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Abstract: Three physical elements are missing from the conventional formalism of quantum photon-
ics: (1) the quantum Rayleigh spontaneous and stimulated emissions; (2) the unavoidable parametric
amplification; and (3) the mixed time-frequency spectral structure of a photonic field which specifies
its duration or spatial extent. As a single photon enters a dielectric medium, the quantum Rayleigh
scattering prevents it from propagating in a straight-line, thereby destroying any possible entangle-
ment. A pure dynamic and coherent state composed of two consecutive number states, delivers the
correct expectation values for the number of photons carried by a photonic wave front, its complex
optical field, and phase quadratures. The intrinsic longitudinal and lateral field profiles associated
with a group of photons for any instantaneous number of photons are independent of the source.
These photonic properties enable a step-by-step analysis of the correlation functions characterizing
counting of coincident numbers of photons or intensities with unity visibility interference, spanning
the classical and quantum optic regimes.

Keywords: quantum Rayleigh emissions; spatial fields of photons; photonic beam splitters and filters;
photon coincidence counting; HOM dip with unity visibility

1. Introduction

Recent developments in the integration of photonic devices for quantum informa-
tion processing [1] revolve around the concepts of one-photon and two-photon quantum
interferences [2], both of which are predicated on a single photon propagating in a straight-
line inside a dielectric medium. However, this assumption is totally undermined by the
quantum Rayleigh scattering.

The quantum Rayleigh spontaneous and stimulated emissions were well documented
four decades ago [3,4] when the first experimental results of apparently single photon
propagation were incorporated in the theory of quantum optics. Even though the subject
was revisited [5] to clearly find that the probability of spontaneous emission increases with
the refractive index of the medium, the question of one single photon being scattered by
photon–dipole interactions has been completely ignored in the professional literature of
quantum optics [6].

One photon per radiation mode underpins the concept of entangled photons which,
apparently, are needed to create a statistical correlation between separately measured
quantum events of detection [2,6]. Yet, the quantum Rayleigh scattering prevents a single
photon from propagating in a straight line inside a dielectric medium [7,8]. Equally, inside
a dielectric medium, the quantum Rayleigh stimulated emission can recapture an absorbed
photon as well as coupling photons between two radiation modes, thereby creating groups
of photons from individual photons [7,8], and forming pulses with a time-varying number
of identical photons in a mixed time-frequency spectral structure [9].

The random phase of the spontaneously emitted photons is ignored [2] because num-
ber states do not carry an optical field. Instead, entangled states of one single photon are
adopted as a way to deliver a non-zero interference term through outcome probability
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amplitudes. For instance, the path-entangled state |ψAB〉 = α |1〉A |0〉B + β |0〉A |1〉B de-
scribes a statistically quantum mixed state or global quantum wavefunction of two possible
pathways A and B, and as such, it can be used in any context, anywhere, and at any time.
At the level of one single event and individual measurement, if only one photon propagates
in the system at any given point in time, then the coefficients can only, instantaneously, be
either α (t) = 1 and β(t) = 0, or α(t) = 0 and β(t) = 1. By contrast, the statistical average
of the ensemble of measurements with a symmetric beam splitter would lead to an average
of α = β =

√
1/2 resulting in a non-zero interference term, even though for each and every

component of the ensemble distribution, an instantaneous vanishing interference pattern
is measured as the cross-term product is zero, i.e., α(t) β(t) = 0, leading to a physical
contradiction with the average non-zero value.

An average vanishing value for the product of two simultaneously sampled instan-
taneous photocurrents can arise by having positive and negative values of the electric
levels with reference to a zero-value threshold, or by having each event returning a zero
value. This physical and practical approach will do away with complicated and expensive
single-photon sources and photodetectors because the mixed quantum state of the output
wave packet from such sources corresponds mathematically to a time-independent source of
simultaneous photons.

An ensemble distribution is built up from instantaneous measurements of photonic
beam fronts. The instantaneous measurements require a wavefunction which changes with
time and location to reflect the time- and space-dependence of the instantaneous values of
the photonic beam, such as the number of photons, the complex-valued optical amplitude,
and an exchange of energy with another wave front, as mediated by a photon–dipole
interaction.

The motivation for the following analyses was sparked by the interactions associated
with quantum Rayleigh conversions of photons that would require a wavefunction capable
of delivering transient or instantaneous expectation values for a pure state. The case
for such states is presented in Section 2, and these states–labelled dynamic and coherent
number states–are derived in Section 3 leading to the analysis of photonic coupling between
radiation modes and waveguides. The description of the intrinsic field profiles of photons
is presented in Section 4. Section 5 derives the detected interference patterns between
fields of dynamic and coherent number states. The correct description of various beam
splitters leading to intensity interference with unity visibility in the “classical” regime will
be analysed in Section 6.

