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Abstract: We present a method using contour integration to derive definite integrals and their
associated infinite sums which can be expressed as a special function. We give a proof of the
basic equation and some examples of the method. The advantage of using special functions is
their analytic continuation, which widens the range of the parameters of the definite integral over
which the formula is valid. We give as examples definite integrals of logarithmic functions times
a trigonometric function. In various cases these generalizations evaluate to known mathematical

constants, such as Catalan’s constant C and 7.

Keywords: entries in Gradshteyn and Rhyzik; lerch function; logarithm function; contour integral;
Cauchy; infinite integral

1. Introduction

We will derive integrals as indicated in the abstract in terms of special functions. Some
special cases of these integrals have been reported in Gradshteyn and Ryzhik [1]. In 1867,
David Bierens de Haan [2] derived hyperbolic integrals of the form

« sinh(ax) (e‘mx(log(a) — x)k — e (log(a) + x)k)

/0 (cosh(ax) + cos(t))?2 dx

In our case the constants in the formulas are general complex numbers subject to
the restrictions given below. The derivations follow the method used by us in [3-5]. The
generalized Cauchy’s integral formula is given by

k wx
x 1 e
= — [ ——dw. 1
T(k+1) 2 /c kY @
This method involves using a form of Equation (1) then multiplies both sides by a
function, then takes a definite integral of both sides. This yields a definite integral in terms
of a contour integral. Then we multiply both sides of Equation (1) by another function
and take the infinite sum of both sides such that the contour integral of both equations are
the same.

2. Derivation of the Definite Integral of the Contour Integral

We use the method in [3]. Here, the contour is similar to Figure 2 in [3]. Using a
generalization of Cauchy’s integral formula we first replace x by ix + log(a) then multiply
both sides by ¢™* for the first equation and the replace x with —x and multiplying both
sides by e~ to get the second equation. Then, we subtract these two equations, followed

by multiplying both sides by — % to get
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sinh(ax) (e’mx(log(zx) — x)F — ™ (log(a) + x)k)
2T (k + 1)(cosh(ax) + cos(t))?

w*14% sinh(ax) sinh(x(m + w))
T 2mi /

(cosh(ax) + cos(t))? dw (2)

where the logarithmic function is defined in Equation (4.1.2) in [6]. We then take the definite
integral over x € [0, ) of both sides to get

dx

oo sinh(ax) (e’mx(log(zx) — x)F —e™(log(a) + x)k)
B /0 2T (k + 1)(cosh(ax) + cos(t))?

w= k= 14® sinh(ax) sinh(x(m + w))
T 2mi / / (cosh(ax) + cos(t))? dwdx

B w*1a% sinh(ax) sinh(x(m + w))
T 2mi / / (cosh(ax) + cos(t))? dxdw

remw %1 csc(t)a® Csc(n(m;-w)) Sin(t(m;-w))

1
=5 . 2 v
1 rw K esc(t)a® csc(@) sin(@)
S /C = dw (3)

from Equation (2.5.48.18) in [7] and the integrals are valid for a, m, k, t, and & complex and
—1 < Re(w+ m) < 0and Re(a) # 0. We are able to switch the order of integration over w
and x using Fubini’s theorem since the integrand is of bounded measure over the space
C x [0, 00).

3. Derivation of the Contour Integral in Terms of the Lerch Function

3.1. The Lerch Function

The Lerch function see section (25.14) in [8] has a series representation given by

d(z,5,0) = i (v4n)—°z" 4)
n=0

where |z| < 1,0 # 0,—1,... and is continued analytically by its integral representation
given by

1 ) tS*lefvt 1 ) tsflef(vfl)t
D(z,5,0) = ) /0 7 —ze—tdt 0 /0 g dt 5)

where Re(v) > 0, 0r |z| <1,z #1,Re(s) > 0, and either z = 1, Re(s) > 1.

3.2. Derivation of the Infinite Sum of the Contour Integral
3.2.1. Derivation of the First Contour Integral

In this section we will again use the generalized Cauchy’s integral formula to derive
equivalent contour integrals. First, we multiply Equation (1) by ¢/*/* /2i then replace by x
by p + it/a for the first equation and then p — it/« for the second equation to get

(-1 ey

_ k1 wp . [(Hm+w)
2Tk +1) _E/cw ‘e psm<a)dw ©
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Then, we replace p with 7i(2p + 1) /a 4 log(a) and multiply both sides by —i—? to get

im i P k im i ; k
e~ <(m(2§+1) — iy log(a)) — (L(ZPH) + 44 log(oc)) )

