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Abstract: Everlasting inflation has far-reaching implications for cosmology and the standing of
self-localizing inferences made by observers, which have been subjects of renewed interest in light of
the growing acceptance of theory landscapes and the attendant anthropic arguments. Under what
assumptions and to what extent does inflation generically produce an eternal “multiverse,” without
fine-tuning with respect to measures over the space of inflationary cosmologies driven by a single
minimally coupled scalar field? We address this and related questions with numerical simulations of
inflationary dynamics across populations of randomly generated inflation models, instantiating a
few particular simply-defined measures.
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1. Introduction

With the standard model of cosmology firmly established and inflation widely ac-
cepted as a core component of that model, we have come to a peculiar place. Many of
inflation’s architects hold [1–3] that a generic consequence of inflation is that it is eternal or
everlasting, meaning that there is a coordinate system in which the 3-volume of the Universe
increases quasi-exponentially forever, there are future-directed worldlines of infinite proper
time threading inflating regions, and there are an unbounded number of thermalized
post-inflationary regions—potentially with different cosmological properties (see, e.g., [4]
for a review). If interminable proliferation of causally disconnected regions really were a
difficult-to-avoid consequence of inflation, then this would make the “multiverse" the de
facto standard cosmology, ushering in a host of difficulties [5,6] (and opportunities, to those
so inclined [7–9]) in the interpretation of cosmological predictions.

Any estimate of the likelihood of eternal inflation, conditioned on observations of
the Cosmic Microwave Background (CMB) and large-scale structure, would inform the
credibility of the multiverse picture and of anthropic reasoning at a cosmic scale. In
the present work, we investigate the degree to which eternality should be considered a
generic, versus finely-tuned, consequence of inflation, with respect to various measures
one might adopt over the combined space of model parameters and “initial conditions” for
the Universe.

The paper is organized as follows: In this section, we review criteria for the three
modes of eternal inflation, and discuss analytical arguments as to whether or not eternal
behavior is generic. We outline the structure of measures over single-field inflation models,
and how one would term certain properties generic or fine-tuned. In Sections 2 and 3, we
employ Monte Carlo simulations to assess the typicality of eternal inflation, computing
inflationary histories across an ensemble of randomly generated potential functions, in the
tradition of Tegmark’s “What does inflation really predict?” [10]. We adopt several simple
measures defined by a sampling procedure that lends itself to computational efficiency,
applying statistics to the simulated data to infer rates of incidence of eternal inflation in
partitions of the space of observables and scales of the potential. In Section 4, we offer
some concluding remarks on our findings from Monte Carlo analysis, and suggest future
research opportunities.
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1.1. Three Roads to Eternal Inflation

We restrict attention to models in which inflation is driven by a scalar field ϕ that is
subject to an effective potential Vpϕq and minimally coupled to the metric, with a standard
kinetic term. For those models characterized by a suitable Vpϕq and initialized such that
inflation can end (after at least „70 e-folds to be observationally viable), is the inflating
physical 3-volume on space-like hypersurfaces in the future of a finite initial volume
bounded in every coordinate system? If not, then inflation is “eternal.”

1.1.1. Stochastic Inflation

When quantum fluctuations of the inflaton field (in conjunction with a quantum-to-
classical transition yielding a stochastic distribution over Hubble-sized field configurations)
dominate over its classical evolution according to the slow roll equation of motion, the
end of inflation is delayed indefinitely in a non-decreasing physical 3-volume. Over
the passage of a Hubble time H´1, the field’s expectation value changes by an amount
∆ϕ “ | 9ϕ|H´1 “ V,ϕ{3H2 as it slowly rolls. During the same time interval, quantum
fluctuations with wavelength H´1 and amplitude drawn from a Gaussian distribution of
width δϕq “ H{2π may drive the field in a given Hubble volume up or down the potential
slope relative to its classical trajectory. If in that time, the probability for the field to move
higher up the slope is greater than the ratio of initial to final physical volumes (1{e3), then
on average at least one Hubble volume is likely to continue inflating. This corresponds to a
stochastic eternal inflation criterion relating the effective potential and its gradient

Vpϕq3{2 Á 6.6
∣∣V1pϕq∣∣M3

P (1)

Here MP ”
a

h̄c{8πG is the reduced Planck mass; we generally assume natural units
with h̄ “ c “ G ” 1.

1.1.2. Long-Lived Metastable de Sitter Vacua

In the false-vacuum eternal inflation scenario, the inflaton comes to occupy a local
minimum of Vpϕqwith a positive vacuum energy—the same initial setup as that of the Old
Inflation scenario [11]. As long as the field remains in that vacuum, spacetime is locally
de Sitter with Hubble parameter HF “ pVpϕFq{3M2

Pq1{2. Either by tunneling through the
barrier to a new field configuration and geometry, or by ascending the barrier wall by a
sequence of small fluctuations, regions may “escape” the false vacuum to continue descent
toward a lower minimum. If the transition rate is small, then the volume of space that
exits the false vacuum is more than recouped by the expansion of neighboring regions that
do not.

Consider worldlines that pass through a flat hypersurface of the false-vacuum de
Sitter space at an initial time t0. The fraction of those worldlines that pass through a locally
still-inflating patch of a similarly defined hypersurface at time t ą t0 is

finf “ exp

«

´4π

3
λpt´ t0q

H3
F

ff

(2)

where λ is the nucleation rate per 4-volume. The physical volume of inflating space goes
like vinf9 finf e3HFt, so a transition rate

λ ă 9H4
F{4π (3)

ensures that the 3-volume of inflating space never decreases in the 4-volume coincident
with a statistically large population of initial Hubble volumes [4]. If a transition is fol-
lowed by enough slow roll inflation to hide any otherwise observable relics of bubble
nucleation and solve the horizon problem, then one may have occurred in the past of our
observable universe.
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The case of tunneling through the barrier is treated by the Coleman–de Luccia (CDL)
instanton formalism [12]. The case of stochastic fluctuation of Hubble volumes up the
barrier wall (or equivalently, thermal fluctuation with a characteristic de Sitter temperature)
was first explored by Hawking and Moss [13] as the limiting case of a CDL instanton in
which both termini are identified with the top of the barrier.

1.1.3. Inflating Topological Defects

A third mechanism for eternal inflation operates even in a classical setting: what if
conditions for inflation cannot end everywhere, due to topological considerations? Take for
example a potential with two vacua, separated by a local maximum at ϕ “ 0

Vpϕq “ κ

4

ˆ

ϕ2 ´ m2

κ

˙2

(4)

If in separated regions of space the field has settled into different vacua at ϕ “ ˘m{?κ,
then the field must obtain the local maximum somewhere in between, forming a domain
wall with a positive energy density. When the characteristic width of domain walls is
comparable to the Hubble scale, gravitational effects can lead to topological eternal inflation.

Suppose a nearly static domain wall (necessarily of a thickness much less than the
Hubble radius associated with the potential energy at the peak) is a solution of a given
potential. Given an initial Hubble volume not containing a domain wall, but in which ϕ is
nearly homogeneous around the top of the barrier, it is of interest under what conditions
the domain wall that forms as a consequence of the field’s semi-classical descent from the
peak is nearly static and sub-Hubble in scale. The alternative is that inflation of what will
become the domain wall core outpaces its collapse in physical coordinates, and a localized
solution is precluded by the ensuing expansion.

A necessary but insufficient condition for a sub-Hubble defect to form is that the
gradient of the field configuration around the top of a potential barrier is initially increasing
in physical coordinates. Assume that ϕpt, xq is initially linear in its spatial dependence in a
small region around which it obtains the peak value, with a small proportionality factor
kptq, defined with respect to the physical distance xeH0t:

ϕpt, xq « kptqaptqxH0

where H0 is the Hubble parameter at the peak (a convenient mass scale), x is a comoving
coordinate, and aptq « eH0t. In the vicinity of the maximum we take the potential to be
approximately quadratic: Vpϕq « V0 ´ 1

2 µ2 ϕ2. The equation of motion for kptq is then

:k` 5H 9k` p4H2 ` 9H ´ µ2qk “ 0

If the expression in parentheses is positive, then kptq behaves like an overdamped
harmonic oscillator, and the domain wall grows (kptq vanishes at late times). So if Vpϕq is
sufficiently flat near the maximum

1
κV0

∣∣∣∣d2V
dϕ2

∣∣∣∣
ϕ“0

” ηV ă 4´ ε

3
(5)

where ε is the first slow roll parameter, then the domain wall grows even if a nearly static
sub-Hubble-scale domain wall solution were possible—resulting in topological eternal
inflation. Otherwise, kptq grows monotonically within the validity of this approximation,
leading potentially to a collapse.

A full collapse can be thwarted by Hubble friction lower on the potential. Even if ϕ
does not initially interpolate between the two basins of attraction, if it inflates from its initial
configuration, then stochastic fluctuations in the population of Hubble volumes produced
near the peak may be enough to drive the field in some regions over the hilltop—creating a
topological defect.
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1.2. The Case for Generic

It is widely believed that eternality is a generic prediction of inflation—a consequence
arising without the need for fine-tuning of model parameters or initial conditions. It is
our impression that the prevailing rationale for that belief is largely qualitative, and based
on a heuristic sampling of inflation models with substantial coverage in the literature.
Nonetheless it appears well motivated; what—in rough sketch—is the basis for it?

By inspection of Equation (1), stochastic fluctuations can compete with slow roll in
models in which ϕ is initialized near an inflating local maximum or saddle point and
for those in which Vpϕq is large in the domain of initial field values (e.g., inflation in a
quadratic potential with mass parameter m and field excursion ∆φ Á 4pM3

P{mq1{2). Slow
roll already requires a very flat potential; stochastic eternal inflation needs only somewhat
flatter or more energetic sites of inflation. Plausible extensions to the standard treatment of
fluctuations—such as warm inflation [14] with its account of thermal effects—increase the
amplitude of fluctuations of the inflaton, shrinking the gap between sufficient conditions
for successful inflation and eternal behavior. If we are assumed to occupy a region of model
space in which inflation is generic, it seems to follow from the above considerations that
eternal inflation should not be much less difficult to avoid.