2. The Pure Quantum State of Multiple Photons for Instantaneous Measurements

The assumption that spontaneously emitted, parametrically down-converted indi-
vidual photons cannot be amplified because of a low level of pump power would, in
fact, prevent any emission in the direction of the phase-matching condition because of the
Rayleigh spontaneous emission or scattering of photons.

A pure state delivers one single measurement [10,11], whereas a mixed state describes
the statistical distribution of an ensemble of measurements [11]. A photonic wave front car-
ries a number of photons across a dipole-hosting plane and its duration will be determined
by the response time of the photon–dipole interaction [10].

Probability distributions of a physical, quantum process are built up by aggregating a
large number of single event measurements into a statistical ensemble. Each photon–dipole
interaction is driven by instantaneous values of number of photons and phase of the optical
field. In other words, it is the pure state of the optical field at the level of a single, individual
interaction that determines the instantaneous outcome, rather than a global wavefunction
which is time- and space-independent.

It is pointed out in [12] that a quantum dot “emits a cascade of photons and a single
photon is obtained only through spectral filtering of one emission line”. High-finesse optical
cavities incorporated in a measurement setup distort the temporally regular sequence of
single photons because of multiple internal reflections. The emerging stream may contain
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groups of a few overlapping photons, e.g., five, which may be unevenly split by a beam
splitter and reduced in number through quantum Rayleigh spontaneous emission (QRSE)
so as to generate no coincidence for a zero delay-time.

A mixed state of one-photon excitation as presented in [13] (p. 8) is impractical for the
description of the instantaneous quantum Rayleigh coupling of photons (QRCP) because
the photon wave packet |1〉j,σ describes an output-measured and time-independent wave
packet. “If the packet is dispersed spectrally by a prism and detected by an array of photon
counters, only one counter will click, although which one clicks will be random. Such a state
is expressed as |1〉j,σ =

∫
d3k U(σ)

j (k)|1〉k,σ /(2 π)−3 where |1〉j,σ is a state with a single
excitation having particular monochromatic wave vector-polarization state labeled by the
pair (k, σ). We see that the function U(σ)

j (k) fully specifies the state.” [13] (p. 8). This state
is of no utility for evaluating the optical field involved in a dipole–photon interaction as the
expectation values of the field operator â vanish, j,σ〈1| â |1〉j,σ = 0. For the single-photon
wave packet, only one radiation mode k is taking part in the detection or photon coupling
processes at a given point in time. Yet, an intrinsic photonic field distribution is carried by
each interacting photon without any dependence on the measured statistical distribution
of the ensemble of the mixed state.

3. Photonic Wave Front Expectation Values and Dynamic Motion

As the number of photons and related field amplitude and phase carried by a pho-
tonic wave front may change as a result of the QRCP, the equations of motions for the
corresponding expectation values will be evaluated with the Ehrenfest theorem [14,15].

Photons and their instantaneous properties are detected and measured by probing a
sequence of wave fronts. The detection of photons occurs as a result of their optical field
exchanging energy with electrons of the atomic structure of the detector, similarly to the
Jaynes-Cummings model [6,14] for the quantized dipole–photon exchange of energy.

3.1. The Dynamic and Coherent Number States

Based on the formalism presented in [5,16], the magnitude of the Poynting vector, i.e.,
the flux of energy F (or number of photons/s) carried by an optical wave front of frequency
ω and crossing a plane surface at position z is given in terms of the electromagnetic field
magnitudes E and B, or corresponding operators, by the equalities:

F = ω ε
[

E2 + c2
mB2

]
= 0.5 } ω ( a a∗ + a∗a) (1)

with a =
√

ε/} (E + icmB) and its complex conjugate a∗, ε and h̄ indicating the permittivity
of the medium and the reduced Planck constant, respectively. The speed of light in the
medium is cm = c/nr = 1/

(
nr
√

ε0 µo
)
, with nr being the refractive index. From this

relation one defines the annihilation and creation operators as:

â =
√

ε/}
(

Ê + i cm B̂
)

(2a)

â† =
√

ε/}
(

Ê− i cm B̂
)

(2b)

The free-space Hamiltonian Ĥ f is explicitly written as [5]:

Ĥ f = }ωN̂c (3a)

