = dF(x)/dx by its discrete version:

f̂ (x) =


F̂
(

K̂′p+1

)
−F̂(K̂′p)

K̂′p+1−K̂′p
, K̂′p ≤ x < K̂′p+1

F̂
(

K̂
′
p

)
−F̂
(

K̂
′
p+1

)
K̂
′
p−K̂

′
p+1

, K̂
′
p+1 ≤ x < K̂

′
p

(33)

This procedure will result in 2n− 2 different values of the density f̂ (x). In Section 4 we
will see that it is possible to expand the number of estimation points by using non-integer
orders p, but in general the number 2n − 2 is more than enough. This is illustrated in
Figure 1 for a synthetic sample of size 100, generated from a lognormal distribution, also in
comparison with a histogram of k = 10 bins (slightly more than the number resulting from
Sturges’ rule, k ≈ 8).
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Figure 1. Illustration of the probability density estimate using the proposed method, plotted in
Cartesian (upper) and logarithmic (lower) axes. A data series of n = 100 values was used, gener-
ated from a lognormal distribution (see Table 2) with parameters ς = λ = 1. The density of the
generating distribution is marked as “true”. The points marked as “estimate” are calculated by the

proposed method (Equation (33)) and their abscissae are the midpoints of the intervals
(

K̂′p, K̂′p+1

)
and

(
K̂
′
p+1, K̂

′
p

)
. For comparison, the histogram of 10 bins, calculated as in Equation (4) for the range

[0, 20] (width w = 2) is also shown.

Clearly the histogram representation of the true density (also shown in in Figure 1)
is poor: five of its ten bins are empty, its shape is rough and the increasing limb of the
density (for small x) is not captured at all. In contrast, the proposed method results in a
very faithful representation of the true density.

3.2. Uncertainty Assessment

A more systematic illustration is made by means of Monte Carlo distribution with
100 realizations of samples of 100 items each, for all four distributions listed in Table 2. The
Monte Carlo simulations allow assessing the estimation uncertainty in terms of prediction
limits. The results of this investigation are shown in Figure 2 for the exponential distribution,
Figure 3 for the normal distribution, Figure 4 for the lognormal distribution and Figure 5
for the Pareto distribution.
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Figure 2. Illustration of the median estimate and uncertainty (in terms of prediction limits) of the
probability density using the proposed method, plotted in Cartesian (upper) and logarithmic (middle)
axes. The original results from the proposed method are interpolated at the points that are plotted in
the graphs. For comparison, results for the classical histogram with 10 bins are also shown (lower),
plotted with abscissae equal to the midpoints of the bins. The true distribution is exponential with
parameters as in Table 4, from which 100 data series of n = 100 values each were generated and
processed to produce the uncertainty band.
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Figure 3. Illustration of the median estimate and uncertainty (in terms of prediction limits) of the
probability density as in Figure 2 but for the normal distribution with parameters as in Table 4.
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Figure 4. Illustration of the median estimate and uncertainty (in terms of prediction limits) of the
probability density as in Figure 2 but for the lognormal distribution with parameters as in Table 4.
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Figure 5. Illustration of the median estimate and uncertainty (in terms of prediction limits) of the
probability density as in Figure 2 but for the Pareto distribution with parameters as in Table 4.
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Table 4. Estimated means, standard deviations and entropies: averages from the 100 Monte Carlo
simulations performed in the study with sample size 100.

Distribution, Parameters
Mean Standard Deviation Entropy

True Est. 1 * Est. 2 * True Est. 1 Est. 2 True Est. 2

Exponential, µ = 1 1 0.99 1.00 1 0.98 0.98 1 0.96
Normal, µ = 0, σ = 1 0 0.01 0.01 1 0.99 0.99 1.42 1.37
Lognormal, ς = λ = 1 1.65 1.69 1.80 2.16 2.26 2.31 1.42 1.42
Pareto, ξ = 0.2, λ = 1 1.25 1.26 1.27 1.61 1.56 1.57 1.20 1.18

* Est. 1: Estimate from the typical sample statistics (without involving the probability density function); Est 2:
Estimate from the empirical density function.