The topological inflation criterion given by Equation (5) is always satisfied for a single
inflaton initialized at a maximum where the second potential slow roll condition ηV ! 1 is
met. The latter condition—though not required for some quasi-exponential expansion to
occur—is almost always needed to solve the horizon problem. (This is relevant even when
initializing at a maximum, as quantum or thermal fluctuations render finite the expected
time and e-folds elapsed in the vicinity of the peak). Quantum fluctuations dominate the
slow evolution of xϕy near the peak, resulting in an inhomogeneous field configuration
with xϕy descending toward the minima of both conjoining half-basins, separated in space
by an inflating topological defect that can never be excised. Even if ϕ is initialized only
near a maximum, stochastic inflation always occurs within a neighborhood of the potential
peak, and fluctuations can drive some regions over the peak to descend toward the adjacent
minimum, producing a defect. This can occur by chance even if the formal stochastic
inflation criterion is not met at the initial field value.

If we take the setting of inflation to be a “landscape” potential and populate the
presumably large number of false vacua therein, then we get eternal inflation almost no
matter what. If the barrier between false and true vacua is broad p|V2| ! V{m2

Pq, then the
largest contribution to the transition comes from the Hawking–Moss (HM) instanton. We
adopt the interpretation of the HM calculation [13] as yielding the rate at which Hubble
volumes occupying the false vacuum basin thermally fluctuate into the true vacuum basin,
with energy comparable to the height of the barrier [15]. Since the HM transition with a
slow rate of diffusion invokes stochastic inflation—the field undergoes a series of quantum
or thermal fluctuations up the barrier wall—it follows that all models with a slow HM
transition are necessarily eternal.

1.3. The Dissent

Two schools of criticism of eternal inflation are represented in the literature. One
attacks the foundational assumptions on which the established treatments outlined in
Section 1.1 are based; for review of several such arguments, see, e.g., [16–20]. Another
accepts the established treatments but questions the predominance of the associated criteria
in the space of inflation models consistent with observation, honing in on several hints of
fine-tuning.

Of the three modes, stochastic eternal inflation is most susceptible to the skepticism of
the former school, as the topological and false vacuum varieties appear quite unassailable
once the setup assumptions are granted (or at least avenues for departure from the usual
treatment are much less evident). For example, ref. [16] argues that back-reaction becomes
important well before the stochastic regime in chaotic inflation and similar models, so
that the latter is not well characterized by assuming small perturbations to a background
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metric fixed at the scale of a Hubble volume or more. In [17], it is argued that applying the
appropriate adiabatic regularization procedure in calculating the amplitude of quantum
fluctuations of the inflaton (presented in [18]) dramatically reduces that amplitude (to a
proposed value δϕ2 – 0.01V2pϕq) relative to the commonly cited result of H{2π, and in so
doing increases the energy scale needed to achieve stochastic eternal inflation. Other modi-
fications to the story of how the quantum-to-classical transition comes about could alter
the probability of eternal inflation (for example, ref. [19] presents a calculation of explicit
decoherence of modes for inflaton fluctuations via interaction with metric perturbations
suggests that Hubble-scale modes do not decohere until Op10qHubble times after they have
left the horizon, in tension with the widely accepted Op1q figure; in [20], it is demonstrated
that taking this delay into consideration alters the criterion for stochastic eternal inflation.
However, if we do not alter the rate at which we “update” the branching distribution, but
only a change in the size of fluctuations relative to the classical field excursion (both of
which change slowly during inflation), then it does not greatly affect the probability of
eternal inflation). In this work, we direct our attention at the concerns of the latter school.

The primordial perturbation spectrum inferred from measurements of the CMB implies
a significant scale discrepancy between a regime of stochastic inflation, in which curvature
perturbations δR{R are of order unity, and horizon exit of modes of observational relevance.
Suppose we parameterize the inflaton potential in terms of the vertical and horizontal mass
coefficients mv and mh, along with a dimensionless function f pxq of order unity defining
its shape:

Vpϕq ” pmvmPq4 fpϕ{pmhmPqq
Here, mP is the Planck mass. With the measured magnitude of scalar perturbations

Qs „ Op10´5q, the quantity f pxq3{2 f 1pxq´1, appearing in both the expression for Qs and
Equation (1), must shrink by a factor Op10´3q between a scale of stochastic eternal inflation
and the horizon exit scale. In this sense the sufficient conditions for inflation consistent
with the data do not strongly constrain the part of the potential relevant for stochastic
eternal inflation. In [21], this scale discrepancy is cast as an upper bound αmax ă 0 on the
running of the spectral index, below which inflation is non-eternal (assuming higher order
“runnings-of-the-running” can be neglected).

α ă p1´ nsq2
4 lnPR,‹

« ´4ˆ 10´5 (6)

If the field history does not traverse intervals on the potential with vastly different
characteristics before the end of inflation, then there are large portions of parameter space
consistent with observation that do not produce stochastic eternal inflation.

If the barrier separating true and false vacua turns over sharply (large V2{V), then
the largest contribution to a vacuum transition is a Coleman–de Luccia instanton, which
tends to terminate very close to the true minimum with a thin-walled bubble. While in-
stanton transition rates are generically much smaller than the upper bound in Equation (3),
one would need an instanton that terminates atypically high on the slope of a nearly-
Minkowski half-basin, separated from the minimum by an interval of field space in which
the potential is remarkably flat by the standards of the potential barrier. However, the
rarity of coincidence of such features of the potential may be balanced by conditioning
on inflation producing enough e-folds to begin with. Even if the inflaton is initialized
in a false vacuum, our prior expectation on the number of e-folds is already high to be
consistent with observation; that successful inflation following a CDL transition is rare is
for all intents counterfactual.

Before conditioning on a small final vacuum energy, one might suspect models with
successful inflation following a Hawking–Moss transition of being unnatural, as the poten-
tial featuring a broad barrier must also vary quickly before the minimum in order to give a
clean exit from inflation. This is alleviated only somewhat if we fix the energy of the true
vacuum to be very small, so that inflation always ends close to the minimum where εV „ 1.
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This puts a Hawking–Moss transition among field histories yielding sufficient inflation with
a viable scalar amplitude and spectral index, but a typically too large tensor-to-scalar ratio.

1.4. Measures on Cosmologies

What would it mean for eternal inflation to be generic? As a matter of history, it has
meant that of the inflation models that have been devised, many appear to be eternal in
regions of the space of parameters and initial conditions that have warranted scrutiny. More
properly, it should mean that given some representative measure (or class of measures) over
inflation models and initial conditions, those combinations resulting in eternal inflation
comprise a large fraction of the measure, or perhaps of the measure over combinations that
lead to observationally viable cosmologies.

One might argue that even if eternal inflation does not dominate a measure over model
space, those models with eternal inflation produce vastly more variety in thermalized re-
gions, and so an observer is warranted in assuming that the conditions for eternal inflation
are in their region’s past. This stance is sensible only if one grants that a population of mod-
els (or of initial conditions on a vast potential with both eternal and non-eternal inflation)
is in fact realized, so that they are in effect competing dynamically for representation in
a final ensemble. For this study, we rather assume that one potential is actually realized,
and probe the likelihood that a Hubble volume with initial conditions sampled from a
particular distribution undergoes eternal inflation.

Genericity might refer to a posterior distribution over a collection of parameters peternal
characterizing eternal inflation, given priors on those parameters, observational data d, and
a dictionary of correlations between the parameters modeling the data and the necessarily
hidden parameters in peternal (we only have access to our one observable universe). Let
the full set of parameters be denoted by p “ peternal

Ť

pobs, where pobs includes those
parameters modeling observables from any successful inflation model that are accessible to
our instruments. (see Section 2.2 for definitions of the quantities making up pobs). Since
our model of the data can only connect d to pobs, the posterior distribution over the hidden
parameters in peternal is determined entirely by how they correlate with those in pobs. For
each measure m, there is a distribution fmpp | pobsq connecting the hidden eternal sector
to parameters that make contact with the data. The probability associated with the full
parameter vector p is then

pmpp | dq “
ż

fmpp | pobsq `ppobs | dqdpobs. (7)

Generic eternal inflation would mean that pmpp | dq nearly vanishes outside of the region
of parameter space spanned by peternal that is labeled eternal.

From a frequentist point-of-view, one is concerned with estimating rates of incidence
of quantities characterizing eternal inflation meeting predefined thresholds (see criteria
in Section 1.1), rather than with the full posterior distributions over those quantities.
Considered in these terms, generic could also mean that an estimate of the rate or probability
of occurance of eternal inflation is close to 1. This definition has the advantage of not
requiring one to presume a model for the distributions of parameters in peternal, but rather
only that of a rate parameter which can be taken to be beta-distributed. Providing the
means to compute these rates in a crude form is in large part the aim of this study.

2. Monte Carlo Methods

Supposing a scalar field driving inflation was governed by an effective potential of
whose origin we are ignorant, it would be worthwhile to discover with what probability
(and observational correlate) we encounter eternal behavior, subject to measures admitting a
high degree of variability in the potential. With a well behaved distribution over potentials,
we could make some headway with a purely analytical approach, extending the results
of works such as [22] that time-evolve field-value distributions using the Fokker–Planck
equation; but having a trove of simulated data affords a freedom to make arbitrary cuts
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on observables. Since we are most interested in models that come close to producing
observationally viable cosmologies and require the means to select for them, we find a
numerical approach to be of greater marginal value for this study.

2.1. Desperate Measures

If there is a true measure over inflationary cosmologies, it is of course unknown;
nonetheless, we argue that even simple measure prescriptions can offer insight into what
might be deemed generic versus fine-tuned. From a stance of humility in light of the
issues discussed at length in [10] facing all would-be measure bearers, we aim to travel
a middle road of devising measures that are easily computable and provide adequate
coverage of model-space, while not trying too hard to justify a particular measure on
specific physical grounds.

The following sections outline the resulting measure choices. Figure 1 shows a high-
level overview of how we generate and process Monte Carlo samples from those measures.

Figure 1. Conceptual flowchart illustrating our high-level methodology. To generate Monte Carlo
samples with which to address the question “How generic is eternal inflation?”, we select a measure
on initial conditions (either A, B, or C), scan values for the scales of the potential spanning the
region of tractability, and sample random variables (the potential—via the Fourier components of a
Gaussian random field—and the initial field value—via the potential and the choice of measure). We
then perform various checks for sufficient inflation and presence of three modes of eternal inflation,
logging the computed outputs for later analysis. Refer to Section 2 and Appendix A for elaboration.