N̂c = 0.5
(

â† â + â â†
)

(3b)

where N̂c is the symmetric and complete number operator and its eigenstates are the
number states |n〉. The two terms of Equation (3) would have different eigenvalues. With
the need for incremental increase or decrease of one photon per dipole–photon interaction,
and, based on experimental results indicating that one photon is an indivisible amount of
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energy, we seek a wave function |Ψn〉 which will deliver the number of photons n from the
following equalities, as well as a complex value for their optical field:〈

Ψn
∣∣ N̂c

∣∣Ψn
〉
= n (4a)

〈Ψn | â |Ψn〉 = (
〈

Ψn

∣∣∣ â†
∣∣∣Ψn

〉
)
?
= E e−i ϕ (4b)〈

n
∣∣∣ â† â

∣∣∣n〉 = n; and
〈

n
∣∣∣â â†

∣∣∣ n
〉
= n + 1 (4c)

In Equation (4c) the number states |n〉 are eigenfunctions, with different eigenvalues,
of the two operator terms of N̂c.

The field operators â and its adjoint â† connect two consecutive number states, and
consequently, a superposition of |n − 1〉 and |n〉 should give rise to a non-zero optical
field for the following state vector:

|Ψn(t)〉 = cn(t) |n〉+cn−1(t) |n− 1〉 (5a)

|Ψn(t)〉 = ( |n 〉+|n− 1〉)/
√

2 (5b)

with the normalization condition of |c1(t)|2+|c2(t)|2 = 1 .
Analogously to the derivation [6] of coherent states of light |α〉, the non-Hermiticity

of the photon annihilation and creation operators allows for complex classical numbers
(c–numbers) to be delivered when these operators act on number states. Applying â and â†

to |n〉 returns a complex c–number

sn = |sn| exp(−iϕn ) (6)

which will become the complex amplitude of the state, so that:

â |n 〉 = sn |n − 1〉; and â† |n − 1〉 = s?n |n〉 (7)

Recalling that â and â† are adjoint operators of each other, they interchange roles when
acting on the Hermitian conjugate (or bra) states:

〈n− 1|â = sn〈n| ; and 〈n| â† = s∗n〈n − 1| (8)

The condition for the number states being eigenstates of the number operator N̂ = â† â
requires that |sn|2 = n . The symmetric Hamiltonian of Equation (3) suggests the two-
component state vector of Equation (5) as depicted in Figure 1, and it carries out two
simultaneous operations, one as a two-step number operator〈

n
∣∣∣ â† â

∣∣∣n〉 = sn s?n (9)

and the second operation–illustrated in Figure 1—as a one-step transition operator between
two consecutive number states, each operator acting on the state vector next to it (or the
left-hand operators acting on the Hermitian conjugate wave functions 〈n|, the result being,
for | Ψn〉 from Equation (5b): 〈

Ψn
∣∣ N̂c

∣∣ Ψn
〉
= n (10)

which is the number of photons carried by the wave front flux.
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In the Heisenberg and Dirac interaction pictures, and using the retarded phase
ϕ = ω t− z n /c, the propagating photon field operators take the form [5,14]:

â(ω, z, t) = â(ω) f (x, y, z) e−i(ω t−β z)ep (11a)

â†(ω, z, t) = â†(ω) f (x, y, z) ei(ω t−β z)ep (11b)

where the spatial distribution f (x,y,z) is, conventionally, a solution of the Helmholtz wave
equation [5] if there are enough photons to fill in the profile, and ep denotes the polarization
of the radiation mode. Alternatively, the intrinsic field of photons will be derived in
Section 4 below.

The observable quantity of the expectation value of the quadrature field operator
Q̂ = â + â† is found by combining Equations (2), (5–8) and (11) to yield:

〈 Ψn ( t ) | â | Ψn ( t )〉 = 0.5 e−i ( ω t−β z+ϕ (0))√n e−i ϕn (12a)〈
Ψn ( t )

∣∣∣(â + â†
) ∣∣∣ Ψn ( t )

〉
=
√

n cos(ω t− β z− ϕn) (12b)

reproducing the c-number
〈

Q̂
〉

corresponding to the “classical” optical field with a time-
varying number of photons n (t) and related phase ϕn (t).

