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Abstract: Technical systems generate an increasing amount of data as integrated sensors become
more available. Even so, data are still often scarce because of technical limitations of sensors, an
expensive labelling process, or rare concepts, such as machine faults, which are hard to capture. Data
scarcity leads to incomplete information about a concept of interest. This contribution details causes
and effects of scarce data in technical systems. To this end, a typology is introduced which defines
different types of incompleteness. Based on this, machine learning and information fusion methods
are presented and discussed that are specifically designed to deal with scarce data. The paper closes
with a motivation and a call for further research efforts into a combination of machine learning and
information fusion.
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1. Introduction

In modern industrial applications, data are generated in increasing amounts due to
better availability, accessibility, and cost-effectiveness of technical sensors. In fact, modern
methods for data analysis often assume the availability of big data. Many machine learning
methods not only assume big data but also require it. This is also the case in many industrial
use-cases [1], such as predictive maintenance [2] or machine fault diagnosis [3].

However, the reality—also in industrial applications—is that data is not always avail-
able in sufficient quantities. It may also be that data is recorded in large quantities, but
the data are repetitive containing the same information repeatedly. The presence of only a
few data sources or data points is summarised by the term scarce data or data scarcity [4].
The goal in dealing with scarce data must nevertheless be to obtain as much information
and as much knowledge as possible from the little data that is available. Causes of scarce
data are, for example, measured variables that are difficult to collect, costly measurement
methods, or a low number of measurement objects that need to be collected. However, an
explicit definition and detailed specification of different types of data scarcity is rare in
the current literature. For example, Wang et al. [5] define two types: scarce data due to a
limited number of samples and sparse data (e.g., sparse time series or matrices).

The problem of scarce data is recognised in the state of the art of machine learning [6,7].
Approaches to addressing data scarcity include inherently data-efficient algorithms and
methods for enabling data-hungry algorithms to be used on scarce data—as identified
recently by Adadi [8] in their survey on data-efficient algorithms. Regarding the former, it is
generally considered that low-complexity models, such as decision trees or linear regression,
require less data than high-complexity models, such as deep neural networks. Regarding
the second, various methods have been devised and proposed for highly complex models
that are intended to be applicable to scarce data, such as data augmentation [9] or transfer
learning [10].

In current machine learning approaches, data scarcity is often only implicitly taken
into account by extending and adapting existing algorithms [11–13]. Another research area
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which focuses on data scarcity is information fusion. Information fusion has developed
independently from machine learning. Fusion methods specifically expect data to be
uncertain due to scarcity (as well as other data imperfections) [14]. In case of multiple
uncertain information sources, e.g., sensors, experts, or machine learning models, fusion
aims to create a single output with increased certainty. To achieve this, uncertainties based
on data scarcity are explicitly modelled, quantified, and considered.

This article addresses scarce data due to its frequency of occurrence in industrial
applications and the implications for data processing methods. The aim of this article is
(i) to more specifically detail scarce data in its causes and subtypes, and (ii) to provide an
overview of both machine learning and information fusion methods that address scarce
data. Towards this end, the following contributions are presented in this article:

• A closer look into the causes and implications of scarce data is provided. A typology
is presented which categorises the subtypes of scarce data.

• An overview of data augmentation, transfer learning, and information fusion methods
is given.

• A combination of machine learning and fusion techniques is discussed and further
research efforts in this area are motivated.

The further structure of this paper follows these contributions.

2. A Typology of Scarce Data

Scarce or incomplete data is a form of data imperfection that affects the ability of
algorithms, machine-learned models, or human engineers to extract information and
induce knowledge. Incomplete data represents uncertainty in the data, but also leads to
uncertainty in the process of induction. In this sense, it is closely related to uncertainties—
especially to the notion of epistemic uncertainty. It follows an introduction of epistemic
uncertainty together with its counterpart aleatoric uncertainty.

Definition 1 (Aleatoric Uncertainty). Aleatoric uncertainty refers to the inherent variation of
an object, concept, process, or phenomenon. It is random and non-deterministic in nature [15].
Even if data is complete and the underlying process is completely understood, the outcome of this
process cannot be predicted with absolute certainty [16,17]. Consequently, gathering more data—or
adding new data or information sources—does not reduce aleatoric uncertainty. Take, for example, a
classification problem. In such a problem, aleatoric uncertainty is the intra-class distance or variance.

Definition 2 (Epistemic Uncertainty). In contrast, epistemic uncertainty results from a lack of
knowledge about a phenomenon. This lack is caused by incomplete—not available—or inconsistent
information. Epistemic uncertainty is, in principle, reducible by gathering additional information.
In practice, reducing epistemic uncertainty is often not possible, feasible, or valuable [15–17]. In
technical or industrial systems, this is due to one or more of the following reasons.

• Sensors are not available or limited in their functionality. They are technically infeasible,
too costly, or not obtainable. The engineering effort to design and plan sensor systems is too
complex or too expensive. The sensors’ properties are limited, for example, their sampling rate
or operating range.

• The observation period or sampling size is insufficient. Observations do not cover certain
concepts or phenomena (Data does not capture the Black Swan [18]). The operation of a sensor
is too costly, takes too much time, or is destructive.

• Blind ignorance of human engineers prevents all potential data from being obtained. Missing
knowledge about real-world phenomena or the availability of sensors limits the amount of
data gathered.
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Scarce Data is, therefore, itself a form of epistemic uncertainty. Handling epistemic
uncertainty is one of the major challenges in data analysis. This is also recognised in
machine learning research very recently [19–21]. To overcome this challenge, it is crucial to
understand the various types of scarcity, their causes, and their interactions.