2.1.1. Sampling Potential Functions

Following the example of Tegmark [10], we draw effective potential functions as one-
dimensional Gaussian random fields (GRFs). The GRF has several properties that make it
suitable for this role: it is smooth and continuous, bounded from above and below, and its
statistics are translation invariant. (The last stands in contrast to the one-parameter space of
quadratic potentials, for example, which is guaranteed to have special behavior near ϕ “ 0.
Furthermore, many recent works employ a GRF scalar field potential as a placeholder for
the distribution output by a string theory landscape.) We express the potential Vpϕq in
terms of a dimensionless GRF

f pxq “ a0?
2
`

kmax
ÿ

k“1

ak cospqpkqxq `
kmax
ÿ

k“1

a´k sinpqpkqxq, qpkq ” k{
a

kmax (8)

and constants defining the mass scales of the potential (mv) and the inflaton (mh) in the potential.

Vpϕq “ pmvmPq4 f ppmhmPq´1 ϕq (9)

The factor of 1{?2 ensures that the norm of f pxq oscillates around
ř

k a2
k . Each coef-

ficient ak is sampled from a Gaussian distribution such that (This power spectrum is not
empirically motivated. Rather, it was chosen heuristically as it yields potentials that appear



Sci 2022, 4, 23 8 of 30

representative of a given mass scale of the inflaton field defined by mh, while allowing for
sufficient variability. We assume that an inflaton potential obtained from a higher order
theory is structured around some characteristic scale mh, and does not reveal finer and finer
structure as one resolves around any particular field value.)

xaky “ 0, xa2
ky9 qpkqγe´qpkq2{2 (10)

with the power spectrum normalized such that x f pxqy Ñ 1. Tegmark found that varying
the scale dependence of ak through the shape parameter γ did not produce interesting
discrepancies in the resulting distributions (distinguishable from just changing mh), so we
take γ “ 0 for our analyses unless otherwise specified. We generally take kmax “ 30.

The function f pxq defines the shape of the potential, but we must also impose priors on
the vertical and horizontal mass scales—mv and mh, respectively—to enact the full measure,
and to compute statistics of subsamples aggregated from multiple mass pairings. For most
results, we assume a prior for each that is uniform on a log-scale within some designated
mass ranges; but we also consider a straight uniform prior, which gives greater weight to
larger mass scales for the field that tend to result in more e-folds. Beyond this base prior,
we adopt two schemes for constructing measures from grids of mass scales—democratic
and epektacratic (rule by expansion)—elaborated in Appendix A.3.

We would ultimately condition on the smallness of the vacuum energy at the stable
minimum where inflation ends. Rather than sampling from the full distribution and then
conditioning on ρΛ being many orders of magnitude smaller than the scale of the potential,
we aim for a shortcut to approximate such a move without covering the vast regions of
parameter space in which the vacuum energy is negative or significantly too large. Very
simply, we first check whether any minimum in the search space has a vacuum energy
within ˘0.01 m4

vm4
P; if so, then we shift the whole potential to bring the vacuum energy in

that basin to zero. Inflation must end in that particular basin in order for that model to
be counted.

2.1.2. Sampling Initial Conditions

We are concerned with the 4-volume in the future of one initial Hubble volume; how-
ever, a useful measure must entail assumptions about nearest neighbor Hubble volumes.
We assume nearly homogeneous initial conditions at the Hubble scale. Over initial values
of the homogeneous inflaton field ϕ, Tegmark adopted two measures:

A Sample field values maximizing Vpϕq, weighted by the distance in field space between
the two adjacent minima. (This is equivalent to sampling uniformly and then going
uphill to the peak.) Discard instances in which |ηV | ą 1 at ϕ0.

B Sample field values uniformly. Discard instances in which εV ą 1 or |ηV | ą 1 at ϕ0.

We adopt these two measures and add a third:

C Sample field values a distance in field space equal to Hmax{2π “a

2Vpφmaxq{3π from
local maxima of Vpϕq, weighted by the distance in field space between the two adjacent
local minima. Discard instances in which εV ą 1 or |ηV | ą 1 at ϕ0.

Measure C is equivalent to sampling from Measure A and then adding a standard
deviation of the slow roll stochastic fluctuation of Hubble-scale modes to that sampled
value. We consider it as a possibly interesting interpolation between Measures A and B that
excludes the field space interval in the small neighorhood of the peak in which inflation is
nearly a given.

All three measures as framed above require that both slow roll conditions are satisfied
at the starting point, and then take

:ϕ “ 0 9ϕ “ ´MPV1pϕq{
b

3Vpϕq (11)
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More properly, we would sample from a well-motivated distribution over 9ϕ and
higher derivatives, and integrate the full equations of motion; ϕ could then barrel through
a short enough interval where the potential slow roll conditions are met without inflation
taking place. As Tegmark pointed out, if

9ϕ À
b

2Vpϕq (12)

in an interval where εV , |ηV | ă 1, then the full equation of motion exhibits an attractor
behavior leading quickly to the slow roll profile Equation (11) [23]. Sampling 9ϕ from a
distribution and then conditioning on slow roll, the population of surviving models would
be those that approximate the above measures, with additional weighting like m2

v{x 9ϕ2y1{2.
Since we are drawing from an array of mass scales, we could model such effects from our
simulated data without running the full dynamics, by adjusting the prior on mv. (Our
results presented below do not take into account such a reweighting.)

Inflation Below the Peak

Stochastic inflation occurs in every model sampled to reflect Measure A that produces
observables, since there is always an inflating interval contiguous with the maximum where
V1pϕq vanishes. If we waive the requirement that inflation continues through 70 e-folds
from the maximum, and instead let inflation start lower on the potential if the potential slow
roll conditions are met with ϕ varying slowly enough at the start of a slow roll interval, we
allow for the possibility of non-stochastically eternal inflation initialized at a non-inflating
peak. We only require that 9ϕ is below the bound of the slow roll attractor when it reaches
the top of an interval in which εV , |ηV | ă 1. With these considerations, we adopt the
following modified version of Measure A:

A˚ Sample field values maximizing Vpϕq, weighted by the distance in field space between
the two adjacent minima. If ηV ą 1 at the peak, then assume inflation starts where
εV , |ηV | ă 1 first becomes valid pϕsrq, if 9ϕsr ă

a

2Vpϕsrq along a trajectory approaching
the peak as t Ñ ´8. (For details of the calculation, see Appendix A.)

2.2. Simulation Design

Our design intent is to characterize the evolution of the inflaton—including up to
1 Coleman–de Luccia or Hawking–Moss transition event—accurately enough to inform the
distributions fmpp | pobsq from Equation (7), while exploiting justifiable shortcuts in order
to economize on computing time. For each instance toward building up the distribution, the
steps are outlined in Appendix A.1. We record observables if inflation ends with Ne ą 70
in a vacuum with ρΛ ! 1, along with indicators for eternal inflation:

pobs “ pQs, r, ns, α, nt, δρ{ρ, log|Ω´ 1|q (13)

peternal “ pNs, xNe,stochy, bt, λfv, HF, bHMq (14)

In Equation (13), Qs and ns are the scalar amplitude and spectral index, respectively; α
is the running of ns; r is the tensor-to-scalar ratio; nt is the tensor spectral index; Ωtot is the
critical density fraction; ρΛ is the vacuum energy in the potential basin where inflation ends.

In Equation (14), Ns is the number of dis-contiguous field space intervals in which the
stochastic eternal inflation criterion is valid for at least one slow-roll e-fold; xNe,stochy is the
sum of ratios of the widths of stochastic inflating intervals in field space to the amplitudes
of quantum fluctuations characteristic to those intervals; bt is a Boolean flag for topological
eternal inflation; λfv is the rate of quantum diffusion from a metastable false vacuum; HF is
the Hubble parameter in that false vacuum; and bHM is a Boolean flag indicating whether
the transition is dominated by the Hawking–Moss instanton. (A very small field space
interval in which Equation (1) is satisfied—but in which a slowly rolling inflaton would
not drive even a single inflationary e-fold as it traversed the interval—is not counted as
producing stochastic eternal inflation.)
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In terms of the potential Vpϕq; the slow roll parameters εV ” pV1{Vq2{2, ηV ” V2{V,
and ξV ” V3{V; and the number of e-folds before horizon exit Ne,before: the quantities in
pobs are given by

Q2
s “ Vpϕexitq{p150π2 εV κm2

Pq
r “ 16εV

ns “ 1´ 6εV ` 2ηV

α “ 16εVηV ´ 24ε2
V ´ 2ξ2

V

nt “ ´2εV

δρ{ρ “ log10pVpϕexitq{Vpϕendqq
ln |Ω´ 1| “ lnpVpϕstartq{Vpϕexitqq ´ 2Ne,before

The code used to implement the Monte Carlo simulation design outlined above is
available for review and download at [24].

3. Results and Discussion

After binning models in the space of measure parameters and/or observables, we take
the number of eternal models observed in each bin to be a binomial-distributed random
variable, with a deterministic but unknown probability of eternality λ for each bin. Our task
is then to estimate the rate λ characterizing the bin population. The measure parameters
are the masses identifying the scales of the field (ϕ „ mh) and the energy density (V „ m4

v),
along with the shape parameter γ. We sample mh from within a few orders of magnitude
of the Planck mass, which of course limits the scope of applicability of our results to a
small subspace of conceivable models. This choice was informed by noting for which
field scales we are likely to get a large enough subpopulation of inflation models that are
observationally viable (see Figure A4). Taking the potential to vary on field scales within
the range Op10´2q À mh À Op10q, we sample mv from a range in which the amplitude
of scalar perturbations Qs is most likely to be consistent with the Planck 2018 data set:
Op10´5q ă mv ă Op10´2q.
3.1. Measure A: Summits

If the second potential slow roll condition is met at the peak, then inflation always
thwarts the collapse of any initially near-homogeneous field configuration into a quasi-
static domain wall, and so continues in perpetuity. In those models, inflation is eternal
by both stochastic and topological modes: quantum fluctuations dominate near the peak
where V1pϕq vanishes, and causally disconnected regions descending toward different
minima of the potential are separated by an inflating domain wall.

If M2
P V2{V À ´4{3 in a suitably large interval around the top of the potential barrier,

then small inhomogeneities around the peak tend to grow with time in physical coordinates
(see Section 1.1). The field’s potential energy will not tend to dominate its kinetic energy for
a sustained bout of inflation, and slow roll does not persist at the peak. However, the model
has a chance to accrue many e-folds lower on the slope of the Minkowski half-basin—if the
field velocity is small enough in a field space interval in which εV , |ηV | ă 1—and go on to
produce a viable cosmology. Absent these latter conditions, and if the scale of the domain
wall around the sharp peak is sub-Hubble, no thermalized regions have enough e-folds of
inflation in their past to solve the horizon problem.