In all cases, the estimated probability density, expressed in terms of the median of the
simulations (or the average thereof, which is very close to the median and was not plotted
in the figures), harmonizes with the true shape of the probability density. This applies to the
body of the distribution, as well as to the right and left tails, which are better discerned in
the double logarithmic plots of the figures (middle panels). Slight discrepancies appear in
the normal distribution (Figure 3), which will be discussed in Section 4. For comparison, in
each of the figures, double logarithmic plots are also provided for the classical histograms
(lower panels). In these, the simulated medians harmonize well with the true densities,
yet the points are too few and the left tails of the distributions are not captured. As per
the uncertainty, the proposed method clearly outperforms the histogram framework as the
zones defined by prediction limits are quite narrower in the former case than in the latter.

3.3. Entropy Estimation

Most of the statistical estimators (e.g., of moments) do not involve the probability
density and thus they do not require the estimation thereof. Entropy is an exception,
because its very definition relies on the logarithm of the density function. Namely, the
entropy Φ[x] of the stochastic variable x is defined as:

Φ[x] := E
[

– ln
f (x)
β(x)

]
= −

∞∫
−∞

ln
f (x)
β(x)

f (x)dx (34)

where β(x) is a background measure, which can be any probability density, proper (with
integral equal to 1) or improper (meaning that its integral diverges). Typically, it is an
(improper) Lebesgue density, i.e., a constant with dimensions [β(x)] = [ f (x)] =

[
x−1], so

that the argument of the logarithm function be dimensionless. Here, we assume β(x) = 1.
The common practice is to estimate f (x) through a histogram. However, this technique

is not perfect because of the rough shape of the estimate and the subjective choices about the
bins. These may result in a distorted estimate. To illustrate this, we consider the following
example, based on the exponential distribution. For a sample of size n from this distribution,
the expected values of the highest of the n values is K′n = µHn, where Hn is the nth harmonic
number, and that of the lowest is K′n = µ/n (see Koutsoyiannis [6], pp. 182–183). Therefore,
the expected value of the range is r := K′n−K′n = µHn−1 ≈ µ(γ+ ln n). In the limiting case
of only one bin (k = 1), the entropy will be estimated as Φ̂1[x] = ln r = ln(µ(γ+ ln n)). At
the opposite end, if we choose too many bins, k > n, so that each one contains either one or
zero elements, then the probability density estimate will be either 0 (for the bins containing
no element) or 1/(nw) where w = r/k. The former case does not contribute to entropy,
so that the summation to estimate entropy (by converting the integral in (34)) is made
on the bins containing elements. The entropy in this case will be Φ̂k[x] = −∑

i
ln f̂i f̂iw =

∑
i

ln(nw)(1/nw)w = ln(nw) = ln(nr/k) = ln r + ln(n/k). This depends on k and by

choosing a large k it can become arbitrarily small (even negative) as ln(n/k) < 0. The true
entropy is Φ[x] = ln eµ (Table 2). Now, assuming, for instance, µ = 1, n = 100, k = 500 the
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true entropy is Φ[x] = 1, while the estimates are Φ̂1[x] = 1.65 > 1 and Φ̂500[x] = 0.04 < 1.
These values indicate the subjectivity of the estimates. A good choice of k will result in
good estimate, yet we cannot be certain about its reliability as we cannot control the factors
producing the estimation errors.

The more detailed representation of the probability density allows for a better estima-
tion of entropy. However, we must have in mind that in unbounded stochastic variables
there is uncertainty beyond the maximum (or the minimum) observed value in the sample,
which we denote as c. For a variable bounded by zero from below and unbounded from
above, we can proceed with the correction proposed by Koutsoyiannis and Sargentis [19]
to take into account the contribution of probability density for x > c.