Several taxonomies and typologies have been proposed in the literature to categorise
and relate data or information imperfections, uncertainties, and quality [15,22–26]. An
overview of taxonomies and typologies is given by Jousselme et al. [27], which includes
some of the works just mentioned. An overview of data quality in databases provided
by de Almeida et al. [28] is also of interest. The authors identify data completeness as
a major data quality issue. However, work limited to databases will not be discussed
further here. Instead, we summarise taxonomies and typologies which focus on or at least
address incompleteness, missing data, or missing information in Table 1. Most of the works
referenced in Table 1 rely on the term incompleteness which is used interchangeably with
scarcity in the table.

Table 1. Taxonomies of uncertainty, imperfection, ignorance, and quality which address the topic
of data or information incompleteness (in the sense of missing data or information, i.e., scarcity).
Incompleteness is recognised as the main concept of imperfection throughout the referenced works.
However, a categorisation of the various kinds of missing data or information is not carried out.

Authors Focus Builds Relies on Details Subcategories of Incompletenessupon Incompleteness

Smithson [22] Ignorance - yes Partially. Incompleteness is subcategorised
into Uncertainty (including Vagueness, Prob-
ability, Ambiguity) and Absence. Absence of
information is not further detailed.

Smets [23] Imperfection - yes No
Krause and Clark [29] Uncertainty - yes No
Ayyub and Klir [15] Ignorance [22] yes Partially. Similar to Smithson.
Bosu and MacDonell [24] Data Quality - yes No
Rogova [25] Information Quality [23] yes No
Raglin et al. [26] Uncertainty - yes No

This survey shows that incompleteness is recognised broadly as a type of data im-
perfection, a kind of uncertainty, and a source of ignorance. In nearly all referenced
taxonomies, incompleteness is not further subcategorised. A detailed look into various
forms of incompleteness and missing data is not provided.

In the following, we present a more detailed typology of incompleteness as a form
of imperfection (see Figure 1) based on Smets’ [23] taxonomy. This typology perceives
incompleteness as a form of data imperfection along with imprecision and inconsistency.

The proposed typology subdivides incompleteness into six categories.
Undersampled: Data points always represent only a sample of a distribution or the

characteristics of a phenomenon. Sensors only provide a window into the real world.
Their observations are a fragmented representation. A phenomenon is undersampled
if there is insufficient data available to make sound and significant findings about its
characteristics. Due to undersampled data, information remains partially hidden. The
aleatoric uncertainty of a phenomenon can only be described inadequately. Figure 2
illustrates two cases of undersampling using a scatter plot in a one-dimensional and a
two-dimensional feature space.

As a consequence, training with machine learning methods does not lead to satisfactory
results. The generalisation ability of the trained models is questionable at best. Probabilistic
methods rely on the availability of statistically sound data or knowledge about prior
distributions [30]. Kalman filters, for example, assume zero-mean Gaussian distributed
data [31]. In the case of undersampled data, this knowledge cannot be derived from the
data itself. Few data points also increase the risk of finding spurious correlations in the
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data [32]—especially when many features or data sources are involved. Another threat of
undersampled data is that machine-learned models tend to easily overfit [33].

Imperfect

Inaccurate

Vague

Approximative

Ambigious

Random

Conflicting

Incoherent

Redundant

Sparse

Low-dimensional

Non-representative

Drifting/Shifting

Without Context

Imprecise

Incomplete

Inconsistent

Undersampled

Figure 1. A typology of data and information imperfection with a detailed subcategorisation of
incompleteness. The typology is based on the work of Smets’ [23]. It recognises incompleteness as
one of three major sources of imperfection – besides inconsistency and imprecision. Imprecision
captures deficiencies that prevent unambiguous statements from being made based on individual data
points. Inconsistency refers to situations in which a piece of information is contradictory to existing
knowledge or with other information sources. Incompleteness is lacking, absent, or non-complete
data and information.
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Figure 2. Two examples showcasing undersampled data: (a) an ill-represented one-dimensional
distribution and (b) an ill-represented two-dimensional distribution. A two-dimensional scatter plot
showcasing undersampled data. The plots show the distributions of phenomena in feature space
(red). The distributions are unknown and represent the aleatoric uncertainty of the phenomena.
In both examples, the sampled data points (blue) are insufficient to draw conclusions about the
distributions. The missing data points are a form of epistemic uncertainty.

Non-representative: Data or information is non-representative when only certain
parts or subconcepts of a phenomenon are observable or represented in the data. Other
subconcepts may be very well represented. Take, for example, a bi-modal distribution of
a phenomenon’s characteristics. One of the modes may be very well sampled, whereas
the other is absent in the data. In extreme cases, complete concepts are missing. In less
extreme cases, subconcepts may merely be undersampled. Data in which subconcepts are
undersampled are often also referred to as biased. The observation of industrial machines
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(condition monitoring) often produces non-representative data. Machines are specifically
built to run as smoothly and faultlessly as possible. Consequently, data obtained during
normal operation is often available in abundance. In contrast, data on fault states or
unusual operating conditions are often rare. Reducing this kind of epistemic uncertainty
is difficult in practice since running a machine in fault states is either costly or infeasible.
Figure 3 shows the multi-modal and condition monitoring examples as a form of non-
representative data.
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Figure 3. Two cases of non-representative data. In (a) a bi-modal distribution is shown (red, un-
known). One mode is very-well sampled; the second is missing in the data. Plot (b) shows a
multi-class classification problem, in which certain classes are missing in the data. Such missing data
can, for example, be due to unseen fault states of a machine.

Low-dimensional: Real-world processes can only be observed by a finite number of
sensors. Data may be incomplete due to missing data sources – in this case, the data space is
too low-dimensional. A low-dimensional space may be insufficient to handle the aleatoric
uncertainty of the phenomenon at hand. Figure 4 illustrates a case where data is scarce
with respect to the number of available sources.
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Figure 4. A classification example in which the addition of a new data source allows us to distinguish
two classes perfectly (b). In the two-dimensional space shown in (a), the aleatoric uncertainty prevents
a clear separation of classes. Low-dimensional data is still a form of epistemic uncertainty as it is
unknown how the class distributions evolve with new sources.