Let us identify nested subsets of models belonging to a sample population from
Measure A:

• Let A denote the set of all models in the sample from Measure A.
• Let S Ă A denote the set of models that have successful inflation, meaning greater

than 70 e-folds accrued in an interval in which the potential slow roll conditions
are satisfied.
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• Let D Ă S denote the set of models that are successful AND in which the only
sustained bout of inflation occurs in a field space interval that is not contiguous with
the peak.

• Let D1 Ă D denote the set of models in D for which the stochastic inflation criteria are
never satisfied. (All models in S but not in D1 are stochastically eternal.)

3.1.1. Stochastic Eternality

Models in sample subset D are those in which both potential slow roll conditions are
met only below the potential maximum, with enough inflation in that interval to solve
the horizon problem. Only if Equation (1) is satisfied on the slow roll interval lower on
the potential does stochastic eternal inflation occur; if not, then the model is also in D1.
It is typical for classical trajectories initialized a 1-σ fluctuation away from the peak with
zero field velocity to undergo slow roll for several e-folds along the descent, despite the
potential slow roll conditions not being met. Stochastic eternal inflation near the maximum
is avoided when fluctuations add up around the peak to produce inhomogeneities, which
are amplified by the large second derivative of the potential. Suppose this can result in a
terminal, short-lived bout of inflation within the interval of field space around a sharply
curved potential peak.

In Figure 2, we depict rates of incidence of models with ηV ă ´4{3 at the initial peak,
in which successful slow roll inflation could begin lower on the potential without meeting
the stochastic inflation criterion. Considered as a frequentist ratio, the numerator and
denominator for each data point in Figure 2 are the sizes of D1Xtmv, mhu and SXtmv, mhu,
respectively, where tmv, mhu P A is the subpopulation simulated with a particular pairing
of mass scales.

Stochastic eternal inflation is generic at large field scales mh ą 1, where ηV „
pmhmPq´2 is easily within the bound of the slow roll approximation at the peak. This
continues to low rates |D1|{|S| in Figure 2 for large mh.

The quantity of our ultimate interest is the probability of an observationally viable
model undergoing inflation that is not stochastically eternal at or below the local maximum:

Ppm P D1 | m P SX tQ, ns, α, r, nt, . . . uq

where the latter set tQ, ns, . . . u contains models that satisfy constraints on observables. The
probabilities represented by the purple (dark gray) data points in the left plot of Figure 2 are

Ppm P D1 | m P SX tmv, mhuq

Below the Planck scale mh „ 1, incidence of non-stochastically-eternal models among
those with enough e-folds goes roughly as a power law with the scale of the inflaton, before
conditioning on spectral features. The data points indicate 95% confidence upper bounds
for those mass bins in which at least one non-stochastic model was observed.
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Figure 2. Incidence rate of models with slow roll starting below the peak and no stochastic inflation,
among models in Measure A with 70+ e-folds. Each data point represents one batch of simulations
with particular mv, mh (only showing batches with at least one positive event per sample). All models
within a vertical stratum have the same value of mh (the center of the stratum on the left axis); vertical
position within the stratum reflects log10 mv (range shown on the right axis). Data points reflect 95%
confidence upper bounds. In the left plot, green data points are derived from samples conditioned on
ns and α; purple data points are conditioned only on minimal e-folds; the shaded bars indicate 90%
confidence intervals taking models from all values of mv as belonging to one sample. In the right plot,
the blue lines show 90% confidence intervals derived from samples of successful models conditioned
further on Qs. Darker lines reflect samples that have at least one non-stochastic model in the sample,
whereas lighter points are determined only by sample size.

Conditioning on Spectral Shape

What is the effect of requiring that the angular scale dependence of the scalar CMB
spectrum is consistent with the Planck 2018 data set, resulting in a scalar index ns and
running α within their respective 95% confidence intervals? The running α is generically
within the bounds from measured data after conditioning on ns. At all field scales shown
in Figure 2, the upper bound on rates of non-stochastically eternal inflation is greater
by 1–2 orders of magnitude after conditioning on ns and α; these figures represent the
conditional probabilities:

Ppm P D1 | m P SX tmv, mhu X tns, αuq

Aggregating all vertical mass scales for a given field scale, we report the resulting
90% confidence intervals represented by the green (light gray) shaded bars in the left
of Figure 2. (we also show the same results for models conditioned only on number of
e-folds (purple/light gray)). From this we infer that non-stochastically-eternal inflation
falls short of being generic with high likelihood down to below mh “ 0.1, among models
conditioned on ns and α. For smaller field scales in this regime, what we have called
non-stochastic-eternal inflation (which includes some generous assumptions that cannot be
taken for granted) is neither generically present nor absent.
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Conditioning on Spectral Amplitudes

Turning attention to the righthand plot in Figure 2, we find that stochastic inflation
is less prevalent at larger potential scales among models with viable spectral amplitudes,
in comparison to all models in S. A larger scale for the potential correlates with a greater
proportion of models with inflation below the peak, among successful models satisfying
constraints on the scalar amplitude Qs. This may be somewhat surprising considering
that the stochastic inflation criterion is a lower bound on the amplitude of scalar curvature
perturbations, which scales with m4

v. But it makes sense when considered as an effect of
selecting for a suitably small scalar amplitude born of a delayed inflationary epoch.

A larger Hubble parameter „ m2
v means greater friction, allowing the potential to

have a large curvature at the peak while tending toward smaller separation in field space
between the peak and an interval of slow roll (greater allowance for V1pϕq), as well as a
smaller field velocity at the top of that interval. When the potential is large, the requirement
of a small amplitude for scalar perturbations means inflation must end low on the potential
slope, which is more likely in models with inflation starting below the peak. With greater
potential energy the upper bound on 9ϕ for the slow roll attractor is greater, allowing more
models to accrue many e-folds below the peak.

3.1.2. Topological Eternality

For models in the sample subset D, so long as ϕ somewhere obtains the peak value,
there is a Hubble-sized region at the top of the slow roll interval below the peak that
must pass through an inflationary epoch, as the field therein descends the slope toward
the Minkowski vacuum. This is the case in which the characteristic scale of domain wall
thickness is greater than the characteristic Hubble scale in the wall’s core; even as small
inhomogeneities around the peak are initially magnified, the wall is supported against
collapse to sub-Hubble scales by the shape of the potential, and we still end up with
inflating defects interpolating between the two vacua. Does this imply that all successful
delayed inflation in Measure A is always topologically eternal, since the intervening space
separating regions occupying the vacua is inflating? Almost (but not quite) certainly.

Suppose that in Regions I, II, and III, the field occupies the Minkowski half-basin, the
neighborhood of the sharp barrier, and the adjacent basin, respectively. Only if Region
III grows to a size larger than the Hubble scale in that basin—effectively “pinning” the
de Sitter horizon surrounding that region to a value in the adjacent basin—do we get a
topological defect. So long as the defect is contained within a single de Sitter horizon, one
can entertain the possibility of a nonperturbative fluctuation that could put the field in
Regions I–III in the true-vacuum basin, and make an end to inflation possible.

3.2. Measure B: Uniform

Measure B draws initial field values uniformly; because the statistical behavior of
GRFs is translation-invariant, this is equivalent to simply choosing ϕ0 “ 0 for each newly
sampled potential function. Many of the small field models from Measure B that produce
enough inflation will be initialized very near the maximum, where fluctuations send Hubble
volumes into both conjoining half-basins. Nonetheless, we consider draws of the potential
and initial conditions as belonging to one of two classes for the purpose of the analysis
below: those initialized in either the true- (Minkowski) or false-vacuum (de Sitter) basins
of attraction. Recall that the true vacuum basin is the one in which we have artificially
shifted an already-low vacuum energy to precisely ρΛ “ 0; a false-vacuum basin is one of
the two adjacent to the true-vacuum basin, in which the vacuum energy is positive. We
only consider one transition event.

For Measure B we do not account for inflation in a slow roll interval that is not
contiguous with the initial field value. This is because those inflating intervals are already
included in the domain of Measure B, and a history in which slow roll starts higher on the
potential and begins to inflate at the top of that region does not differ observationally from
a history in which the field is initialized in that interval. Furthermore, it is less clear cut than
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in Measure A how we should sample the initial field velocity to make the determination of
whether the dynamics quickly reduce to slow roll at a lower site on the potential.

3.2.1. Initialized in a True-Vacuum Basin
Stochastic Eternality

In the lefthand plot in Figure 3, we depict rates of incidence of stochastic eternal
inflation among models with greater than 70 e-folds, using epektacratic field scale wighting
and binning with respect to the scalar spectral index and tensor-to-scalar ratio. Stochastic
inflation is most prevalent in the vicinity of ns « 0.963 and r « 0.15; this corresponds to
the quadratic limiting behavior in large field models, where the field excursion during a
Hubble time goes like m´1

h making stochastic inflation more likely. Even then, fewer than
1% of models from all mass scales in the population are stochastically eternal.

1 
 

 
 
 
 
 
 
 
 

 
Figure 3. 95% confidence upper bound on the rate of incidence of stochastic inflation in Measure B
binned with respect to scalar tilt (ns) and tensor-to-scalar ratio (r), with at least 70 e-folds (left) and
200 e-folds (right) of slow roll inflation, subject to epektacratic field scale weighting.

Rates of stochastic eternal inflation presented here may be suppressed because we
require merely that εV , |ηV | ă 1 to assume slow roll takes place in the full dynamical
evolution, rather than the strong versions of those inequalities. Although the attractor
behavior of the full equations of motion leads to authentic slow roll, this choice could be
letting through models that accrue e-folds in intervals with larger V1pϕq or V2pϕq than
would be admissible if the strong inequalities were enforced at the initial field value.
If we turn our attention to regions of parameters space in which the scalar index ns «
1´ 6εV ` 2ηV is close to 1, it suggests that the potential slow roll parameters are small
enough to satisfy the strong inequality at least near the horizon exit scale. To compensate
for this possible bias and to showcase dependence of the results on e-fold count, we also
show rates conditioned on at least 200 e-folds in the plot on the right of Figure 3.