The correct expectation values can also be found for the phase quadrature opera-
tors [17]. These are defined in terms of the field operators and the conventional number
operator N̂ = â† â, having the form, for n > 0:

Ĉ = â N̂−1/2 + N̂−1/2 â† (13a)

Ŝ = i
(

â N̂−1/2 − N̂−1/2 â†
)

(13b)

which will provide information about the phase associated with the dynamic and coherent
number states of Equation (5). With the photon number operator N̂ returning the number
of photons in the basis of number states, i.e., N̂ |n〉 = n |n〉, any operator function f (N̂)
can be expanded in a power series and replaced in terms of the number of photons, as
follows [6]: F

(
N̂
)
= Σp dp N̂p; F

(
N̂
)
|n〉 = F (n)|n〉; andN̂−1/2n〉 = n−1/2|n〉 where dp

are expansion coefficients. For the particular case of the zero-photon state |0〉, the product
operator needs to be inverted [17] by substituting â â† = â† â + 1 into the power series
expansion of â f (N̂) to obtain f (N̂+1) â. The corresponding expressions for the expectation
values are: 〈

Ψn
∣∣ Ĉj

∣∣ Ψn
〉
= cos

(
ω t + ϕj

)
(14a)〈

Ψn
∣∣ Ŝj

∣∣ Ψn
〉
= sin

(
ω t + ϕj

)
(14b)

These relations of the field and phase quadratures apply to any number of photons
spanning the entire range from the quantum regime of a few photons to the large number
of photons characteristic of classical optical waves. Consequently, the quantum states of
Equation (5) of dynamic and coherent number states allow for a smooth transition between
the quantum and classical regimes. These variables will be measured by the method of
balanced homodyne detection [10].
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The dynamic and coherent number states identified in Equation (5) possess an optical
field which can be compared with the classical field. Consequences of these properties are
discussed in the following section.

3.2. The Equations of Motion of the Optically Linear Parametric Interactions

As an optical beam propagates through a dielectric medium, the magnitude and phase
of the expectation value sn may be modified by the simultaneous presence of another beam
of photons of the same frequency. This effect is described by the Ehrenfest theorem [14,15]:

i } ∂

∂t
〈 Ψn (t)| â | Ψn (t) 〉 = 〈 Ψn (t)|

[
â , Ĥint

]
| Ψn (t)〉 (15)

indicating that the expectation value of the optical field is modified by its commutator with
the Hamiltonian of interaction Ĥint .

Having identified a quantum wave function capable of delivering the instantaneous
magnitude and phase of an optical field, we can now apply the formalism of [18–20] to the
propagation along an optical waveguide directional coupler by employing the following
composite photonic quantum state function | Φ〉 for two optical waves identified by their
waveguide

∣∣ Ψn, j
〉

(j = 1 or 2), their Hamiltonian of interaction Ĥint , and the equation of
motion derived from Equation (15):

| Φ 〉=| Ψn, 1〉 | Ψn,2〉 (16a)

Ĥint = } ω χ
(1)
q

(
â†

2 â1 + â2 â†
1

)
(16b)

χ
(1)
q = (}/ε) χ(1) (16c)

where the real part of the first-order susceptibility of the dielectric medium χ
(1)
q includes

the coefficient square linking the photon annihilation or creation operators and the electric
field operator in Equation (2). The Hamiltonian Ĥint is derived from the interaction term
P2·E∗1 of the Poynting vector Equation (2.4) in [8].

The resultant equation of motion describing the mutual interaction is derived by
substituting into Equation (15) the relations of Equation (16), yielding:

∂

∂t
〈 Φ | â1 | Φ 〉 = −i ω χ

(1)
q 〈 Φ | â2 | Φ 〉 (17)

This interaction will modify the complex field amplitude sn, j of two co-propagating and
overlapping optical beams of the same frequency, identifiable by their respective optical
waveguides (j = 1, 2). From Equation (12a) we have for the expectation values of the
optical fields

〈 Φ | âj | Φ 〉 = 0.5e−i(ωt+ϕ(0)j)sn, j (18)

After converting to number of photons, i.e.,
∣∣ sn, j

∣∣ 2 = Nj and corresponding phases
ϕj, the equation of motion (17) provides the rates of change of Nj and ϕj as follows:

∂

∂ z
N1 = g1 N1 (19a)

g1 = −κ

(
N2

N1

)1/2
sinθ21 (19b)

∂

∂ z
θ21 = (β2 − β1) + κ

[(
N1

N2

)1/2
−
(

N2

N1

)1/2
]

cosθ21 (19c)

∂

∂ z
ϕ1 = κ

(
N2

N1

)1/2
cosθ21 (19d)
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κ =
1

vp

ko

2 n

∫ ∫
dx dy χ

(1)
q f1 f2 e1·e2 (19e)