This epistemic uncertainty is reducible by adding new sources although it is crucial to
carefully select new sources that are meaningful.

Sparse: Sparse data is caused by sensors or data sources which do not provide data
continuously. For example, data is missing over certain time periods or data from different
sources cannot be synchronised with each other. Missing data can be caused by defective
sensors. This leads to data gaps. Take, for instance, data which is organised in a two-
dimensional table. Its rows represent data instances and its columns are data sources.
Sparse data is then characterised by missing entries throughout this table (think of a
sparse matrix).

Without Context: Context is needed to extract information and knowledge from data.
Roughly speaking, context is itself information that surrounds the phenomenon of interest
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and its data-generating process [34]. Context aids in understanding the phenomenon. It
can be provided by domain knowledge. Examples of context are labels in classification
applications or maps in applications of autonomous driving. Context, and specifically
labels, are often costly to produce or provide. If in large datasets only a fraction of data
instances are labelled, then the problem relates to undersampled data.

Drifting/Shifting: The effectiveness of machine learning algorithms relies heavily
on the assumption that training and test data are taken from the same or at least similar
distributions [35]. In reality, concepts and phenomena often drift in their distribution over
time, e.g., data clusters move through feature space. As a consequence, models which have
learned from training data are outdated as soon as significant drift occurs. Adaptation
or retraining is usually necessary. Because the drifting data distribution over time is not
known, drift is categorised as a form of incomplete information.

These six types of incomplete data have different causes, characteristics, and effects
on machine learners or other data-processing algorithms. To overcome the associated
challenges, algorithms have to specifically consider each type. This has to be kept in mind
in designing data analyses.

3. An Overview of Methods for Working with Scarce Data

The challenges associated with scarce data have been known and intensively discussed
in the research community for some time. Various methods and approaches exist that can
deal with scarce data. In the following, we discuss methods of transfer learning, data
augmentation, and information fusion that act in very different ways on scarce data. This
survey is closely related to the work of Adadi [8], who studied machine learning methods
for scarce data. We extend this survey with an insight into information fusion methods. We
mainly focus on the problem of undersampled data and non-representative data. In the
ensuing discussion, we motivate further research efforts on the combination of machine
learning and information fusion methods.

3.1. Transfer Learning

Transfer learning is a machine learning method in which a model that has been trained
in one domain is reused in a related domain. The model is not completely retrained but
only adapted by post-training [36,37]. The purpose of transfer learning is to be able to
use machine learners even with scarce data. Transfer learning requires a model which
has learned as many basic concepts of a domain as possible. For example, these may be
geometric shapes in image data, basic patterns such as a Mexican hat in time series, or
basic pronunciations or sounds in human speech. Once basic concepts are known to a
model, few training examples are required to adapt to a new domain—even zero-shot
learning is possible under specific circumstances and depending on the application [38].
Most commonly neural networks and convolutional neural networks are used to transfer
learning, but other machine learning methods have been adapted for transfer learning,
such as Markov logic networks [39] and Bayesian networks [40]. Transfer learning has been
applied to many domains. A survey on machine diagnostics in industrial applications is
provided by Yao et al. [41].

Transfer learning comes with several drawbacks and pitfalls. Because a source model
is required to know as many concepts as possible, large datasets and resources are necessary
to train the source model in the first place. Such a model needs to be trained on a general
dataset, which is at best not domain-specific. Secondly, the target domain is still charac-
terised by scarce data. Therefore, some risks remain even if the transfer is learned. Models
are still at risk to overfit or detect spurious correlations [37,42]. Finally, performance is
affected negatively if the source and target domain do not cover the same concepts or focus
on different concepts. This is referred to as negative transfer [43,44]. For example, recent
studies have shown that models trained on the ImageNet (https://www.image-net.org/,
accessed on 9 November 2022) dataset favour texture over shape [45]. Transferring these
models into domains in which textural information is less important and objects are mostly

https://www.image-net.org/
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defined by shape—such as object recognition of machinery parts, screws, or nuts [46–48]—
will not result in optimal performance.

3.2. Data Augmentation

Data augmentation refers to methods that artificially increase the amount of available
data. The aim is to facilitate machine learners to train on even small amounts of training
data. Augmentation creates slightly modified copies of existing data or completely new
synthetic data [49]. Data augmentation techniques have been successfully applied to
image [49,50], text and natural language [51–53], and time series data [54]. Augmentation
has a regularising effect on machine learning models, helps to reduce overfitting, and can
improve the generalisability of models [50]. Industrial applications of data augmentation
are, for example, given by Dekhtiar et al. [46], Židek et al. [47,48], Parente et al. [55], or
Shi et al. [56].

Additional data instances are usually created by applying various transformations to
data. In image datasets, these are, e.g., rotations, scaling, cropping, colour transformations,
distortions, or erasing random parts of an image [50]. In natural language, parts of a text
are randomly swapped, inserted, deleted, or replaced synonymously [52]. Time series
transformations take place either in the time or frequency domain. These include cropping,
slicing, jittering, or warping among others [54]. These transformations aim to teach a
machine learner which information is important for defining a concept. For example,
additional rotated images teach that rotation is not important to a concept or class. It is still
the same class. By replacing the background in images, models learn to focus on objects in
the foreground. Thus, augmenting data by selected transformations allows us to integrate
expert knowledge into the machine learning process. However, it is crucial to apply the
right transformation for a particular application in order for the data augmentation to be
useful. Often data augmentation seems to be carried out in an “ad-hoc manner with little
understanding of the underlying theoretical principles”—as stated by Dao et al. [57].