In our region of parameter space around ns “ 0.96 and r À 0.7, the effect of requiring
more e-folds is to only slightly increase the incidence rate of stochastic eternal inflation. All
of the dramatic effects of conditioning on more inflation occur for redder scalar spectra than
are viable based on Planck data. Observables ns and r are highly correlated along contours
of equal probability of eternal inflation in the lower left region of both plots, corresponding
to red spectra and small tensor perturbations. This can be understood in terms of both
quantities’ dependence on εV , which can be made to appear in the stochastic inflation
criterion Equation (1). It seems that before conditioning on the amplitude of the scalar
spectrum, our region of this parameter space represents a local minimum for probability of
eternal inflation in this range.

Figure 4 depicts the rates of incidence of stochastic eternal inflation among successful
models with small scalar amplitude Qs ď 10´3 (our maximum likelihood value is close to
10´4.3), as well as the number of models aggregated in each bin—to inform where sample
size is determining the estimate. Eternal inflation is suppressed considerably for scalar-
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dominated spectra after conditioning on small scalar perturbations, with rates smaller
by up to 3 orders of magnitude compared to the sample of models that merely produce
enough inflationary e-folds. Our region of parameter space continues to appear as near a
local minimum for the probability of stochastic eternal inflation.

Figure 4. (Top) Total number of successful models with Qs ă 10´3 in each bin. (Bottom) 95%
confidence upper bound on the rate of incidence of stochastic inflation in Measure B, binned with
respect to scalar tilt (ns) and tensor-to-scalar ratio (r), with at least 55 e-folds (left) and 200 e-folds
(right) of slow roll inflation, conditioned on scalar amplitude Qs ă 10´3 and subject to epektacratic
field scale weighting.

Topological Eternality

Topological eternal inflation can come about in Measure B, if the field value is ini-
tialized close enough to the maximum that fluctuations are likely to result in at least one
Hubble volume with a field value on the other side of the barrier. In Figure 5, we depict
bounds on the incidence rate—among successful models and those conditioned further
on spectral features—of those in which the uniformly sampled initial field value lands
close enough to the maximum that fluctuations are likely to result in at least one Hubble
volume on the other side of the barrier after a Hubble time. In fewer than 1 in 104 models
with a small scalar amplitude do we find this condition to hold. The only sample in which
we get positive events is that of all models with Ne ą 70; in that sample, the incidence of
topological eternal inflation does exhibit a dependence on mv, with higher potential scales
yielding higher rates of topological inflation. This follows from the fact that the size of
fluctuations goes like m2

v, making it easier to attain large fluctuations that carry the field
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over the peak. No events were observed in the population further conditioned on a viable
scalar spectral index; the bounds in that sample are determined entirely by sample size.

Figure 5. 95% confidence lower bound on incidence rate of models with high probability of topologi-
cal inflation, among models in Measure A with 70+ e-folds. In these models, quantum fluctuations
are comparable in size to |ϕ0 ´ ϕmax|, allowing Á 1 Hubble volume to descend toward the opposite
local minimum after a Hubble time with high probability, and produce a persisting topological defect.
Each line represents one batch of simulations with particular mv, mh (only showing batches with at
least one positive event per sample or a sample size of 100). All models within a vertical stratum
have the same value of mh (the center of the stratum on the left axis); vertical position within the
stratum reflects log10 mv (range shown on the right axis). In the left plot, green data points are derived
from samples conditioned on ns and α; the purple 90% confidence intervals are conditioned only on
minimal e-folds; and the shaded bars indicate 90% confidence intervals taking models from all values
of mv as belonging to one sample. In the right plot, the blue lines show 90% confidence intervals
derived from samples of successful models conditioned further on Qs. Darker lines reflect samples
that have at least one non-stochastic model in the sample, whereas lighter points are determined only
by sample size.

Figure 5 does not account for models that are initialized in a stochastic inflation interval
contiguous with the maximum, but in which fluctuations from the initial field value are
not likely to reach all the way to the maximum after one elapsed Hubble time. In such
models, the field would gradually climb the potential as it undergoes stochastic eternal
inflation, eventually to reach the peak and descend down the other side—also becoming
topologically eternal.

3.2.2. Initialized in a False-Vacuum Basin

When ϕ lands in a basin with a positive vacuum energy adjacent to the Minkowski
basin, we assume that large regions come to occupy the false vacuum. We compute the
Coleman–de Luccia instanton profile interpolating between the starting basin and “true”
vacuum (Since the domain of the Gaussian random field is infinite, one can always find a
lower energy vacuum. We limit consideration to the vacua to either side of the Minkowski
basin.), or determine that a CDL solution does not exist. When accounting for gravity,
the CDL instanton terminates on the slopes of the barrier rather than precisely at the
local minima; so if a solution exists we then initialize ϕ with a new starting position at
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its terminus on the slope on the true-vacuum side of the barrier, and tally e-folds below
that point. If a CDL instanton does not exist, then the Hawking–Moss instanton gives the
largest contribution to the transition amplitude between de Sitter and Minkowski basins.
This happens when the top of the barrier is sufficiently flat [15]

Vpϕtopq Á m2
P V2pϕtopq (15)

in which case ϕ following a Euclidean classical trajectory either cannot build up enough
kinetic energy to close the bubble on the false-vacuum side or loses it to friction. Well above
the Planck scale mh “ 1, it is therefore safe to assume that the transition is Hawking–Moss.
In that case, ϕ is re-initialized at the top of the barrier, as in Measure A.

Having landed in the false vacuum basin, generically eternal would mean that among
models that produce observables consistent with Planck spectral fit and ρΛ “ 0 after
tunneling, the transition rate is generically below the threshold given in Equation (3) or
generically Hawking–Moss (leading to stochastic and topological inflation irrespective of
the tunneling rate; there is always inflation at the peak when HM dominates).

Coleman–de Luccia

When CDL instantons exist, transition rates generically fall below the eternal inflation
upper bound, as shown in Figure 6. The distributions for different energy scales of inflation
differ by a translation in the log domain, scaling with m4

v. Vertical mass scales on the order
m4

v “ Op10´5q would correspond to a point where the distribution has support in the
vicinity of 9{4π and the determination of genericity becomes more nuanced, but that is far
above the range where small scalar and much smaller tensor curvature perturbations are
likely to be found at horizon exit. So models with a CDL transition are generically eternal
within the scope of this analysis. The challenge is to get enough e-folds on the other side of
the barrier for a CDL transition to precede inflation, and to characterize statistical behavior
of the tunneling rate among those very rare events.

Figure 6. The bimodal distribution of SE,bkg ´ SErφprqs for Coleman–de Luccia transitions in models
initialized in the false vacuum, for mv “ 0.0025 (red) and 0.0042 (blue). The normalized counts for
values of the tunneling suppression are plotted with respect to its absolute value; the solid lines
correspond to slow tunneling, for which inflation is eternal, while the dashed lines are fast tunneling.

The distributions of the number of e-folds after Coleman–de Luccia tunneling for
γ “ 0 and γ “ 4 (referring to the shape parameter in Equation (10)), accounting for all
field scales with epektacratic weighting, are shown in Figure 7. Among models aggregated
from all field scales mh and for which the field value after tunneling satisfies slow roll, the
distribution resembles log-normal for γ “ 0 in Equation (10), with an expectation value
of less than one e-fold (in effect, no inflation). Addi shown are the expectation values and
2-σ ranges (assuming log-normal) for populations sampled with a single field scale and
γ “ 0, along with the number of standard deviations between the mean and 55 e-folds
where horizon exit of CMB modes could occur. For γ “ 4, practically the entire distribution
is localized below 1 e-fold—yielding no inflation post-transition.

Determining the rate of non-eternal inflation comes down to the distribution of the
tunneling rate among models with CDL instanton solutions that are just on the threshold of
not existing—with the field landing very close to the maximum, but outside the stochastic
inflation regime around the peak. For this reason, we consider models in which the CDL
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solutions dominate as effectively not contributing to the population of observationally
viable models, for the purpose of determining whether eternality is generic under Measure
B. For a similarly defined measure in which initial field values in the true vacuum basin
are excluded, one would need a way of sampling such very rare potential shapes that give
sufficient inflation after a CDL tunneling event, in order to characterize the prevalence of
eternal inflation among small field models.

Figure 7. (Top) Distributions of the number of slow roll e-folds in the true vacuum basin after CDL
tunneling, for two values of the shape parameter γ characterizing the potential in Equation (10).
(Bottom) Moments of the distribution of number of e-folds after CDL tunneling when inflation ends
in the tunneled-to basin, as a function of mh. The blue plot (solid line with circular markers, left axis)
shows the mean of log10 Ne and the shaded 2-σ confidence interval. The red (dashed line with square
markers, right axis) is the number of standard deviations between the mean and log10 55.

Hawking–Moss

We take the Hawking–Moss calculation to give the rate at which Hubble volumes
occupying the false vacuum basin thermally fluctuate into the true-vacuum basin, with
energy comparable to the height of the barrier [15]. Since the potential is only sampled
at the false vacuum and at the top of the barrier, the Hawking–Moss transition rate is
independent of mh; so we can expect this same distribution at higher field scales as well, in
regions where Qs is likely to match observation. Tunneling rates only begin to approach the
fast-tunneling regime when the potential approaches the Planck scale. This corresponds to
an enormous scale for the inflaton mh „ 106 in order to get a small enough scalar amplitude.

The question of whether eternal inflation can be avoided then comes down to how
we interpret the fast-tunneling Hawking–Moss instanton. It is not eternal on the usual
false-vacuum grounds, but supposedly ends with the field everywhere in a Hubble sized
region sitting atop the maximum, where we would expect that it would fluctuate away
from the peak into the true vacuum basin and give topological inflation.

3.3. Measure C: Hilltops

Suppose the inflaton field value in an initial Hubble volume is drawn at some char-
acteristic distance in field space—say H{2π, or one standard deviation for Hubble-scale
fluctuations—away from the local maxima of potential barriers randomly sampled by the
procedure defining Measure A. If the field space interval around the maximum in which
fluctuations dominate is narrower than this gap, then the model has a chance to avoid
stochastic and topological inflation. How often is stochastic eternal inflation localized
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entirely within that neighborhood of the peak, with enough inflation lower on the potential
to solve the horizon problem? In principle, some Measure A models with inflation at the
peak can be excluded from Measure C, if fluctuations are larger than the inflating interval
around the maximum that includes the would-be horizon exit scale.