θ21 = ( β2 − β1) z + ϕ2 − ϕ1 (19f)

where the gain coefficient g includes an overall coupling coefficient κ and depends on the
polarization states e1 and e2 of the photons. The phase difference between the two waves is
θ21, β being the propagation constant and z/t = vp is the phase velocity. In Equation (19e),
ko and n specify the free-space wavevector and the effective refractive index, respectively.
It should be noted that Equation (19) are identical to the classical ones of [8] describing the
physically meaningful process of quantum Rayleigh conversion of photons. The coupling
coefficient of Equation (19e) indicates that the entire local value of the optically linear
susceptibility χ(1) is involved in the coupling process in the dielectric medium at any
point where the two spatial distributions f1 and f2 overlap, each having units of m–1, and
the squares f 2

j are normalized to a dimensionless unit over the cross-section area. This
is in contrast to the physically questionable coupling between two optical waveguides
apparently induced by a perturbation of the dielectric constant in the cladding.

Any two dynamic and coherent number states of Equation (16a) co-propagating
through a dielectric medium will couple photons from one state to the other depending on
the relative phase between the two waves. This process, repeatedly, will eliminate optical
waves whose phases diverge substantially from the phase of the surviving wave which
will dominate the output of a lasing cavity.

Two groups of photons propagating simultaneously across the same dielectric medium
would exchange photons, parametrically, with each other through the real part of the
susceptibility–see Equation (19) above–which is indicative of a beam splitter composed of a
waveguide directional coupler.

4. Intrinsic Field Profiles of a Photonic Wave Front

The intrinsic longitudinal field profile of a group of photons, or its coherence length,
can be calculated by using the wave function | Ψn〉 from Equation (5b). Two equations can
be identified for the expectation values of â or the corresponding c-numbers, by combining
Equations (2) and (12a), leading to:

〈 Ψn | â |Ψ n〉 = b
〈

Ê
〉
+ i s

〈
B̂
〉

(20a)

〈 Ψn | â |Ψ n〉 = qe−i(ω t−β z) (20b)

with q = 0.5
√

n, b =
√

ε/}, and, s = cm
√

ε /}. We point out that both quadratures of
the field are represented in the phasor notation of Equation (20). From these equalities,
the c–numbers of the electric and magnetic fields are denoted: E =

〈
Ê
〉

and B =
〈

B̂
〉
.

Recalling the relations [16] between the vector potential A (z, t) and the fields as:

E = −∂ A/∂t and B = ∇×A (21)

In the Cartesian frame of coordinates (x, y, z), the vectors have the following notation, in
the plane wave approximation:

A = (A, 0, 0); E = (E, 0, 0); B = (0, B, 0) and the wave vector is k =
(
ikx , iky, β

)
for a beam propagating in the z–direction, in an optical waveguide. The complex amplitude
of the vector potential is represented by

A (z, t) = Ap(z) f (x, y) e−i (ω t−β z) (22)

where the lateral profile of the guided mode is given by f (x, y) and the propagation
constant by β = 2π ne f f /λ. The second term of the curl operation ∇× f (x, y) x =
=(∂ f /∂ z) y − ∂ f /∂ y) z does not lead to wave propagation and does not affect measure-
ments in a plane perpendicular to the z-coordinate. The second term will therefore be set
aside in the remainder of this analytic derivation.
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Relating Ap to a moving source of photons would suggest a relative distance ζ = z− z0
with z0 being the temporal location of the photons and the localization given by a Dirac delta
function δ(z− z0), resulting in this differential equation after substituting Equations (21) and (22)
into (20) to obtain:

∂

∂ z
Ap + σAp = γ δ (z− zo) (23)

where σ = b ω
s + iβ =

(
ω
c
) (

nr + i ne f f

)
and γ = − i q

s = −i 0.5
√

n
√
}/
(
cm
√

ε
)
.