Another approach to data augmentation is to create additional data automatically by
generative models such as generative adversarial networks [58]. The expectation is that
expert’s knowledge will no longer be necessary or will be at least less crucial. A major
drawback of generative augmentation is that it is susceptible to perpetrate bias in data [59].

With all these methods, there is a risk of losing important information in the aug-
mentation process. Information may be discarded, e.g., by cropping an image, or may be
overwritten by erasing parts of a text randomly [50,52]. It follows that patterns or classes
are not correctly preserved. The data instance and its label may then no longer match (The
label is not preserved). This problem is aggravated if small details in a data instance are
crucial for a concept. Slight changes to the original data may then already be enough to
distort or destroy concepts.

3.3. Information Fusion

Scarce data and epistemic uncertainty are intensively addressed in the research field
of information fusion. Information fusion has been researched since the midst of the 20th
century as a distinct field in parallel to machine learning [60,61]. While information fusion
has similar goals and applications as machine learning—such as classification, regression,
detection, or recognition—its focus differs. The aim of information fusion methods is to
extract and condense high-quality information from a set of low-quality data sources [62].
Information fusion explicitly assumes that sources provide incomplete or imprecise in-
formation. The task of information fusion is to make the best of what imperfect data is
available [14]. Fusion methods include a strong focus on modelling uncertain, error-prone,
imprecise, and vague information [63]. For instance, fuzzy information is modelled via
fuzzy set theory. Missing information or ignorance are modelled via evidence theories, such
as the Dempster-Shafer theory. Fusion methods address scarce data with possibility theory.
In direct comparison to probability theory, possibility theory is characterised by the fact that
incomplete information is represented qualitatively [64]. The possibility theory requires
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a smaller amount of data but is less expressive in the final analysis [63,64]. Established
methods of machine learning, on the other hand, rarely model missing information or
epistemic uncertainty explicitly. Instead, they rely on a quantitative evaluation of data. In
the following, we provide an overview of the mathematical tools fusion relies on, that is,
the Dempster-Shafer theory, the fuzzy set theory, and the possibility theory.

3.3.1. Dempster-Shafer Theory

The Dempster-Shafer theory of evidence (DST) has been proposed by Shafer [65]
on the foundation of Dempster’s works on a framework for expressing upper and lower
probabilities [66]. In the DST, available evidence forms the basis to express a degree of
belief in a proposition that quantifies incomplete knowledge [67]. In this basic sense, it is
comparable to Bayesian probability theory. It is motivated by the fact that probability theory
is not able to distinguish between ignorance (epistemic uncertainty) and well-informed
uncertainty (aleatoric uncertainty) natively [65].

Probability theory (ProbT) operates on a frame of discernment Ω which includes all
given propositions or hypotheses X as singletons, i.e., Ω = {X1, X2, . . . , xn}. Each proposi-
tion is given a probability 0 ≤ p(X) ≤ 1 to be true with the restriction of ∑X∈Ω p(X) = 1.
In the case of total ignorance, one tends to distribute probabilities uniformly over Ω but
this is arbitrary. A uniform distribution is not distinguishable from a situation in which it
is known that propositions are actually equally likely. DST allows us to assign evidence
to sets of combined propositions. It operates on the power set of the frame of discern-
ment, i.e., P(Ω) = {∅, X1, X2, . . . , {X1, X2} . . . , Ω}. By assigning evidence m to combined
propositions (e.g., {X1, X2}), a state of incomplete knowledge is expressed. In case of
{X1, X2}, it is unclear whether evidence favours X1 or X2. Belief in a proposition is then
obtained by Bel(X) = ∑A⊆X m(A). The usage of the power set allows DST to handle
incomplete knowledge due to scarce data better and more properly than probability theory.
An example of the difference between ProbT and DST is given in Figure 5.

h f1 f2

0

0.2

0.4

1

x

p(x)

(a)

h f1 f2 {h, f1} {h, f2} { f1, f2} Ω
0

0.2

0.4

1

x

m(x)

(b)

Figure 5. Probability theory versus Dempster-Shafer’s theory in a condition monitoring example.
The basic propositions are h: the monitored object is healthy and f1, f2: the object is in one of two
fault states. The distribution modelled with ProbT (a) is ambiguous since it cannot distinguish
between ignorance (epistemic uncertainty) and well-informed uncertainty (aleatoric uncertainty).
Using DST (b), it turns out that the expert or model is indeed partly ignorant. This is expressed
by m({ f1, f2}) = 0.4 (a fault occurred but it is unknown which one) and by m(Ω) = 0.2 (nothing
is known).

DST is designed with a fusion of independent multiple sources in mind. Having mul-
tiple partially ignorant and uncertain sources, the aim is to get to a single estimation with
reduced ignorance and increased certainty. To achieve this, most fusion rules involve a re-
inforcement effect. If, for example, m1(X) = m2(X), then the fused mass m12(X) > m1(X).
Several fusion rules have been proposed over the years, for example, Dempster’s rule
of combination [66,68], Yager’s rule [69], Campos’ rule [70], or the Balanced Two-Layer
Conflict Solving rule [61], to name just a few.

DST fusion achieves that—if a group of sensors, experts, or machine learning models
is uncertain in their assessments because of scarce data—to increase certainty. A popular
approach in machine learning is to apply ensemble learners [71]. In ensemble learning,
multiple weak learners are trained simultaneously. Their outputs are fused into a single
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one. An example of an ensemble is random forests. Although this seems to be an exemplary
area of application for DST fusion, most ensemble learners rely on majority votings or
averaging functions [72–74]. This motivates further research efforts in combining DST and
machine learning methods as a way to handle the effects of scarce data.