A large field widens the fluctuation-dominated interval near the peak, but also cor-
relates with tall peaks in regions of model space in which scalar curvature perturbations
reflected in the CMB are the right size; the latter leads to larger fluctuations around the
peak. Approximating as quadratic the neighborhood of the potential around the maximum
in which fluctuations dominate, we can get a sense for when quantum fluctuations are
larger than the width of that stochastically inflating interval. Evaluating Equation (1) at a
field value separated from the maximum by the width of Gaussian fluctuations δϕ, we have

pVpϕpeakq ` 1
2 V2pϕpeakq δϕ2q3{2 ą 6.6

∣∣∣V2pϕpeakq δϕ
∣∣∣M3

P

Taking quantum fluctuations of size δϕ2 “ H2{4π2 “ 2
3π m4

vm2
P f pxq, where x is the

dimensionless field value at the peak,

m6
v

˜

f pxq ´ 1
3π

m4
v

m2
h

f pxq f 2pxq
¸3{2

Á 6.6
16π2

?
3

m6
v

m2
h

f 2pxq
b

f pxq

and assuming typical values for the shape function of order unity, f pxq “ f 2pxq “ 1, we
obtain in terms of the mass scales characterizing the potential:
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Considering the large field regime, we set mh „ 106 m2
v to delineate the region in

Figure A4 where the scalar amplitude Qs most often takes its value modeled from measured
data. We find that 1-σ fluctuations deposit the field beyond the breakdown of the stochastic
inflation criterion when mv À 10´3.4 or mh À 1—just about where the highly localized
linear trend begins in Figure A4.

So granted the above assumptions we should expect a comfortably wide site of stochas-
tic inflation at the peak, among large field models that are most likely to give the observed
amplitude of scalar curvature perturbations. Then, what explains the hook-shaped incur-
sion of the contours of relatively low incidence of peaky stochastic inflation in Figure 8,
approaching ns „ 0.96 from below in the large-mv and large-mh regions? These plots show
the rate of incidence of stochastic inflation among Measure C models respecting Planck 2018
constraints on the scalar and tensor amplitudes, binned with respect to the scalar index and
the vertical or horizontal mass scale.

Large-field models producing a tensor-to-scalar ratio less than 0.07 are those in which
horizon exit occurs far from the quadratic minimum where εV is small; for the scalar spectral
index to also be more red than the quadratic limit of 0.96, the second potential slow roll
parameter ηV must be larger at horizon exit, correlating with a narrow stochastic inflating
interval around the peak. Inflation yielding a redder spectrum with small scalar and tensor
perturbations thus typically breaks the approximations used in the above calculation,
with f 2pxq atypically large. Entry of higher order terms that would break the quadratic
approximation coincides with breakdown of Equation (1). (Taking into account that the
field excursion is in fact greater than Equation (1) assumes when V2pϕq is significant, the
stochastic eternal interval is actually smaller; so the above estimate of the lower bound on
mv is conservative—more cheritable to stochastic inflation.)
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become smaller than the eternal inflation interval, and stochastic inflation becomes more
prevalent below log10 mv „ ´3.5. Below mv „ 10´4 or mh „ 0.2, most models with small
Qs are far too red, and we lack sufficient simulated data in the range of Figure 8 to place
bounds. When binning with respect to field scale, incidence rates for stochastic inflation
are consistently low below mh „ 1—in the realm of common but not generic.

Figure 8. (Left) Bin counts. (Right) 95% confidence lower bound on the rate of incidence of models
with fluctuations smaller than the width of the stochastic inflation interval around the maximum,
under epektacratic weighting in Measure C, binned with respect to scalar tilt and (top) vertical or
(bottom) horizontal mass scale, and conditioned on r ă 0.064, and ´4.5 ă log10 Q ă ´4.1. The grid
points indicate the centers of bins with a non-zero number of non-eternal models. Where grid points
are absent, the reported bound is determined only by sample size; a small, uninformative lower
bound in regions with few samples.

So for the range 0.955 ă ns ă 0.975, eternal inflation peeks into the realm of genericity
(at ą 95% incidence) by the stochastic mode for vertical mass scales in the middle of our
range. Figure 9 shows rates of stochastic inflation conditioned on ´4.5 ă log10 Q ă ´4.1,
and binned with respect to scalar spectral index and tensor-to-scalar ratio, including models
from all mass ranges represented in Figure A4 with epektacratic weighting. Stochastic
inflation is generic for all spectral index values when r ą 0.1, including all mass scales or
just those less than mP.

Figure 8. (Left) Bin counts. (Right) 95% confidence lower bound on the rate of incidence of models
with fluctuations smaller than the width of the stochastic inflation interval around the maximum,
under epektacratic weighting in Measure C, binned with respect to scalar tilt and (top) vertical or
(bottom) horizontal mass scale, and conditioned on r ă 0.064, and ´4.5 ă log10 Q ă ´4.1. The grid
points indicate the centers of bins with a non-zero number of non-eternal models. Where grid points
are absent, the reported bound is determined only by sample size; a small, uninformative lower
bound in regions with few samples.

In the intermediate zone ´3.5 ă log10 mv ă ´3, inflation no longer necessarily ends
in the quadratic regime, but peaks that have atypically high energy can, and they have
a better chance of scoring a selection boost. As the energy scale shrinks further, without
much new selection pressure on mh coming from the Qs constraint, fluctuations once again
become smaller than the eternal inflation interval, and stochastic inflation becomes more
prevalent below log10 mv „ ´3.5. Below mv „ 10´4 or mh „ 0.2, most models with small
Qs are far too red, and we lack sufficient simulated data in the range of Figure 8 to place
bounds. When binning with respect to field scale, incidence rates for stochastic inflation
are consistently low below mh „ 1—in the realm of common but not generic.

So for the range 0.955 ă ns ă 0.975, eternal inflation peeks into the realm of genericity
(at >95% incidence) by the stochastic mode for vertical mass scales in the middle of our
range. Figure 9 shows rates of stochastic inflation conditioned on ´4.5 ă log10 Q ă ´4.1,
and binned with respect to scalar spectral index and tensor-to-scalar ratio, including models
from all mass ranges represented in Figure A4 with epektacratic weighting. Stochastic
inflation is generic for all spectral index values when r ą 0.1, including all mass scales or
just those less than mP.
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Figure 9. 95% confidence lower bound on the rate of incidence of stochastic inflation in Measure
C, binned with respect to scalar tilt and tensor-to-scalar ratio, and conditioned on scalar amplitude
´4.5 ă log10 Qs ă ´4.1. The left plot includes all mass scales with epektacratic weighting. The right
includes only mh ď 1.

For ns „ 0.96, at most 95% of models from Measure C with r „ 0.03 lead to stochastic
inflation. Moving toward r „ 0.01, the bound drops toward 70%; stochastic eternal inflation
is still likely, but not generic. Although these quantities are measured only in our past light
cone, we can reason about the generality of eternal inflation (given the measure) outside our
light cone if we can assume that the inflaton potential does not vary from place to place. An
inflaton field trajectory with the measure’s initial condition that produces these observables
in our light cone would likely have passed though an epoch of stochastic inflation, which
terminated in our observable universe but leads to eternal inflation on larger scales.

4. Concluding Remarks

Clearly the question “Is inflation generically eternal?” cannot at present have a single
definitive answer, due to the ambiguity in the choice of a measure over viable inflationary
cosmologies that may or may not be eternal. Furthermore, it is unclear whether it is even
sensible to seek a single verdict for any particular measure, akin to the top-down probabilities
discussed in [25]. Our framing offers a bit more latitude for exposition: “By what modes
and to what extent is inflation generically eternal with respect to some simple measures?”

To address these questions, we implemented measures in which the potential is
a Gaussian random field and the inflaton is initialized according to either a uniform
distribution (B), a weighted sampling of local maxima (A), or a weighted sampling of
field values displaced Hmax{2π from local maxima (C). We simulated inflationary histories
with potentials and initial conditions drawn from these measures, and analyzed rates
of occurrence of the three modes of eternal inflation among subpopulations of models
conditioned on matching various observables from the Planck 2018 survey of the Cosmic
Microwave Background.

We found that topological eternal inflation is only clearly generic when initializing at
the top of the barrier, an initial state from which it is nearly inevitable that an inhomoge-
neous configuration interpolating across the barrier will come about. Stochastic inflation
is generic at large field scales in Measures A, and in pockets of the space of mass scale
parameters in Measure C; it is generically absent in all regions of the space of CMB spectral
parameters examined among models conditioned on minimal inflation. The simulated data
suggest that transitions between de Sitter minima in viable cosmological histories—whether
Coleman–de Luccia or Hawking–Moss—generically result in eternal inflation.



Sci 2022, 4, 23 22 of 30

Further Research

We were unable to address the typicality of eternal inflation at small field scales—
less than an order of magnitude below the Planck mass. One could take an importance
sampling approach to probe the measure over viable small field models and very rare false
vacuum transitions, rather than sampling the measure’s native distribution and waiting
low-probability samples to appear by chance.

In higher dimensional potentials spanned by multiple scalar fields, there can be a
reduction in the effective field space dimension experienced by a trajectory as it approaches
a minimum. For particular multfield models with a lot of extra symmetry, multifield
dynamics reduce to effectively single-field well before the era of inflation that influences
what we observe. Does a measure on initial conditions naturally emerge given statistical
characteristics of the landscape, identifying where on the slope the potential becomes
effectively one-dimensional? The CosmoTransitions package includes code for computing
Euclidean action-minimizing trajectories in multifield potentials, and could be used to
investigate false vacuum inflation in N-D Gaussian random fields.
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Appendix A. Monte Carlo Methods Continued

Appendix A.1. Simulation Design

For each instance toward building up the distribution, the steps are as follows:

1. Initialization

(a) Sample a 1-D Gaussian random field f pxq according to Equation (8). From this
and constants mv, mh construct the potential Vpϕq according to Equation (9).

(b) Initialize the inflaton at ϕstart according to one of the Measures A, B, or C
outlined above.

(c) Determine the potential energy ρΛ of the minimum of the starting basin and in
one neighboring basin in both directions. (For Measure A, the starting basin
adjacent to the initial peak is chosen randomly weighted by width.) If |ρΛ|
in any basin in this search space is below a threshold, shift the potential so
that ρΛ “ 0 in that basin. If ρΛ is negative and less than this threshold in the
starting basin, abort.

2. Instanton Pre-selection
Computing instanton profiles is time consuming, so we take the following steps to
determine if a tunneling event is likely to be followed by sufficient inflation to produce
a possibly observable universe in another basin of the potential.