Specifically, the expectation of any function g(x) can be calculated as

E[g(x)] :=
∞∫

0

g(x) f (x)dx = Ag + Bg, Ag :=
c∫

0

g(x) f (x)dx, Bg :=
∞∫

c

g(x) f (x)dx (35)

The quantity Ag can directly be estimated from the available data, by approximating
the integral with a sum. Assuming that the data are given in terms of density estimates
f̂i at points xi, with i = 1, . . . m and xm ≡ c, we have:

Âg =
n

∑
i=1

g
(

xi−1 + xi
2

)
f̂i (xi − xi−1) =

n

∑
i=1

g
(

xi−1 + xi
2

)(
F̂i − F̂i−1

)
(36)

To estimate the quantity Bg we assume that beyond c an exponential approximation is
sufficient for the purpose:

f (x) = e−x/κ+β ⇒ F(x) = κe−x/κ+β = κ f (x), x ≥ c (37)

where β and κ are parameters to be estimated. For the moment of order p of the distribution
we have:

Bp :=
∞∫

c

xpe−x/κ+β dx = eβ Γ
(

p + 1,
c
κ

)
κp+1 (38)

where Γ(a, x) :=
∞∫
x

ta−1e−tdt is the incomplete gamma function. In particular for p = 0, 1, 2

we have
B0 = F(c), B1 = B0(c + κ), B2 = B0

(
κ2 + (c + κ)2

)
(39)

with

κ =
F(c)
f (c)

(40)

Furthermore, for the entropy we have

BΦ = B0(1− ln f (c)) = B0(1− ln B0 + ln κ) (41)

We assume that B0 = F(c) is known from the data, estimated as B̂0 = F̂(c). In the
case that, in addition, f (c) can reliably be estimated as f̂ (c), the sought parameter κ is
estimated as κ̂ = F̂(c)/ f̂ (c). However, in the outmost available point of the tail, f (c) is not
adequately reliable. An alternative option is to estimate from the data the quantity B2

B̂2 = µ̂′2 − Â2 (42)
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where µ̂′2 is determined by the standard sample estimator. In this case, solving the rightmost
of Equation (39) for κ we find

κ̂ =
1
2

√ B̂2

B̂0
− c2 − c

 (43)

This allows estimation of Bg for the expectation of any function g(x). We note that the
correction is applied only if the quantity within the square root turns out to be positive
(which is usually the case).

If the distribution is unbounded from both below and above (e.g., in the normal
distribution), then we apply the procedure twice for the lower and upper tail. In this case,
we have B0L = F(cL) and B0R = F(cR) where the subscripts L and R refer to left (below)
and right (above), respectively. In this case, Equation (42) automatically includes both
corrections and in Equation (43) we should replace B̂0 with the sum B̂0L + B̂0R.

Application of this technique for the Monte Carlo simulations described above are
given in Table 4, in which we see that the method works well.

4. Discussion

The method is described above in its minimal configuration. Improvements are
possible in several ways, e.g., to take into account possible dependence of the consec-
utive variables (i.e., when we do not have an observed sample but a time series), or
to use more accurate representations of the relationship between K-moments and their
corresponding values of distribution functions. These issues are studied in Koutsoyian-
nis [6] (pp. 147–249)—but not for the density estimation.