3.3.2. Fuzzy Set Theory

Fuzzy set theory (FST) was proposed by Zadeh [75] motivated by the intrinsic vague
nature of language. The fuzzy set theory facilitates the modelling of imprecise and vague
information (cf. Figure 1). Although FST is not focused on incomplete information, it
brings benefits when it comes to scarce data. Zadeh introduces sets with vague boundaries
in contrast to crisp sets known from probability theory or Dempster-Shafer theory. In
a crisp set, an element either belongs to this set or not. Its membership function µ is a
mapping of all elements belonging to the frame of discernment Ω to a boolean membership
µ : Ω→ {0, 1}. Fuzzy sets allow degrees of memberships, that is, µ : Ω→ [0, 1].

The inherent vagueness of fuzzy membership functions can be exploited to learn class
distributions from only a few data instances [76]. If class borders are only needed to be
modelled imprecisely and vaguely, then less effort has to be put into a training process than
learning precise class borders. The fuzzy membership of a data instance is then interpreted
as the uncertainty of the classification model. This blurring of class borders results in
weaker models with the upside of less data demand.

An approach for this kind of classification is fuzzy pattern classifiers (FPC). Fuzzy
pattern classifiers have been introduced and advanced by Bocklisch [77,78]. An FPC learns
a unimodal potential function for each data source. This function serves as a membership
function. Each membership function is a weak classifier in itself. Seen as a group, the
membership functions are similar to an ensemble. They output each a gradual estimate
for the predicted membership. This allows to apply fuzzy aggregation rules to fuse the
outputs into a singular class membership (see for example previous works by Holst and
Lohweg [79–82]).

Unimodal potential functions were proposed by Aizerman et al. [83] as a pattern
recognition tool. It was only later that they were applied as membership functions for
fuzzy sets. Unimodal potential functions are used to model the distribution of compact
and convex classes. Lohweg et al. [84] described a resource-efficient variant optimised for
limited hardware:

µ(x) =

{
2−d(x,pl) if x ≤ x ,
2−d(x,pr) if x > x ,

with d(x, pl) =

( |x− x|
Cl

)Dl

,

d(x, pr) =

( |x− x|
Cr

)Dr

, and

x a data instance (measurement value).

The unimodal potential function has several advantages for the use of scarce data.
The function is parameterizable with few parameters. The number of parameters scales
with data sources linearly. The parameters are relatively easy to train in data. Training
methods can be found in [76,81,84]. The parameters are intuitive to interpret. Therefore,
expert knowledge can be integrated easily. On the other hand, FPCs require unimodal
and convex data distributions. In this regard, Hempel [85] proposed a multi-modal FPC,
although his approach requires more training data in general.

3.3.3. Possibility Theory

The possibility theory (PosT) was introduced by Zadeh in 1978 as an extension of
fuzzy set theory [86]. It is designed as a counterpart to probability theory because of its
limited ability to represent epistemic uncertainty.
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Possibility theory is based on possibility distributions π—similar to probability dis-
tributions p. The possibility 0 ≤ π(x) ≤ 1 conveys how plausible the event x is. A value
π(x) = 1 means completely plausible; π(x) = 0 completely implausible. At least one x is
required to be fully plausible (normality requirement). But more than one x can be fully
plausible. This leads to ∑x∈Ω π(x) ≥ 1 or

∫
x∈Ω π(x) ≥ 1.

Possibility distributions are similarly defined as fuzzy membership functions, that is,
π(x) = µ(x) [16]. This has the advantage that mathematical operations defined on fuzzy
sets can be directly applied to possibility distributions [87]. Though it has to be verified
first if this is sensible. Fuzzy membership functions and possibility distributions differ in
interpretation. Let x be an alternative for an unknown value v and A be a fuzzy set. The
π(x) expresses the possibility of x = v knowing that x ∈ A. In contrast, µ(x) expresses the
degree of membership of x to A knowing that x = v.

Possibility distributions are also a less expressive and weaker model than probability
distributions. Roughly speaking, it is easier to conclude that a proposition is possible
rather than probable. Moreover, for a proposition to be probable it must preliminarily
be possible. This leads to the probability/possibility consistency principle stating that
π(x) ≥ p(x). In return, possibility distributions] require less effort – meaning training
data or expert’s knowledge – to construct [88]. They do not require statistically sound data
because they model incomplete information qualitatively; whereas probability distributions
model random phenomena quantitatively. This distinction is highlighted in Figure 6.

0

1

X
x

p(x)

(a)

0

1

X
x

π(x)

(b)

Figure 6. A continuous probability (a) and a continuous possibility distribution (b). The proba-
bility distribution models a random phenomenon quantitatively; the possibility of distribution of
incomplete information qualitatively. The following applies:

∫
x∈Ω p(x) = 1,

∫
x∈Ω π(x) ≥ 1, and

π(x) ≥ p(x).

This leads to the conclusion that possibility theory is well-suited to be used in the case
of epistemic uncertainty and scarce data.

3.4. Discussion

Scarce data and epistemic uncertainty remain major challenges to machine learning and
data analysis approaches. Missing information in data obstructs inherent aleatoric uncertainty.

In the area of machine learning, several techniques for coping with few training data
have been thoroughly studied. Some of the most important are data augmentation, transfer
learning, and interpretable models. While data augmentation and transfer learning focus
on undersampled data mainly, interpretable models address also non-representative data.
But only recently has epistemic uncertainty come into focus. Researchers have begun to ex-
plicitly define and quantify epistemic uncertainty of machine learning models [17,20,21,89].

In contrast, the research field of information fusion focuses on scarce data and epis-
temic uncertainty since its emergence in the mid-twentieth century. Fusion methods apply
evidence theories such as DST, fuzzy set theory, and possibility theory to either quantify
epistemic uncertainty or reduce its impact on performance.