(a) If initialized in the true vacuum with ρΛ “ 0, continue to Equation (4).
(b) If the thin-wall or Hawking–Moss approximations hold, continue to Equation (3).
(c) Taking the cutoff CDL instanton terminus on the true-vacuum side ϕedge to

coincide with Vpϕedgeq “ 0.05 VT ` 0.95 Vbar, compute the maximum number
of e-folds of inflation accrued over any field space interval in which the poten-
tial slow roll conditions are met between ϕedge and the true minimum. If the
maximum e-fold count is less than 70, abort.
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3. Check for Quantum Tunneling

(a) If the thin-wall approximation is strongly valid or mh " mP (Hawking–Moss
eminent), compute the transition rate, otherwise

(b) Compute the Coleman–de Luccia tunneling profile; determine the instanton
terminus on the true-vacuum side; compute the number of e-folds of infla-
tion, assuming inflation takes place anywhere below the terminus where the
potential slow roll conditions are weakly met (εV , ηV ă 1q.

4. Characterize Slow Roll

(a) Look downhill from ϕstart for breakdown of the slow roll approximation, ϕend.
(b) Compute the number of e-folds Ne in the current basin. If Ne ă 70, skip to

Equation (6).
(c) Find ϕexit, the field value at the horizon exit scale for CMB fluctuations, taken

to be 55 e-folds before the end of inflation. Our e-fold cutoffs (70 for successful
inflation, 55 for imprinting of CMB fluctuations) of course depend on the
fiducial reheating model. One could include those models in the input space,
but we opt not to include that freedom in this analysis as doing so would likely
obscure our conclusions.

5. Check for Eternal Inflation

(a) Evaluate the stochastic inflation criterion Equation (1) between ϕstart and ϕend
in each basin.

(b) Check the second potential slow roll condition at all local maxima along the
trajectory; compare to the upper bound for topological inflation.

(c) If a transition into the basin with ρΛ “ 0 is followed by enough e-folds,
compute the transition rate λ and compare to the upper bound in Equation (3).

6. Data Collection
Record observables if inflation ends with Ne ą 70 in a vacuum with ρΛ ! 1, along
with indicators for eternal inflation:

pobs “ pQs, r, ns, α, nt, δρ{ρ, log|Ω´ 1|q (A1)

peternal “ pNs, xNe,stochy, bt, λfv, HF, bHMq (A2)

The parameters in Equation (A1) are the same as those defined in Section 2.2.

Appendix A.1.1. Criterion for Inflation Discontiguous with an Initial Peak

To determine if 9ϕ comes in below the slow roll attractor bound Equation (12) at the
high potential energy end of a field space interval in which εV , ηV fall below 1, we integrate
the coupled equations of motion for the homogeneous scalar field and the metric (only the
scale factor aptq)

:ϕ “ ´3Hpa, 9aq 9ϕ´V1pϕq (A3)

:a “ 8πGa
´

9ϕ2 ´Vpϕq
¯

(A4)

backward in time, with final conditions ϕ “ ϕsr, 9ϕ “ sgnpϕsr ´ ϕ0q ˆ
a

Vpϕsrq.
If the solution overshoots the peak in the past, it would mean a velocity in the direction

of ϕsr at some finite initial time. If the system were conservative, we could safely assume
that as we dial that initial velocity at the peak down to zero, 9ϕ approaches a value less
than

a

Vpϕq at ϕsr. The presence of Hubble friction complicates things somewhat, as it
becomes possible that reducing this initial field velocity also reduces friction to the point
that one gets a greater field velocity where slow roll begins. This can be tackled iteratively
by a method of overshoot-undershoot, integrating backward in time trying to land with
ϕ atop the peak at t Ñ ´8. More expeditiously, in the case of an overshoot we can then
initialize with a small field velocity at the peak in the direction of the true-vacuum basin,
and assume nothing changes as that small velocity vanishes.



Sci 2022, 4, 23 24 of 30

Figure A1. Examples of models drawn from Measure A that fall into subset D (as defined in
Section 3.1). The potential on the left represents the spirit of successful inflation taking place in
field space interval discontiguous with an initial non-inflating peak. The potential on the right has
ηV ă ´4{3 at the peak, but the curvature quickly shrinks to within the slow roll attractor; initialized
with a small field velocity, inflation really continues uninterrupted between the peak and the interval
in which the potential slow roll conditions are met, with the kinetic energy never rivaling Vpφq. Both
models are treated the same in our simulations, raising the question of how many such models are
actually free of stochastic eternal inflation.

Appendix A.2. Instanton Computation

Treating transitions between de Sitter minima, we require the instanton profile pϕpξq, ρpξqq
to determine where the field is to be initialized on the true-vacuum side of the barrier after
the transition. We also need the transition rate to compare the rates of bubble nucleation or
stochastic ascent of the peak against the expansion rate.

Appendix A.2.1. Instanton Pre-Selection

As discussed in Section 1.1.2 and illustrated in Figure A2 from simulated data, the
Hawking–Moss instanton dominates the transition between de Sitter minima if the top of
the barrier is sufficiently flat [15]:

Vpϕq{m2
Pl " V2pϕq ùñ mh " p8πq´1{2 (A5)

Figure A2. Fraction of simulated models in which a Coleman–de Luccia instanton solution exists. At
larger horizontal mass scales (flatter potential peaks), the Hawking–Moss instanton is dominant.

Well above the scale mh “ p8πq´1{2, it is safe to assume that the transition is Hawking–
Moss; so the transition rate is closed-form and easy to compute.

At field scales much smaller than MP, we enter the thin-wall regime in which the
CDL instanton dominates. The thin-wall instanton tends to terminate very near the true
vacuum, traversing the barrier over a small interval in the Euclidean radial coordinate
relative to H´1

F .
In the intermediate regime around mh “ p8πq´1{2, it may not be an easy determination

which instanton contributes most to the transition; we must compute the profile. In order
to reduce program time allocated to computing transition rates in this regime, we first
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perform a check that inflation can start and end in the adjacent basin and that the maximum
amount of inflation likely to occur is sufficient to produce Ne ą 70. If the effective mass is
such that 0.1 ă pm2

h,eff ” V{V,ϕq ă 1, we determine ϕedge such that

Vpϕedgeq “ 0.05 VT ` 0.95 Vbar

and take it as our trial starting point in the new basin. We search down the slope for the
start (if the potential slow roll conditions are not already met at ϕedge) and end of slow roll
(εV , |ηV | ă 1), and compute the number of e-folds that elapse in that interval assuming slow
roll. If it is greater than the 70 e-folds needed to obscure any potentially observable relics
of the transition, then we proceed with the full instanton calculation to determine where
precisely the field is deposited. Otherwise, we assume that a transition does not result in
an observationally viable universe, and so does not inform fmpp | pobsq; we discard and
continue to the next randomly drawn potential function.

Appendix A.2.2. Obtaining the Profile

To determine the action-extremizing instanton profile for a given potential Vpϕq,
we use the algorithm employed in the CosmoTransitions package published with [26],
modified to accommodate parallel processing in Matlab. The algorithm assumes initial
conditions 9ϕp0q “ ρp0q “ 0 with ϕp0q on the true-vacuum side, and takes the endpoint of
the trajectory to occur at pϕ, 9ϕq “ pϕF, 0q (came to rest at the false vacuum) or pρ, 9ϕq “ p0, 0q
(geometry closed with no discontinuities). The former stopping criterion is only possible in
the absence of gravity, though it can be approached in the thin-wall limit. If the geometry
closes (ρpξ ą 0q “ 0) with 9ϕpξq ‰ 0, then that solution is singular and not admissible. The
steps of the algorithm are as follows:

1. Guess a starting field value on the true-vacuum side of the barrier.
2. Integrate equations of motion for the scalar field ϕpξq and Euclidean radius ρpξq of

the bubble as a function of the radial coordinate ξ.
3. Stop integrating when one of the follow events occurs:

(a) ϕpξq approaches ϕF with 9ϕpξq « 0 (Converge)
(b) 9ϕpξq approaches 0 with ϕ « ϕF or 9ρpξq « 0 (Converge)
(c) 9ϕpξq changes sign with ϕ ‰ ϕF (Undershoot)
(d) ϕpξq passes ϕF (Overshoot)
(e) 9ρpξq approaches ´1 with 9ϕpξq « 0 (Converge) or 9ϕpξq ff 0 (Overshoot)
(f) ρpξq changes sign (Converge)

4. If converged, we’re done; return the profile.
5. If within a tolerance value of the top the barrier, report a single data point that fully

characterizes the Hawking–Moss profile.

tϕ, 9ϕ, ρ, 9ρ, :ρu
´

π
2 w´1

top

¯

“
!

ϕtop, 0, w´1
top, 0, ´wtop

)

6. If the integration overshoots, move the guess closer to the maximum; if it undershoots,
move the guess closer to the true minimum.

7. Go to Step 2.

Appendix A.2.3. Transition Rates with Gravity

The tunneling rate in terms of the Euclidean action for the bubble and for the de Sitter
background is computed as

λH4
F « p 1

2 σR̄q2 exppSE,bkg ´ SE,bubbleq (A6)

where we take R̄ “ pR0 ` R1q{2 for the purpose of computing the prefactor, σ is the bubble
tension, and p 1

2 σR̄q2 is the approximate (thin-wall) prefactor. Beyond the outer radius R1,
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the bubble and the de Sitter background have the same geometry and field configuration,
so those contributions cancel out when computing the transition rate.