Here, we discuss the case of improvement of the distribution function estimation
for the normal distribution, for which the simulation results (Figure 3) showed slight
discrepancies. As shown in [6] (pp. 209–213), the more accurate representation of the
Λ-coefficients for the normal distribution are

Λp ≈ Λ∞ +
A
p
− B ln

(
1 +

1
ln(p + 1)

)
, A = Λ1 −Λ∞ + B ln

(
1 +

1
ln 2

)
(44)

Λp ≈ Λ∞ +
A
p
+ B ln

(
1 +

1
ln(p + 1)

)
, A = Λ1 −Λ∞ − B ln

(
1 +

1
ln 2

)
(45)

where for the normal distribution B = B = 0.73. In this case, we find:

F
(

K′p
)
= 1− 1(

Λ∞ + B ln
(

1 + 1
ln(p+1)

))
p + Λ1 −Λ∞ − B ln

(
1 + 1

ln 2

) (46)

F
(

K′p
)
=

1(
Λ∞ − B ln

(
1 + 1

ln(p+1)

))
p + Λ1 −Λ∞ + B ln

(
1 + 1

ln 2

) (47)

In addition, noticing that the points plotted around p = 1 are at greater distances
to each other than the other points, we can use non-integer values of p between 1 and 2.
Repeating the Monte Carlo simulation with these two modifications, we get the results
shown in Figure 6 (lower panel), which are in better agreement with the true density than
those of the minimal version, also reproduced in Figure 6 (upper panel).
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Figure 6. Comparison of the Monte Carlo simulation results for the normal distribution (with
parameters as in Table 4) with the minimal version of the method (upper; copy of the upper panel of
Figure 3) and the enhanced version (lower; using Equations (46) and (47)).

Even if we use the minimal version, it is possible and sometimes useful to calculate
f̂
(

K̂′p
)

for non-integer order p. In this case, we can even find (see derivation in Appendix B)
an analytical expression for the probability density estimate, which for the noncentral K-
moments is

f̂
(

K̂′p
)
=

Λ∞ F̂
(

K̂′p
)2

∑n
i=dpe binpcinpx(i:n)

(48)

where

K̂′p =
n

∑
i=dpe

binp x(i:n), F̂
(

K̂′p
)
=

1
Λ∞ p + Λ1 −Λ∞

, cinp :=
1
p
+ Hi−p − Hn−p (49)

and binp is given by Equation (18). It is reminded that Hn denotes the nth harmonic number.
Similar equations can be developed for the tail K-moments.

Notice in Equations (48) and (49) that the lower limit of the sum is not the non-integer
p but its floor dpe. This means that the functions F̂

(
K̂′p
)

and f̂
(

K̂′p
)

will not be fully
continuous, but only left continuous. However, the discontinuities are practically negligible
for p < n− 1.

A final note is that the proposed method, in addition to providing point estimates
f̂
(

K̂′p
)

, can also produce interval estimates of f
(

K̂′p
)

by means of confidence limits deter-
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mined by Monte Carlo simulation. These differ from the prediction limits of Section 3.2,
which were constructed for a known true distribution function that was used to gener-
ate several (in our case 100) realizations of samples. For the confidence limits, the true
distribution is assumed unknown and the simulation is made from the estimate F̂(x),

which is determined at the points K̂′p and K̂
′
p. The generation from this distribution is

easy: the values are generated as x = F̂−1(u), where u is a random number from the
uniform distribution in [0, 1]. The inverse function F̂−1 is determined by interpolation (and
occasionally extrapolation) from the sequence of points

(
xi, F̂(xi)

)
, with the sequence of xi

being
(

K̂
′
n, K̂

′
n−1, . . . , K̂

′
1 ≡ K̂′1, K̂′2, . . . K̂′n−1, K̂′n

)
. The interpolation is better made in terms

of the quantity ln
(

F̂/
(
1− F̂

))
instead of F̂.