(k +1)
in(2p+1)
/ w*1sin (W) ew(bg(u‘)+ a >dw (7)
" 2mi a
Then, we multiply both sides by 72;—" ™™ and take the sum over p € [0,00) and

simplify the left-hand side in terms of the Lerch function to get

ok k+1( )kem (cp(ezn% x —t—iulog(a)+7t) _eyq)(ezm% g, tinlos(e)+ ))
a 7 4 7

2 21
a?T(k+1)
) in(2p+1)
_ % 5 / I Sin(t(m:w)>ezu(1og(a)+5)dw
p=0"C
0 in(2p+1)
- L/ Y w sin(t(m+w)> <1°g(“)+ = )dw
2mi Jc =0 a

mw " 1a® esc ( r(mtw) ) sin ( tom+w)

:%/C 7 ’ )dw ®)

from Equation (1.232.3) in [1] where csch(ix) = —icsc(x) from Equation (4.5.10) in [6]
and Im(w) > 0 for the sum to converge. The log terms cannot be combined in general.

3.2.2. Derivation of the Second Contour Integral

Next, we will derive the second equation by using Equation (8), multiplying by
m csc(t) and taking the infinite sum over p € [0, 0) to get

N\ k im(m— imm —t—1 im imm —1
2kﬂk+lm<é) CSC(t)€¥ (@(ezT,—k, t 1a1207%(vc)+7r> —E%Q(BZT,—I(, £ 1alo2gn(uc)+7r>>
a?T(k+1)

mw 1 esc(t)a® csc< ”("’:w) ) sin(t(m:w)

_ ﬁ/c M >dw ©)

Then, we replace k with k — 1 to get

.\ k—1 .
1 k-1 k[ 1 im(m—t)
mz 7T E CSC(t)e

& ezi%l_k—t—ialog(a)—i—n _ A ezm%l_kt—ialog(zx)—i-n
7 7 27_[ 4 7 27_[
1 / mw K esc(t)a® csc(@) sin(@)

27 Jc

pe dw  (10)

from Equation (1.232.3) in [1] where csch(ix) = —icsc(x) from Equation (4.5.10) in [6] and
Im(w) > 0 for the sum to converge.
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4. Definite Integral in Terms of the Lerch Function

Since the right-hand sides of Equations (3), (8) and (10) are equivalent, we can equate
the left-hand sides simplify the factorial to get

dx

o sinh(ax) (e’mx(log(zx) — )k — " (log(a) + x)k)
/0 (cosh(ax) + cos(t))?2

-\ k=1 im(m— imrm e
k(27t)k(i> csc(t)e a t><1>< w1k %W)

a

- i’
-\ k-1 im(7t im lmrr
K@) (1) ese(t)e™ s+ @ (oM, 1 — k, R4
+ p
k im(m— imm _
(270)+m (é) csc(t)e¥q>(e2 —k, %)
_ .
A\ K im(m— im imn
(27)tm () esc(ye™ T+ @ (5, —k, Hilp )
" (1)

a2

The integral in Equation (11) can be used as an alternative method to evaluating the
Lerch function.

5. Evaluation of Special Cases of Definite INTEGRALS
5.1. Special Case 1

For this special case we will form a second equation using (11) by replacing m by —m
taking the difference from the original equation and simplifying to get

_/OOZSmh(ax) smh(mx)((log( ) = x)% + (log(a) + )k)d
0 (cosh(ax) + cos(t))?2 *
1

k— _im(m— im(m—t) 2imm -
( ) asc( @(e’ a —k, %)

a2
N\ k—1 im(m—t)  2imt 2imn —1
k _ _ 2imt _ 2imm t—ialog(a)+r
k(2m) <é> csc(f)e” " a a <I>(e o 1=k ——
_ o
N\ k—1 im(t—t) xm*r —t—1,
km) (1) esc(ye™s @, 1 — k, ~irpp )
_ o
k(2 (i k-1 mz(’r r)+2‘mz<b 2imm 1—k t—ialog(a)+
(m)*( L csc(t)e ea 11—k —EAT
k im(t—t) inmr —t—1
(27)k+m <é> csc(t)e’Tt<1>(eJT,—k, L AL Zalzoi(aHﬂ)
_ o
k im(m—t) in inzt —1
(2m)k+1m (5) csc(t)e*%*%d%e*%,—k, frialogla)+7 lal%%g“””)
N\ k im(m—t) imm —t—1
(2n)k+1m<é> csc(t)e @ @(eZT, —k, %W)
_ o
Nk im(mw—t) im imm —1
(27r)k+1m<é) csc(t)eer%CD(ezT, —k, %)

(12)
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5.2. Special Case 2
For this special case we use Equation (12) setting « = 1 and taking the first partial

derivative with respect to m simplifying to get

X

/°° x* sinh(ax) cosh(mx)d
0 (cosh(ax) + cos(t))?
k

+1 _im(t+7
2k ! k(é) CSC <t,1+) 2imt 2imm T—t
i R ETE=

B 27
(e 1 L)
27T
—2i7rm<ezivmcb(e%:ﬂ,—k,w> _cp<32i'2m,_k/t"i_n>>
27T 27T
+62i;rm akCI) eZimn' k T — _|_217qu) _k —t
27r 27T