However, combining fusion and machine learning methods is rare in the state of the
art, although research need has been recognised recently [90–92]. Several works have
been published that attempt to fill this open research topic. Among these are approaches
which apply fusion techniques as a preprocessing step before machine learning [93,94].
These works focus on providing a machine learner with a more robust and condensed data
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basis through prior fusion. They do not focus on incomplete information though. Further
works devise classifiers based on the Dempster-Shafer theory [95–97]. Finally, machine
learning in a possibilistic setting exists but is very rare. A small survey is conducted by
Dubois et al. [98]. This leads to the conclusion that further research is needed to more
successfully and formally address scarce data in machine data analysis.

4. Conclusions

Despite the increasing number of sensors and measuring devices, data is often scarce
in industrial applications. The scarcity of data stems from limited sensor availability and
functionality, limited observation periods, hidden concepts, and the inevitable blind ig-
norance of engineers. This leads to challenges in data analysis. In this paper, we have
typologized missing data and information in more detail based on the works of Smets [23].
According to this new typology, incomplete data is categorised into (1) undersampled,
(2) non-representative, (3) low-dimensional, (4) sparse, (5) without context, and (6) drifting
data. Existing typologies did not or only insufficiently detail the category of incomplete-
ness [15,22–26,29]. In this respect, we have filled an open gap in existing works.

This paper also explored machine learning and information fusion methods that deal
with scarce data and incomplete information. As such, this paper complements Adadi’s
survey [8], which is limited to machine learning methods. Regarding machine learning,
we focused on methods enabling data-hungry algorithms to be used on scarce data. Such
methods are data augmentation [9] and transfer learning [10], among other methods. The
idea behind transfer learning is to reuse and adapt models which have been trained on large,
preferably general, datasets. However, efforts for training a source model are substantial
and the risk of negative transfer has to be considered. Data augmentation creates new data
points artificially by modifying existing ones. Data augmentation can reduce overfitting at
the risk of destroying information.

Information fusion, on the other hand, relies on evidence theories, fuzzy set theory,
and possibility theory to model, quantify, and cope with epistemic uncertainty [14]. This
paper motivates and calls for further research efforts in combining fusion and machine
learning approaches.
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35. Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A Survey on Concept Drift Adaptation. ACM Comput. Surv. 2014,

46, 44:1–44:37. [CrossRef]
36. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
37. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
38. Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. Meta-learning framework with applications to zero-shot time-series

forecasting. arXiv 2020, arXiv:2002.02887.
39. Mihalkova, L.; Huynh, T.N.; Mooney, R.J. Mapping and Revising Markov Logic Networks for Transfer Learning; AAAI: Menlo Park,

CA, USA, 2007.
40. Niculescu-Mizil, A.; Caruana, R. Inductive Transfer for Bayesian Network Structure Learning. In Proceedings of the Eleventh In-

ternational Conference on Artificial Intelligence and Statistics, San Juan, Puerto Rico, 21–24 March 2007 ; Meila, M.; Shen, X., Eds.;
PMLR Proceedings of Machine Learning Research: New York City, NY, USA, 2007; Volume 2, pp. 339–346.

41. Yao, S.; Kang, Q.; Zhou, M.; Rawa, M.J.; Abusorrah, A. A survey of transfer learning for machinery diagnostics and prognostics.
Artif. Intell. Rev. 2022. [CrossRef]

42. Sun, Q.; Liu, Y.; Chua, T.S.; Schiele, B. Meta-Transfer Learning for Few-Shot Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

43. Wang, Z.; Dai, Z.; Poczos, B.; Carbonell, J. Characterizing and Avoiding Negative Transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

44. Zhang, W.; Deng, L.; Zhang, L.; Wu, D. A Survey on Negative Transfer. IEEE/CAA J. Autom. Sin. 2022, 9, 1. [CrossRef]
45. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards

texture; increasing shape bias improves accuracy and robustness. In Proceedings of the International Conference on Learning
Representations, New Orleans, LA, USA, 6–9 May 2019.

46. Dekhtiar, J.; Durupt, A.; Bricogne, M.; Eynard, B.; Rowson, H.; Kiritsis, D. Deep learning for big data applications in CAD and
PLM – Research review, opportunities and case study. Emerg. Ict Concepts Smart Safe Sustain. Ind. Syst. 2018, 100, 227–243.
[CrossRef]

47. Židek, K.; Lazorík, P.; Pitel’, J.; Hošovský, A. An Automated Training of Deep Learning Networks by 3D Virtual Models for
Object Recognition. Symmetry 2019, 11, 496. [CrossRef]

48. Židek, K.; Lazorík, P.; Pitel’, J.; Pavlenko, I.; Hošovský, A. Automated Training of Convolutional Networks by Virtual 3D Models
for Parts Recognition in Assembly Process. In ADVANCES IN MANUFACTURING; Trojanowska, J.; Ciszak, O.; Machado, J.M.;
Pavlenko, I., Eds.; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2019; Volume 13, , pp. 287–297.

49. Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621.
50. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
51. Feng, S.Y.; Gangal, V.; Wei, J.; Chandar, S.; Vosoughi, S.; Mitamura, T.; Hovy, E. A Survey of Data Augmentation Approaches for

NLP. arXiv 2021, arXiv:2105.03075.
52. Shorten, C.; Khoshgoftaar, T.M.; Furht, B. Text Data Augmentation for Deep Learning. J. Big Data 2021, 8, 101. [CrossRef]

[PubMed]
53. Bayer, M.; Kaufhold, M.A.; Reuter, C. A Survey on Data Augmentation for Text Classification. ACM Computing Surveys

2022, accept. [CrossRef]
54. Wen, Q.; Sun, L.; Yang, F.; Song, X.; Gao, J.; Wang, X.; Xu, H. Time Series Data Augmentation for Deep Learning: A Survey. In

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Virtual, 19–27 August 2021; International
Joint Conferences on Artificial Intelligence Organization: Menlo Park, CA, USA, 2021.