Setting Ap( z) = g(z) exp (−σ z ) and inserting into the differential Equation (23)
leads to:

∫
dg = γ

∫
eσ z δ(z− z0) dz. With g = γ eσ zo , and for reasons of physical

symmetry, the longitudinal distribution of the magnitude of the vector potential associated
with photons of a wave front is found to be:

Ap(z) = γ exp (−σ | z− zo|) (24a)

fph(z = c t) = exp (−(2 π |z− zo |) nr/λ) (24b)

The vector potential’s decay constant is inversely proportional to the wavelength λ
through Re σ = 2 π nr/λ. Thus, the local optical field includes contributions from photons
in the vicinity of zo, as illustrated in Figure 2. The normalized longitudinal optical field
profile fph of one photon of wavelength λ, crossing point zo, is obtained from Equation (24b),
and has the form of a Wigner spectral component S (ω, t), that is, a time-varying spectral
component [9]—as opposed to a time-constant amplitude and phase of a Fourier spectrum–
crossing a surface perpendicular to the wavevector of propagation. This exponential decay
of the spatio-temporal profile is mistaken for that obtained by Fourier transforming a fully
populated transmission line of an interference filter.
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The longitudinal length of the intrinsic field in Equation (24b) corresponds to the
physical coherence length of one photon; the more photons there are in the group, the
longer the coherence length becomes by superposition.

The transversality condition [5] for a radiation field 〈E〉 ∝ 〈â + â†〉 and the dielectric
constant ε, is given by the divergence of the displacement vector:

∇·( ε E ) = 0 (25)

In cylindrical coordinates, this differential equation and its solution in the plane
perpendicular to the wavevector are:

∂

∂ r
(r ε E) = 0; E (r) = Eo

ro

ε r
or fph;lat =

ro

ε r
(26)

where ro is the reference position coordinate at the peak of Eo, and r = ro + ∆r is the
distance from this position.

The coupling coefficient between two radiation modes will be modified below to take
into account the longitudinal profile of the optical field given in Equation (24b) and the
lateral profile fph;lat of Equation (26), for the operation, as a beam splitter, of an optical
waveguide directional coupler.

For the optical directional coupler, the evolution of the photons is governed by
Equation (19) with the possibility of one waveguide capturing most of the photons result-
ing in an asymmetric output. The coupling coefficient κ will have to take into consideration
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the temporarily discrete nature of the groups of photons by including the longitudinal field
profile fph next to the transverse spatial field f = fph;lat, that is:

κ =
1

vp

k0

2 n
Γ12 (zo)

x
dx dy χ

(1)
q f1 f2 e1· e2 (27)

Γ 12 (zo1; zo2) =
∫ z

0
fph(z− zo1) fph(z− zo2) dz

This spatio-temporal overlap is necessary for the quantum regime of discrete groups
of photons. The phase-dependent coupling of photons of Equation (19) is critical in the
operation of the optical waveguide beam splitters by creating, with the adjustable phase
difference, an asymmetric output [21].

5. Interference Patterns of Fields of Dynamic and Coherent Number States

Another useful effect is the interference between two photonic beams reaching a
photodetector. In the context of this analysis, one obtains that, in so far as localized
and instantaneous detection of photons of two dynamic and coherent number states is
concerned, the photocurrent Iph(t) generated by the interference output of a balanced
homodyne detector is calculated by combining the expectation values of the quadrature
field operators given in Equation (12) to obtain:

〈Iph(t)〉 = K (〈Qa〉+ 〈Qb〉)2 = K
[

Na cos2(ξa) + Nb cos2(ξb)+

+2
√

NaNbcos(ξa)cos(ξb)
] (28)

with the constant of proportionality K corresponding to the quantum efficiency of
photon-to-electron conversion. The phases are defined by ξ j = ωjt − β jz − ϕj for j = a
or b. This approach of making use of initially evaluated expectation values links the
quantum regime to the classical one. After time-averaging over a large number of optical
frequency periods, namely, with the averaging time interval T satisfying 2π/ωj � T �
2π/|ωa −ωb|, we find that

〈
cos2(ξ)

〉
= 1/2, and 〈cos (ξ1 + ξ2)〉 = 0. Using the identity

cosξ1cosξ2 = 0.5 [cos (ξ1 + ξ2) + cos (ξ1 − ξ2)] as well as 〈sin ξ〉 = 0, we retrieve the
conventional interference pattern for the interval average:

〈I(t)ph〉 =
K
2
〈Ntot(t) [1 + σ Γcos(ξa(t)− ξb(t))]〉 (29)

〈N (t)〉 = 1
T

∫ T/2

−T/2
N (t) dt; and Ntot(t) = Na(t) + Nb(t)

σ =
2
√

NaNb
Na + Nb

êa·êb ; and Γ(τ) =

∫ T
0 fph(t) fph(t + τ)dt∫ T

0 f 2
ph (t) dt

where êj specifies the polarization of the group of photons, and the definition of the
longitudinal overlap Γ(τ) follows from the longitudinal profile of photons of Equation (24b).
Equality (29) will be applied to two-detector correlations in the following section. Thus, the
formalism of this section based on the intrinsic fields of photons leads to phase- dependent
degrees of detections or detection probabilities of interfering groups of photons, enabling
a smooth transition between the quantum and classical regimes for any level of optical
power and any related phase. The statistical average can be evaluated in one step of a large
number of photons or in a series of steps of small number of photons.