2 27

6. Derivation of Entry 3.514.4 in Gradshteyn, L.S; et al.
Using Equation (12) we proceed by setting « = 1 and simplifying to get

/°° x* sinh(ax) sinh(mx)
0

(cosh(ax) + cos(t))?
N\ k im im(t+7t im7m
ankﬂm(é) csc(t)e 2t G )Cb(e_za ,—k, "_t>

B a2((—1)k+1)
N\ k im(t+m) 2immn
k k41 — i) — Zimn t
2k gkt m(é) csc(t)e™ @ CD(e a,—k, ;T”)

- a2((-1)F+1)

NS 2imm _ im(t+m) 2imm
ko k+1 s TR =t
+2 et m(é) csc(t)e™a @ @(6 a ,—k,%>
2((—1)f+ 1)

im(t+7m)

N\ k it
ank-‘rlm(é) Csc(t)e?q)(ez —k, t;?'?:)
a((-1)k+1)

k imt_ im(t+70) im
2Kk (;) csc(t)e#’ a <D<e’zTﬂ,1—k,7§—7_Tt>

! a1 +1)
k im(t+m unn
2k Tk (é) Csc(t)e’#d% e 1—k,t£r7ﬂ>
(=
k irtm _ im(t+7 imz
2k Tk (é) csc(t)ezT*#CDGz —k, nzﬂt)
a((=1)k+1)
2Kk (é) csc(t)e i ( m#,l—k,tz%r)
a((—1)k+1)

(14)
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Note: When we replace k by k — 1 we get the Mellin transform.
Next, we set k = 0 and m = b simplify to get

/Ooo sinh(ax) sinh(bx) e nbcsc(t)csc(%b) sin(%) 15)

(cosh(ax) + cos(t))2 re a2
from entry (2) in Table (64:12:7) in [9], where —7t < Re(t) < mand 0 < |b| < a.

7. Derivation of Entry (2.3.1.19) in Yu, A; et al.
Using Equation (13) and setting m = 0 simplifying [10] we get

N . k+1
/ x* sinh(ax) dx — 2Kk 1 csce ik csc(t)
0 (cosh(ax) + cos(t))?2 a 2

(o) o 157)) o

Next, we set t = 71/2 simplify to get

from Entries (2) and (3) in Table (64:12:7) in [9].

8. Derivation of a New Entry for Table 3.514 in Gradshteyn, L.S.; et al.

Using Equation (12) and setting k = —1,04 = —1,a = 1,t = n/2,m = 1/2 and
simplifying we get

[ (L (2) g (3) 0 ()91 3)) o) 00

from entry (3) Table (64:12:7:2) and entry (4) Table (64:12:7:3).
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9. Definite Integral in Terms of the Hurwitz Zeta Function

Using Equation (14) and setting m = 1 and a = 2 to get

/°° x* sinh(x) sinh(2x) 2k 303 jrk cse($)C(1—k Z2h)
0

(cos(t) + cosh(2x))? (—1)k +1
2% otk cse(§)2(1 b, 52)
: (“DF+1
2k 308 ik ese(H)g(1-k3 - 4)
(=1f+1
k=305 ek cse(4 )C(lfk 7(%+3))
(—1k+1
| 27 A see ()0 (k)
(—DF+1
b 2 ()2 )
(=1)F+1
Zk 2,5 nk+1sec( )C(—k 3 —£)
(=1)F+1
2k 2o e sec(4)2 (1 (5 +3))
: (~DF+1

(19)

Next, we apply L'Hopital’s rule to the right-hand side as k — 0 to get
'@y sinh(x) sinh(2x) 1 t T—t
dx = - 5 -1, —
/0 (cos(t) + cosh(2x))? =g g ¢ 4nt

1 t t+4+ 7T
+z”5“(z>@<‘1'4n>
1

from entry (1) in Table (64:4:2) in [9], where —7r < Re(t) < 7.

10. Definite Integral in Terms of the Log-Gamma log(I'(x)) and Harmonic Number
Hj Functions

Using Equation (19), taking the first partial derivative with respect to k and applying
L’Hopitals’ rule as k — 0 and simplifying to get

® Jog(x) sinh(x) sinh(2x)
/0 (cos(f) £ cosh(2))Z ™

1 t t+ 7
— (0) _ 0
16(CSC(2> (H b H fﬁn—f—w ( ) P <

1

4

t 27T (3 = 47)T

+ 27 sec log NE=I
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from Equations (64:4:1), (64:9:2), and (64:10:2) in [9].