An illustration for the example of Figure 1 (lognormal distribution) is shown in Figure 7
(lower panel), where the produced confidence band is also compared with uncertainty band
defined by the prediction limits of the lognormal distribution (upper panel of Figure 7).
We observe that: (a) the confidence band (lower panel) has about the same width as the
uncertainty band (upper panel), and (b) the true distribution, which was not used in the
Monte Carlo simulation of the lower panel, is contained within the produced confidence
band—as it should.
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Figure 7. Comparison of the Monte Carlo simulation results for prediction limits of the lognormal
distribution (with parameters as in Table 4) with the minimal version of the method (upper; copy of
the middle panel of Figure 4) and for the confidence limits of the empirical probability density of
Figure 1 (lower). The plotted “point estimates” are precisely those shown in Figure 1.
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5. Conclusions

For continuous stochastic variables, the proposed framework is an improved, detailed
and smooth alternative to the widely used concept of the histogram, which provides only a
gross representation of the probability density. The proposed framework is based on the
concept of knowable moments (K-moments) and its characteristics that make possible the
estimate of the probability density are:

• The ability to reliably estimate from a sample, moments of high order, up to the
sample size.

• The ability to assign values of the distribution function to each estimated value of
K-moment.

• The smoothness of the estimated values, which are linear combinations of a number
of observations, rather than based on a single observation as in other approaches.

The latter characteristic is crucial in estimating the probability density, which is the first
derivative of the distribution function.

Prominent characteristics of the proposed method of density estimation, confirmed by
several applications of the method for a variety of distribution functions, are:

• The faithful representation of the true density, both in the body and the tails of
the distribution.

• The dense and smooth shape, owing to the ability to estimate values of the density at
very many points (even for any arbitrary point) within the range of the available ob-
servations.

• The low uncertainty of estimates.
• The ability to provide both point and interval estimates (confidence limits), with the

latter becoming possible by Monte Carlo simulation.
• The simplicity of the calculations, which can be made in a typical spreadsheet environment.

Specifically, the calculations include the following steps, which summarize the numer-
ical part of the proposed method.

1. We sort the observed sample in ascending order.

2. We calculate the estimates K̂′p, K̂
′
p, i = 1, . . . , n from Equations (17) and (18).

3. We estimate the coefficient Λ1 from Equation (24) and calculate Λ1 from Equation (30).
4. We assume the tail indices of the distribution and choose values of Λ∞ and Λ∞ from

Table 3 (see [6] (pp. 209–213), for additional distributions).

5. We calculate the estimates F̂
(

K̂′p
)

and F̂
(

K̂
′
p

)
from Equations (28) and (32) for all

K̂′p, K̂
′
p derived in step 2. (By plotting the tails F̂

(
K̂′p
)

and F̂
(

K̂
′
p

)
in double logarith-

mic graphs, we check whether the empirically estimated tail indices agree with those
assumed in Step 4 and, if not, we repeat steps 4 and 5 with new estimates).

6. We calculate the estimates of f (x) from Equation (33).

These calculations are illustrated in the Supporting Information, which contains a spread-
sheet accompanying this paper. This gives a full-scale application of the method, related to
the construction of Figure 1.

A problem of the method is that it requires one to have an idea of the type of the
true distribution, in terms of its upper- and lower-tail indices, in order to estimate the
asymptotic Λ-coefficients (Λ∞, Λ∞). If the sample size is large, the K-moments can support
the estimation of these tail indices (cf. points steps 4 and 5 above). However, for small
samples ( n < ∼ 100) their estimation becomes problematic and higher uncertainty is
induced. This issue requires further investigation.

Supplementary Materials: As a supporting information, an Excel spreadsheet with application of
the method (including the construction of Figure 1) can be downloaded at: https://www.mdpi.com/
article/10.3390/sci4040050/s1 or from http://www.itia.ntua.gr/2256/.
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Appendix A. Illustration of Alternative Techniques

As stated in the Introduction, if we use the empirical estimate of the distribution
function F(x) by Equation (1), we get a staircase-like function, which is illustrated in the
upper panel of Figure A1 using the same data as in Figure 1. This is not a continuous
function and thus it does not allow calculation of the derivative, which is the probability
density f (x). One may think of keeping only the left-hand point in each stair step (the
triangles in Figure A1) and replace the staircase form with a broken line (drawing straight-
line segments between two consecutive points depicted as triangles). However, even in
this case there will be roughness, which is hugely magnified if we take the derivative
(slope of each linear segment). This is depicted in the lower panel of Figure A1, where the
thus estimated values of f (x) vary by several orders of magnitude and the different point
estimates are far distant from the true f (x). The huge roughness and variability that appear
exclude the possibility of regarding the numerical results by this method as estimates of
the probability density.