For thin-wall bubbles, the initial bubble radius R0 defines the whole geometry; for all
bubbles, there is a finite radius inside of which 9ϕ “ 0. To compute the transition rate from
the profile, we first compute the curvature of the bubble interior

wint ”
b

κ
3 VpϕpR0qq

When wint “ 0 the geometry of the interior is Minkowski. (The instanton profile
typically terminates at a value ρ ą 0, where the field velocity dϕ{dξ effectively vanishes.)
The vacuum in the tunneled-to basin is always Minkowski for the simulation settings
chosen for this analysis; however, large-H de Sitter bubbles are also supported in the code,
and may result when a sharply peaked barrier is adjacent to a flat interval on the potential
in which the potential slow roll conditions are satisfied. When the vacuum energy in the
interior is positive, the radius ρpξq of an anulus on the 4-sphere as a function of the distance
from the pole goes like ρpξq “ w´1

int sinpwintξq. The term contributing to the Euclidean
action from the bubble interior are then

SE,int,ϕ “
ż R0

0
dξ 2π2ρpξq3 Vpϕp0qq “ 3VintpR0qw2

int
κ

(A7)

for the field, and in the de Sitter case

SE,int,ρ “
ż R0

0

2π2 dξ

κwint
sinpwintξq

´

´ sinpwintξq2 ` cospwintξq2 ´ 1
¯

“ ´6VintpR0qw2
int

κ

for the background geometry. But this is twice the magnitude and opposite in sign to the
field contribution, so within the inner radius of the bubble the contribution is equal to
´SE,int,ϕ. For Hawking–Moss instantons, the “bubble interior” covers the whole compact
space, and we leave out the prefactor in Equation (A6) as there is no analogue to a bubble
wall to be perturbed in the standard calculation. Likewise, the background de Sitter
configuration consists entirely of the bubble “exterior.”

With the interior and exterior covered, we add the contribution from the bubble wall
where Vpϕq is not constant and ρpξq takes a different form. We integrate the full form of
the Euclidean action from the inner radius to the outer radius.

Appendix A.3. Statistical Methods

Appendix A.3.1. Mass Scale Weighting Schemes

When computing statistics, we adopt one of the following weighting schemes to
aggregate simulated models sampled from an array of mass scales mv and mh:

• The epektacratic weighting scheme (rule by expansion) samples an equal number of
potentials for each pairing of mass scales mv and mh, and lets them succeed or fail
at producing sufficient e-folds of inflation. The total population is aggregated from
successful inflation models at all mass scales, and that population is used to determine
rates. Naturally this scheme will tend to give more representation to large field models.

• The democratic scheme gives every mass pairing within the specified range equal
weight in informing fmppeternal | pobsq in Equation (7), regardless of how common or
rare it is for models comprising each to produce enough inflation. From each pairing,
we sample as many potentials as it takes to get an equal number of successful models,
or we give lower-expansion mass pairings extra weight to the same effect.

Appendix A.3.2. Rate Estimation

We would like to adopt something like a uniform prior on the rate of incidence of
eternal inflation (denoted λ) in each bin. However, it is not obvious whether we should
work in terms of λ or log λ. (Are we ambivalent with respect to the rate itself, or with respect
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to its order of magnitude?) As a middle road, we adopt the Jeffreys uninformative prior
pJpλq 9 Betapλ; 1

2 , 1
2 q for the rate parameter of the binomial distribution, which is invariant

under reparameterization between the linear and log domains of the rate parameter. We
would then take the maximum likelihood value (using the uninformative prior) as our
estimate of the incidence rate. However, for bins in which the number of models with or
without a given mode of eternal inflation is zero, the maximum likelihood rate is 0 or 1, and
does not account for information we have from the sample size of that bin. For this reason,
we often report a 95% confidence upper and/or lower bound on the incidence rate λ in our
contour plots, which includes sample size information and makes for smooth contours in
regions of parameter space in which positive events may be scarce. (Naturally, in the case
of zero positive events the bound is determined entirely by the sample size.)

Figure A3. Distributions of log likelihood ratios, comparing maximizing over one rate parameter
versus independent rate parameters for each mv, from Monte Carlo simulation assuming the former
null hypothesis. Ratios for the simulated data are indicated in black. Only for mh “ 0.25, with p-value
0.016, should we consider rejecting the hypothesis of a well defined rate of incidence of delayed
non-stochastic inflation independent of mv.

Appendix A.3.3. Testing Scale Invariance of Stochastic Eternal Inflation in Measure A

It looks as though varying mv has no effect on the rate of stochastic eternality among
Measure A models with successful inflation and those further conditioned on ns and α.
This would mean that once we have the primary inflation epoch starting on a “shelf” below
the peak (as depicted in Figure A1), it is never borderline between stochastically eternal
and non-eternal; if it were, then increasing mv while holding mh constant would have the
effect of lowering the non-eternality rate represented in the left of Figure 2. We cannot
infer independence of mv without doing a statistical test; let our competing hypotheses
be (H0) for given mh, all batches conditioned on mh with varying mv have the same rate,
with deviations owing to chance; and (H1) the rate parameter varies with mv. We test
this hypothesis using likelihood-ratios, with the numerater the likelihood maximized over
a single rate parameter for all mv, and the denominator maximized over separate rate
parameters for each batch. (If si events are observed in a sample of size ni, with i indexing
values of mv, then we have for the log-likelihood ratio

τ “ 2 log
`0

`1
`h “

$

’

&

’

%

max
p

ś

i Betapp, si ` 1, ni ´ si ` 1q, h “ 0

max
tpiu

ś

i Betappi, si ` 1, ni ´ si ` 1q, h “ 1
(A8)

We then compute the distribution over likelihood ratios in samples with the same
sample sizes as the original batches, given the single rate that maximized likelihood in the
null hypothesis.) We found that generally we cannot reject the null hypothesis with an
alpha of 0.01.

Since we cannot conclude that changing the scale of the potential in this range has
an effect on the rate of stochastic inflation, we also depict combined results taking models
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from the full range of mv (including mass bins with no positive events) as belonging to
one sample.

Ppm P D1 | m P SX tmhu X tns, αuq
These are the shaded bars in the left plot of Figure 2.

Appendix B. Matching Observables

We are most concerned with the subpopulation of observationally viable inflation
cosmologies. Here we depict how those models are distributed within our window onto
model space (rectangular in the mass scales mv and mh). These results have only to do with
ordinary inflation, so they are roughly commensurate those presented in [10] for Measures
A and B.

Appendix B.1. Measure A

Figure A4 depicts the 95% confidence upper bounds on marginal rates of incidence for
parameters describing the CMB power spectrum falling within Planck 2018 68% confidence
intervals, calculated by the procedure described in Appendix A.3. Attending to the super-
Planckian regime mh Á 3: note the positive correlation of mass scales along tightly spaced
contours defining equal rates of incidence for matching of the scalar amplitude Qs. With
Qs going like m2

vmh ˆOp10´2q, one might expect that correlation to be negative—why the
inversion? Since we select for potentials with a small vacuum energy in the final basin
and then shift ρΛ to zero, inflation always ends. At this scale inflation almost always
ends very close to the minimum, where the potential is approximately quadratic and
perturbation spectral parameters take their familiar forms for Vpϕq „ ϕ2. In this regime, we
more efficiently retain small fluctuations as mv increases by delaying the end of inflation—
drawing the horizon exit scale closer to the minimum where

f pxq3{2∣∣ f 1pxq∣∣´1 „ f pxq

is already very small—rather than reducing mh to make small values of Qs „ m2
vmh more

likely far from the minimum where Vpϕq „ m4
v. Furthermore, larger field scales are more

likely to yield large inflating intervals contiguous with the maximum—bridging multiple
smaller disjoint intervals, and giving a slow roll streak starting from the peak access to
lower intervals of Vpϕq where Qs can be small. The constraints on ns are easily satisfied for
large mh in Measure A, as they encompass the quadratic limit at 55 e-folds before inflation’s
end; but a sufficiently small tensor-to-scalar ratio is hard to come by in that regime.

Quadratic limit (Ne “ 55): ns « 1´ 2N´1
e “ 0.963 r « 8N´1

e « 0.15

At intermediate scales 0.1 À mh À 1, it is no longer guaranteed that inflation continues
all the way from the maximum to the quadratic neighborhood of the minimum; peaks must
be low enough that horizon exit occurring high on the potential can still produce small
curvature perturbations. For field scales more than an order of magnitude smaller than mP,
we run into issues of sample size that limit our ability to assign a small upper bound on the
rate estimate, reflecting the difficulty of finding potentials varying on sub-Planckian scales
that produce enough e-folds of inflation. This is acceptable for our purposes in Measure
A, as only one in „ 104 successful models at that scale fall in the confidence region for the
spectral index, and so models from smaller field scales are unlikely to significantly affect
results close to home in the space of observables.
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Figure A4. Marginal distributions of spectral parameters in Measures A (left) and B (right). Fore-
ground (magma): 95% confidence upper bound on the rate of incidence of Qs falling within Planck
2018 68% confidence interval. The vertical striation pattern emerging on the left-hand side reflects the
shortage of samples with successful inflation at low mh – due to slower accrual of e-folds and the
second slow roll criterion not being met at the peak – resulting in a weaker bound. Background: rates
of incidence of ns (blue, upper) and r (green, lower) falling within Planck’s 68% confidence intervals,
with higher color saturation (darker gray) indicating a higher rate.

Appendix B.2. Measure B

Measure B produces similar distributions to Measure A in the large field regime, as
whether or not inflation starts at a maximum makes no difference if it persists along most
of the potential slope to end close to the minimum. Approaching the Planck scale mh “ 1,
we do not see a pronounced entry of models with smaller potential scales producing
sufficiently small scalar perturbations as in Measure A. Inflation is highly concentrated
around extremal points of the potential, and with no guarantee of starting in one of those
intervals, we do not get much inflation with horizon exit occurring in the intervening part
of the slope, where small mv would give small Qs.

Small sample size due to low rates of successful inflation becomes limiting at a larger
field scale than in Measure A, since we are no longer initializing in a slow roll interval in
every case. Among the successful models, the scalar tilt is significantly more likely to fall in
the observed range at small field scales, as most Measure B models in that regime feature
an extended slow roll plateau rather than merely a gently curved quadratic peak. (This
is because the probability of sampling the initial field value within a slow roll interval is
proportional to its width, and the number of e-fold counting toward the horizon problem
threshold is not taken to be infinite as in Measure A.) Meanwhile, the small tensor amplitude
becomes slightly harder to come by at large mh, as there is some probability of large-field
potentials eligible for inclusion in Measure A to be omitted from Measure B if the field
value is sampled too close to the minimum.

Appendix B.3. Measure C

Measure C departs from A only in cases for which fewer than 55 e-folds elapse beyond
a 1-σ deviation for Hubble-scale fluctuations in the direction of the Minkowski basin, so
that horizon exit occurs in the excluded interval around the peak. Since the size of those
fluctuations is typically much smaller than the field scale in this range, in those models
inflation is almost entirely localized at the maximum. So we may expect a departure in
the far end of the small-field regime, where inflation is localized at the peak and the scalar
amplitude computed in that neighborhood can be sufficiently small (lower left corner of
the lefthand plot in Figure A4).
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