6. Correlations of Photons by Means of a Dielectric Interface Beam Splitter

The analytic elements derived in the previous sections will be applied hereafter. These
elements are: the wave-function of Equation (5) of the dynamic and coherent number
states which deliver the correct expectation values for the number of photons carried by a
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photonic wave front and its associated complex amplitude in Equation (12), and the optical
field profile of a group of photons as shown in Equations (24b) and (26).

Given a photonic optical field, the Fresnel coefficients of reflection and transmission
can be interpreted as probability amplitudes for the respective effects at a dielectric bound-
ary [5]. These coefficients arise from the physical interactions at the dielectric interface,
as opposed to the “black box” approach of having a phase difference of ±π/2 between
the reflection r and transmission t coefficients regardless of the structure of the beam
splitter [6,22]. The operations of dielectric beam splitters involve the quantum Rayleigh
spontaneous and stimulated emissions. A symmetric Y-junction waveguide does not add
any phase difference between the two pathways. As a result, for a 1 × 1 Mach-Zehnder
interferometer, the detection probability for one single input photon |r + t|2 could be larger
than unity.

For a dielectric interface beam splitter as sketched in Figure 3, with the arrows indicat-
ing the converging and diverging waveguides, the reflected and transmitted optical fields
will lead to the transformation of the field operators based on Fresnel coefficients:

â†
c = −r1 â†

a + t1 â†
b and â†

d = t2 â†
a + r2 â†

b (30)

where the subscripts of the reflection r and transmission t coefficients indicate the exiting
direction of the photons.
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To illustrate an application of this approach, two groups of photons generated in-
dependently as the input signal a and signal b are impinging, from opposite sides, on
the integrated optical beam splitter of Figure 3 which is placed in the x y plane, with∣∣∣r∣∣∣=∣∣∣t∣∣∣= √0. 5 . The dielectric boundary is used as the synchronization place, i.e., τ = 0
for the time delay τ between the two groups of photons. Time-shifts of opposite signs ± τ
for the arrival at the interface of the two groups of photons may be added by controlling lo-
cally the refractive index or the propagating distance. The relative phases of these photonic
wave fronts in the directions of the c and d waveguides are, for photodetector PD1, and
photodetector PD2, respectively:

For PD1 : ξar(t, τ) = −ω τ + ϕa(t)− π and ξbt(t) = ϕb(t) (31a)

For PD2 : ξat(t) = ϕa(t) and ξbr(t, τ) = ω τ + ϕb(t) (31b)

where the random phases of the spontaneously emitted photons are denoted by ϕ (t) and
a (−π) phase shift is due to the upwards reflection. Any bias phases may be included in
ϕ (t).

The combined number of photons Nj(t) detected by photodetector j =1; 2 is evaluated
from the interference pattern of the instantaneously measured flux of photons presented
above in Equation (29), with the phases given by Equation (31).
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The correlation function C 12 (τ) between two photocurrents I(t)ph, j generated by
independent streams of photons and detected by two separate photodetectors, is specified
by the following averaging relation for independent sources and detections:

C 12 (τ) = 〈I(t)ph, 1 I(t + τ)ph, 2〉 = 〈I(t)ph, 1〉 〈I(t + τ)ph, 2〉 (32)

We shall illustrate the possibility of “classical” unity visibility by assuming σ = 1 and
Γ(0) = 1 in Equation (29) to obtain the normalized correlation function as the probability
of joint detection P 12 for independent detection probabilities for steady and controllable
phases φ1 and φ2 ∈ {0; 2π}:

P 12 (φ1; φ2) = P 1(φ1)P 2(φ2) =
C 12

K2 Ntot;1 Ntot;2

=
1
4
[1 + cos φ1 + cos φ2 + cos φ1 cos φ2]=

Nph;1 (φ1) Nph;2(φ2)

Ntot;1 Ntot;2

(33)

where φj = ξaj − ξbj is the phase difference for interference at photodetector j = 1; 2. The
third line of Equation (33) describes the experimental parameters with the number of
detected photons being Nph;j and the total number of incoming photons per photonic group
identified as Ntot;j.