55. Parente, A.P.; de Souza Jr, M.B.; Valdman, A.; Mattos Folly, R.O. Data Augmentation Applied to Machine Learning-Based
Monitoring of a Pulp and Paper Process. Processes 2019, 7, 958. [CrossRef]

56. Shi, D.; Ye, Y.; Gillwald, M.; Hecht, M. Robustness enhancement of machine fault diagnostic models for railway applications
through data augmentation. Mech. Syst. Signal Process. 2022, 164, 108217. [CrossRef]

57. Dao, T.; Gu, A.; Ratner, A.J.; Smith, V.; de Sa, C.; Ré, C. A Kernel Theory of Modern Data Augmentation. arXiv 2018,
arXiv:1803.06084.

58. Antoniou, A.; Storkey, A.; Edwards, H. Data Augmentation Generative Adversarial Networks. arXiv 2017, arXiv:1711.04340.
59. Jain, N.; Manikonda, L.; Hernandez, A.O.; Sengupta, S.; Kambhampati, S. Imagining an Engineer: On GAN-Based Data

Augmentation Perpetuating Biases. arXiv 2018, arXiv:1811.03751.
60. Hall, D.; Llinas, J. Multisensor Data Fusion. In Handbook of Multisensor Data Fusion; Electrical Engineering & Applied Signal

Processing Series; Hall, D.; Llinas, J., Eds.; CRC Press: Boca Raton, FL, USA, 2001; Volume 3.

http://dx.doi.org/10.1007/s10699-016-9489-4
http://dx.doi.org/10.1162/neco_a_01296
http://www.ncbi.nlm.nih.gov/pubmed/32521216
http://dx.doi.org/10.1609/aimag.v40i3.2864
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1007/s10462-022-10230-4
http://dx.doi.org/10.1109/JAS.2022.106004
http://dx.doi.org/10.1016/j.compind.2018.04.005
http://dx.doi.org/10.3390/sym11040496
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1186/s40537-021-00492-0
http://www.ncbi.nlm.nih.gov/pubmed/34306963
http://dx.doi.org/10.1145/3544558
http://dx.doi.org/10.3390/pr7120958
http://dx.doi.org/10.1016/j.ymssp.2021.108217


Sci 2022, 4, 49 14 of 15

61. Mönks, U. Information Fusion Under Consideration of Conflicting Input Signals; Technologies for Intelligent Automation; Springer:
Berlin/Heidelberg, Germany, 2017.

62. Bloch, I.; Hunter, A.; Appriou, A.; Ayoun, A.; Benferhat, S.; Besnard, P.; Cholvy, L.; Cooke, R.; Cuppens, F.; Dubois, D.; et al.
Fusion: General concepts and characteristics. Int. J. Intell. Syst. 2001, 16, 1107–1134. [CrossRef]

63. Dubois, D.; Everaere, P.; Konieczny, S.; Papini, O. Main issues in belief revision, belief merging and information fusion. In A
Guided Tour of Artificial Intelligence Research: Volume I: Knowledge Representation, Reasoning and Learning; Marquis, P.; Papini, O.;
Prade, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 441–485.

64. Denœux, T.; Dubois, D.; Prade, H. Representations of uncertainty in artificial intelligence: Probability and possibility. In A
Guided Tour of Artificial Intelligence Research: Volume I: Knowledge Representation, Reasoning and Learning; Marquis, P.; Papini, O.;
Prade, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 69–117.

65. Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976.
66. Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 1967, 38, 325–339. [CrossRef]
67. Salicone, S.; Prioli, M. Measuring Uncertainty within the Theory of Evidence; Springer Series in Measurement Science and Technology;

Springer: Cham, Switzerland, 2018.
68. Shafer, G. Dempster’s rule of combination. Int. J. Approx. Reason. 2016, 79, 26–40. [CrossRef]
69. Yager, R.R. On the dempster-shafer framework and new combination rules. Inf. Sci. 1987, 41, 93–137. [CrossRef]
70. Campos, F. Decision Making in Uncertain Situations: An Extension to the Mathematical Theory of Evidence. (Ph.D. Dissertation),

Dissertation.Com., Boca Raton, FL, USA, 2006.
71. Polikar, R. Ensemble Learning. In Ensemble Machine Learning: Methods and Applications; Zhang, C.; Ma, Y., Eds.; Springer: New

York, NY, USA, 2012; pp. 1–34.
72. Sagi, O.; Rokach, L. Ensemble learning: A survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
73. Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [CrossRef]
74. Zhou, Z.H. Ensemble Learning. In Machine Learning; Springer: Singapore, 2021; pp. 181–210.
75. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
76. Mönks, U.; Petker, D.; Lohweg, V. Fuzzy-Pattern-Classifier training with small data sets. Information Processing and Manage-

ment of Uncertainty in Knowledge-Based Systems. Theory and Methods; Hüllermeier, E.; Kruse, R.; Hoffmann, F., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 426–435.

77. Bocklisch, S.F. Prozeßanalyse mit unscharfen Verfahren, 1st ed.; Verlag Technik: Berlin, Germany, 1987.
78. Bocklisch, S.F.; Bitterlich, N. Fuzzy Pattern Classification—Methodology and Application—. In Fuzzy-Systems in Computer Science;

Kruse, R.; Gebhardt, J.; Palm, R., Eds.; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1994; pp. 295–301.
79. Holst, C.A.; Lohweg, V. A conflict-based drift detection and adaptation approach for multisensor information fusion. In

Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Torino,
Italy, 1–4 September 2018, pp. 967–974.

80. Holst, C.A.; Lohweg, V. Improving majority-guided fuzzy information fusion for Industry 4.0 condition monitoring. In Proceed-
ings of the 2019 22nd International Conference on Information Fusion (FUSION), IEEE, Ottawa, ON, Canada, 2–5 July 2019.