As an alternative that can derive a smooth density estimate, the use of kernel functions
has been proposed, as described in the Introduction. The kernel estimate of probability
density is derived as

f̂ (x, h) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(A1)

where K(x) is the kernel function, which has the property
∞∫

∞
K(x)dx = 1, and h > 0

is a parameter, termed the bandwidth. Two of the most common kernel functions are
the uniform:

K(x) =

{
1/2, |x| ≤ 1
0, |x| > 1

(A2)

and the normal (Gaussian):

K(x) =
e−x2/2
√

2π
(A3)

These are illustrated in Figure A2, where we may observe that, despite producing a
smooth curve, the entire shape remains erratic and follows the empirical histogram, rather
than approaching the true density. In addition, the curves are much more subjective than
the histogram per se, as they depend on the user choices of the kernel and its bandwidth.
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Figure A1. Illustration of the estimate of the distribution function F(x) using Equation (1) (upper,
with inset to better depict the staircase form) and that of the probability density f (x) (lower) as the
numerical derivative of F(x) with the staircase form replaced by a broken line form. The data series
of Figure 1 was used (n = 100 values, generated from a lognormal distribution with parameters
ς = λ = 1; see Table 2). The abscissae of the points of estimates are the midpoints of the intervals(

x(i:n), x(i+1:n)

)
. As the estimates of f (x) vary by orders of magnitude, logarithmic axes are used. In

both panels the estimates by the proposed method (from Figure 1) are also shown for comparison.
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Figure A2. Illustration of the probability density estimate using (a) the histogram (Equation (4) with
10 bins for the range [0, 20]), (b) the uniform kernel (Equation (A2) with h = 1) and (c) the normal
kernel (Equation (A3) with h = 1), plotted in Cartesian (upper) and logarithmic (lower) axes. The
data series of Figure 1 was used (n = 100 values, generated from a lognormal distribution with
parameters ς = λ = 1; see Table 2).
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Appendix B. Proof of Equation (48)

We start from the obvious relationship

dF
(

K′p
)

dp
=

dF
(

K′p
)

dK′p

dK′p
dp

(A4)

where the first term in the right-hand side is the density f
(

K′p
)

. The left-hand side can be
approximated using Equation (28), from which we find

dF
(

K′p
)

dp
=

Λ∞

(Λ∞ p + Λ1 −Λ∞)2 (A5)

The second term in the right-hand side of Equation (A4) can be approximated by using
the estimate of K′p. Combining Equations (17) and (18) and replacing p with the floor p in
the lower limit of the sum, we find:

K̂′p =
n

∑
i=dpe

p
n

Γ(n− p + 1)
Γ(n)

Γ(i)
Γ(i− p + 1)

x(i:n) (A6)

By taking the derivative with respect to p, after the algebraic manipulations we get:

dK̂′p
dp

=
n

∑
i=dpe

p
n

Γ(n− p + 1)
Γ(n)

Γ(i)
Γ(i− p + 1)

(
1
p
+ Hi−p − Hn−p

)
x(i:n) (A7)

or
dK̂′p
dp

=
n

∑
i=dpe

binpcinpx(i:n) (A8)

where we have used the definitions of binp and cinp in Equations (18) and (49), respectively.
By combining all above we find:

f̂
(

K̂′p
)
=

Λ∞

(Λ∞ p + Λ1 −Λ∞)2
1

∑n
i=dpe binpcinpx(i:n)

(A9)

which can also be written in the form of Equation (48).
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