With one photonic group undergoing a −π phase shift upon reflection at the interface
with a higher refractive index of the dielectric medium, and all photons propagating the
same distance or having the same bias phase, the second and third terms on the second
line of Equation (33) become cosφ1 and cos(φ1 + π) as φ1 − φ2 = −π, and cancel each
other out for each individual measurement of the ensemble. This is the case of Nph;1 = 0
leading to P 12 (φ1; φ2) = 0 for any number of photons. An enhanced sensitivity to phase
modulation in the case of intensity correlation can be found from Equation (33) by setting
cos φ1 = 1 and cos (φ2 + π/2) ≈ −φ2 leading to a variation of 2 φ2. The two intensity
sets of interference patterns can also be generated separately and their sampled values
multiplied to give rise to Franson-type correlations [2] with controlled phases as follows.

The coincidence counting of photons for the transient interference patterns of the two
separate photodetector intensities, over the coincidence time interval T (a few ns) is also
derived from Equation (33), for a group of amplified spontaneously emitted photons such
as the signal and idler photons of a parametric source. The result will be the aggregate
of 〈P 12 (φ1; φ2)〉 over the entire range of {0; 2π}. From cosφ1cosφ2 = 0.5 [cos (φ1 + φ2) +
cos(φ1− φ2)] , the first term on the right-hand side vanishes upon integration over the range
{0; 2π} of random phases, and the correlation of intensities is evaluated from Equation (33)
to be:

P 12 = { 1 + cos [(ωb −ωa) τ − π]}/4 (34)

after realizing that there are two statistical possibilities for the random phases ϕa(t) and
ϕb(t) of the spontaneously emitted photons. The random phases from the two photo-
currents cancel each other out but these two random phases ϕa(t) and ϕb(t) can interchange
values without affecting the result, and the cosine term of 0.5 cos(φ1 − φ2) should be
counted twice when calculating, “classically”, the correlation function P 12(τ). Alternatively,
we recall that the contributions from the second and third terms on the second line of
Equation (33) add up to zero by integrating over the phase interval of {0; 2π} while the
last term of the interference becomes cosφ1cosφ2 = −cos2 φ and its contributions cover
two periods of π rad with positive values adding up to unity. From Equation (34), for
τ = 0, we find a vanishing correlation probability P 12 = 0, which corresponds to the
Hong–Ou–Mandel (HOM) dip. This is consistent with the experimental correlations with
uncorrelated photons [23].

For the case of photons from two optical sources reaching, simultaneously, two sep-
arate photodetectors, the probability of joint detections [24] or intensities correlation is
evaluated by removing the –π phase from Equation (34) to obtain, for complete overlap,
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twice the probability P 12(Γ = 1) = 2 P 12(Γ = 0), [24] of separate detections, which is
characteristic of the original Hanbury Brown & Twiss experiment.

Next, we recall the parametric phase-pulling effect [19] leading to a phase correlation
between the signal and the idler waves, i.e., ϕs + ϕi = ϕp + π/2, for any initial phases of
weak waves such as spontaneous emission, with the coherent phase of the pump photons
given by ϕp, to find a constant phase relation φ1 + φ2 = ϕsa − ϕsb + ϕia − ϕib = ϕpb − ϕpa
for the cos (φ1 + φ2) term above, which points out the role played by the relative pump
phases. This phase relation will result in nonvanishing intensity correlations in the case of
a 2 × 2 Mach-Zehnder interferometer [21], as well as for two-source experiments outlined
in ref. [2], doing away with quantum mysteries.

7. Emerging Applications

Additional applications of the instantaneous quantum descriptions of multi-photon
wave fronts may include functional devices such as ‘memristers’ [25] which require time-
dependent information, and possibly quantum coupon collectors [26], as well as quantum
key distribution with asynchronous two-photon interference [27].

The physical possibility of implementing quantum-strong correlations with multi-
photon states from different sources was experimentally demonstrated in ref. [24] for both
intensities of fields with random phases as well as polarization states.

8. Conclusions

The conventional interpretation of one-photon per radiation mode fails to consider
the quantum Rayleigh scattering and stimulated emission, as well as the unavoidable
parametric amplification of spontaneously emitted photons. An analysis focused on time-
and space- dependent pure quantum states describing single and independent events of
propagation, photon–dipole interactions and photodetections reveals physical processes
and new features such as the dynamic and coherent number states for phase-dependent,
instantaneous coupling of photons, the intrinsic longitudinal and lateral fields of photons,
a smooth transition from a low number to a high number of interfering photons, and the
possibility of a unity visibility in the “classical” regime with Fresnel coefficients.
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