81. Holst, C.A.; Lohweg, V. A redundancy metric set within possibility theory for multi-sensor systems. Sensors 2021, 21, 2508.
[CrossRef]

82. Holst, C.A.; Lohweg, V. Designing Possibilistic Information Fusion—The Importance of Associativity, Consistency, and Redun-
dancy. Metrology 2022, 2, 180–215. [CrossRef]

83. Aizerman, M.A.; Braverman, E.M.; Rozonoer, L.I. Theoretical foundations of the potential function method in pattern recognition
learning. Autom. Remote Control 1964, 25, 821–837.

84. Lohweg, V.; Diederichs, C.; Müller, D. Algorithms for hardware-based pattern recognition. EURASIP J. Appl. Signal Process. 2004,
2004, 1912–1920. [CrossRef]

85. Hempel, A.J. Netzorientierte Fuzzy-Pattern-Klassifikation nichtkonvexer Objektmengenmorphologien. Ph.D. Thesis, Technische
Universität Chemnitz, Chemnitz, Germany, 2011.

86. Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [CrossRef]
87. Solaiman, B.; Bossé, É. Possibility Theory for the Design of Information Fusion Systems; Information Fusion and Data Science; Springer:

Cham, Switzerland, 2019.
88. Dubois, D.; Prade, H. Practical methods for constructing possibility distributions. Int. J. Intell. Syst. 2016, 31, 215–239. [CrossRef]
89. Wang, G.; Li, W.; Aertsen, M.; Deprest, J.; Ourselin, S.; Vercauteren, T. Aleatoric uncertainty estimation with test-time augmentation

for medical image segmentation with convolutional neural networks. Neurocomputing 2019, 338, 34–45. [CrossRef]
90. Diez-Olivan, A.; Del Ser, J.; Galar, D.; Sierra, B. Data fusion and machine learning for industrial prognosis: Trends and perspectives

towards Industry 4.0. Inf. Fusion 2019, 50, 92–111. [CrossRef]
91. Blasch, E.; Sullivan, N.; Chen, G.; Chen, Y.; Shen, D.; Yu, W.; Chen, H.M. Data fusion information group (DFIG) model meets

AI+ML. In Signal Processing, Sensor/Information Fusion, and Target Recognition XXXI; Kadar, I.; Blasch, E.P.; Grewe, L.L., Eds.; SPIE:
Bellingham, WA, USA, 2022; Volume 12122, p. 121220N.

92. Holzinger, A.; Dehmer, M.; Emmert-Streib, F.; Cucchiara, R.; Augenstein, I.; Del Ser, J.; Samek, W.; Jurisica, I.; Díaz-Rodríguez, N.
Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial
intelligence. Inf. Fusion 2022, 79, 263–278. [CrossRef]

http://dx.doi.org/10.1002/int.1052
http://dx.doi.org/10.1214/aoms/1177698950
http://dx.doi.org/10.1016/j.ijar.2015.12.009
http://dx.doi.org/10.1016/0020-0255(87)90007-7
http://dx.doi.org/10.1002/widm.1249
http://dx.doi.org/10.1007/s11704-019-8208-z
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.3390/s21072508
http://dx.doi.org/10.3390/metrology2020012
http://dx.doi.org/10.1155/S1110865704404247
http://dx.doi.org/10.1016/0165-0114(78)90029-5
http://dx.doi.org/10.1002/int.21782
http://dx.doi.org/10.1016/j.neucom.2019.01.103
http://dx.doi.org/10.1016/j.inffus.2018.10.005
http://dx.doi.org/10.1016/j.inffus.2021.10.007


Sci 2022, 4, 49 15 of 15

93. Holst, C.A.; Lohweg, V. Feature fusion to increase the robustness of machine learners in industrial environments. at-
Automatisierungstechnik 2019, 67, 853–865. [CrossRef]

94. Kondo, R.E.; de Lima, E.D.; de Freitas Rocha Loures, E.; dos Santos, Eduardo Alves Portela.; Deschamps, F. Data Fusion for
Industry 4.0: General Concepts and Applications. In Proceedings of the 25th International Joint Conference on Industrial
Engineering and Operations Management—IJCIEOM, Novi Sad, Serbia, 15–17 July 2019; Anisic, Z.; Lalic, B.; Gracanin, D., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 362–373.

95. Denœux, T.; Masson, M.H. Dempster-Shafer Reasoning in Large Partially Ordered Sets: Applications in Machine Learning.
In Integrated Uncertainty Management and Applications; Huynh, V.N.; Nakamori, Y.; Lawry, J.; Inuiguchi, M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 39–54.

96. Hui, K.H.; Ooi, C.S.; Lim, M.H.; Leong, M.S. A hybrid artificial neural network with Dempster-Shafer theory for automated
bearing fault diagnosis. J. Vibroengineering 2016, 18, 4409–4418. [CrossRef]

97. Peñafiel, S.; Baloian, N.; Sanson, H.; Pino, J.A. Applying Dempster–Shafer theory for developing a flexible, accurate and
interpretable classifier. Expert Syst. Appl. 2020, 148, 113262. [CrossRef]

98. Dubois, D.; Prade, H. From possibilistic rule-based systems to machine learning—A discussion paper. In Scalable Uncertainty
Management; Davis, J.; Tabia, K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 35–51.

http://dx.doi.org/10.1515/auto-2019-0028
http://dx.doi.org/10.21595/jve.2016.17024
http://dx.doi.org/10.1016/j.eswa.2020.113262

	Introduction
	A Typology of Scarce Data
	An Overview of Methods for Working with Scarce Data
	Transfer Learning
	Data Augmentation
	Information Fusion
	Dempster-Shafer Theory
	Fuzzy Set Theory
	Possibility Theory

	Discussion

	Conclusions
	References