Example 1. Using Equation (21) and setting t = 1t/2 simplifying to get
/000 log(x) sinh(x) tanh(2x)sech(2x)dx = % (4 sinh~1(1) + V2 log (

Example 2. Using Equation (21) and setting t = 7t/ 3 simplifying to get

/°° log(x) sinh(x) sinh(2x) i
0 (2 cosh(2x) +1)2

1 r(2)
288(10\@nlog( ) + 6log(64) +9v3log(7) + 6v/37log ) (23)

Example 3. Using Equation (21) and setting t = 27t /3 simplifying to get

(2 cosh(2x) —1)2 " 16

Example 4. Using Equation (21) and setting t = 0 and applying L'Hopital’s rule as t — 0
simplifying to get

2
00 2nT
/ log(x) tanh?(x) sech(x)dx = % + iﬂlog Lz (25)
0

11. Derivation of Hyperbolic and Algebraic Forms

Example 5. Using Equation (12) setting k = —1, t = 71/2 and replacing « by ' simplifying
we get

' x tanh(ax)sech(ax) cosh(mx) e 5" _2imn o af 3
= —2itm®P 1, —+-
/o B2 + x2 ax 8ma inm® (e, 1, 27 T

imm zmn 2 zmn 2
+ea<2mm<1>< e a1, aﬁ+n>+a®( e ,Z,W)>

47 47
—ad 21m7r,2, ﬂﬁ +6217ﬂrm ad eZin%,Z, Zﬂﬁ + 7 — 2intm® eZiﬂ%, 1, 2(1,3 + 7T
27‘[ 4 4

T 47
. Simm 2immn 11/‘3 21mr[ Q'B 3
+ie <2mnCI>(e ,1, S 4) —i—zadD( 2,27_[+4>>) (26)

Next, we take the first partial derivative with respect to m and simplifying to get

3imm

/ xtanh(ax)sech(ax)cosh(mx)dx _e x < 2irtmd (e 2imz “/3 4 z)
0

8ma L 27

imm 1m7r 2 tm7r 2
+ea(217'(m<1>( A, “ﬁ+”>+ <I>< 2, ”B+”>)

4 4

—ad Zrmrrl , ﬂ’B +e '7”1 ad Ztmrrrzl Zﬂ‘B + 7 — 2inm® ) 1, ZQ,B + 7
27 4 47 47

21m7r lZ‘B 21mr[ a,B 3
Tt <2mn<I>( ,1, T 4> —i—zadD( ,2, 27_[+4>>) (27)
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from Equation (9.550) in [1]. Next, we set m = 0 simplifying in terms of the Trigamma
function ¢V (z) to get

/°° xtanh(ax)sech(ax)dx _ lr’](l) (zaﬁrn) - lp(l) <% + %) (28)
0

p%+ x2 47

from Equation (64:4:1) in [9].

Example 6. Using Equation (12) and setting k = —2,t = 7t/2 and replacing a by e'P simplifying
we get

/O°°<( 1, 72 + G —11'5)2) tanh(ax)sech(ax) sinh(mx)dx

3irm
e 2 _ 2imm LZ’B 3
7 (”m (7250 4)

+ei7€Tm (ia@(ezj}:n,& 20p + n) — tm® <eZi’5m,2, 20p 1 n))

47 4

. _ 2imm aﬁ 3
—iad a3, —— 4=
ia (e oy +4)

— P (e (22, 2B g (473,20 T
47 47

3imrm 2imrm H‘B 3 . 2im7 aﬁ 3
a 0] a 2, — 4 — 1) a - 4+ - 2
+e (nm (e , ,2n+4)+lﬂ (e ,3,27_[+4>>) (29)

Next, we take the first partial derivative with respect to m and setting m = 0 simplify-
ing to get

/oo x(x — B)(B + x) tanh(ax)sech(ax) v
0 (B2 + x2)?
oy (20) — g (584 §) +ap(g(3,55 + ) — (3 27)) (
= 472

from Equations (64:12:1) (64:13:3) and (64:4:1) in [9].

12. Discussion

In this article, we derived the integrals of hyperbolic and logarithmic functions in
terms of the Lerch function. Then we used these integral formula to derive known and new
results. We were able to produce a formal derivation for Equation (27) Table 27 in Bierens
de Haan [2] and Equation (3.514.4) in [1] not previously published. The results presented
were numerically verified for both real and imaginary values of the parameters in the
integrals using Mathematica by Wolfram. In this work, we used Mathematica software to
numerically evaluate both the definite integral and associated special function for complex
values of the parameters k, &, a, m, and . We considered various ranges of these parameters
for real, integer, negative and positive values. We compared the evaluation of the definite
integral to the evaluated Special function and ensured agreement.

13. Conclusions

In this paper, we have derived a method for expressing definite integrals in terms of
special functions using contour integration. The contour we used was specific to solving
integral representations in terms of the Lerch function. We expect that other contours and
integrals can be derived using this method.
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