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Abstract: The plastic deformation behaviors of crystalline materials are usually determined by lattice
dislocations. Below a certain particle or grain size, focus is placed on the grain-boundary-mediated
mechanisms (e.g., grain rotation, grain boundary sliding, and diffusion), which has been observed
during recrystallization, grain growth, and plastic deformation. However, the underlying mechanisms
of grain rotation remain to be studied. In this article, we review the theoretical models, molecular
dynamics simulations, and experimental investigations on grain rotation. The development of in
situ transmission electron microscopy (TEM) and X-ray characterization methods for probing grain
boundary processes during plastic deformation provides a better understanding of the mechanisms of
grain rotation. Especially, the ability to acquire high-quality X-ray diffraction patterns from individual
nanograins is expected to find broad applications in various fields such as physics, chemistry, materials
science, and nanoscience.
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1. Introduction

Nanocrystals have a typical grain size of several tens of nanometers. There is experimental
evidence that conventional grain interior dislocation-mediated activities prevail in nanocrystals coarser
than 100 nm, whereas in nanocrystals smaller than 50 nm, the deformation is accommodated mostly
at the grain boundaries (GB). Grain rotation, though not usually treated as an important plastic
deformation mechanism in bulk-sized materials, is very relevant in nanomechanics [1]. For instance,
oriented attachment of nanocrystals [2] and radiation-induced texture [3] involve the grain rotation
of nanocrystals. However, the grain rotation mechanism remains puzzling because some processes,
such as lattice diffusion, dislocations, disclinations, and curvature-driven grain boundary migration,
may play roles, which complicates investigations into the grain rotation mechanisms [3,4]. In this
article, we review the previous theories, computer simulations, and experimental investigations into
grain rotation. It is expected that the established knowledge and experimental techniques will advance
future explorations significantly.

2. Theories of Grain Rotation

Many experimental studies have proved that grain rotation plays an essential role in the plastic
deformation of nanocrystalline materials [1,3,5–12]. Inspired by the experimental observations of
grain rotation, a lot of theoretical models were developed in the last decade to describe the plastic
deformation associated with the grain boundary activity accompanied by grain rotation. To explain the
grain orientation changes induced by the rigid body rotation in thin films of gold, a phenomenological
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theoretical model was addressed to explore the kinetics of grain rotation behaviors [4]. In this model,
the aggregate energy gradient due to the misorientation for all grain boundaries surrounding a grain
and the diffusion fluxes of vacancies along the grain boundary are taken into account. The predicted
grain rotation rate agrees well with the experimental observation, which is grain-size dependent.
Kobayashi et al. developed a phase field model to simulate the two-dimensional grain boundaries
dynamics [13], in which the solidification and the anisotropic phase boundary energies are involved,
as well as the crystalline order induced into an adjoining amorphous phase. This model can simulate
the grain boundary motion and grain rotation during the grain boundaries’ evolution.

Following the Raj–Ashby theory for diffusion-accommodated grain-boundary sliding [14],
Moldovan et al. developed the elasticity and diffusive flow models to explore the grain rotation issue
in polycrystalline materials through considering grain boundaries’ (GB) diffusion along the grain
periphery and lattice diffusion in the grain interior, both of which could induce grain rotation [15],
as shown in Figure 1. The proposed general expression for the rotation rate could be applied to
simulate the grain-rotation-induced grain coalescence for grain growth. Moldovan used this general
theory of grain rotation in the framework of a mean field theory to explain the grain growth induced
by the grain rotation, and the dominant grain-rotation coalescence mechanism leads to the power-law
of grain growth [16].
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Figure 1. The schematic drawing of a grain in a polycrystalline materials (a) and the grain after 
rotation (b) [15]. 
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[17], Cahn and Taylor presented a unified method to monitor the grain boundary motion under the 
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[18]. In their theoretical framework, the normal and tangential motions of grain boundaries, the grain 
sliding rigidly along the boundary, and grain rotation can all be compiled into a unified theoretical 
formulation. The rotation of circular cylindrical grains can then be predicted through considering the 
reduction of total surface/interface free energy. To identify the orientation dependence of grain 
rotation as observed in experiments [6], Winther et al. adopted the Sachs and Taylor models to 
analyze the relationship between the grain rotation path and grain orientation, as well as the self-
consistent model [19]. The previous orientation-based models could not characterize the grain 
rotation behavior in all regions, and the Sachs model [20] is the lower bound model and the Taylor 
model [21] is the upper bound model. That is the reason why the prediction based on the Taylor and 
Sachs models are inconsistent with the experimental grain rotations in Al [5]. 

To avoid the assumption of the specific orientation of grain boundaries in the theoretical models 
of grain boundary dynamics, Caillard et al. proposed a shear-migration coupling model in which the 
random orientations of grain boundaries are involved [20]. Such a geometrical model could help in 
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energy and stress-driven grain rotations are quantified in a kinetic model proposed by Yang et al. 
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Since the GB sliding originating from the shear and normal forces acts on the grain boundaries [17],
Cahn and Taylor presented a unified method to monitor the grain boundary motion under the postulate
of a coupled tangential motion in two crystals produced during the motion of the interface [18].
In their theoretical framework, the normal and tangential motions of grain boundaries, the grain
sliding rigidly along the boundary, and grain rotation can all be compiled into a unified theoretical
formulation. The rotation of circular cylindrical grains can then be predicted through considering
the reduction of total surface/interface free energy. To identify the orientation dependence of grain
rotation as observed in experiments [6], Winther et al. adopted the Sachs and Taylor models to analyze
the relationship between the grain rotation path and grain orientation, as well as the self-consistent
model [19]. The previous orientation-based models could not characterize the grain rotation behavior
in all regions, and the Sachs model [20] is the lower bound model and the Taylor model [21] is the
upper bound model. That is the reason why the prediction based on the Taylor and Sachs models are
inconsistent with the experimental grain rotations in Al [5].

To avoid the assumption of the specific orientation of grain boundaries in the theoretical models
of grain boundary dynamics, Caillard et al. proposed a shear-migration coupling model in which
the random orientations of grain boundaries are involved [20]. Such a geometrical model could
help in describing the grain rotations and GB-based plasticity in nanocrystals very well. The grain
boundary energy and stress-driven grain rotations are quantified in a kinetic model proposed by
Yang et al. [21]. In their model, the contribution of triple junction and grain shape in grain rotations
are analyzed in detail. They found that the power law of grain size for the grain rotation rates is
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sensitive to the driving forces and the GB migration. These grain rotation models [4,15,18] are also
applied to predict the grain-rotation-induced grain growth in nanoceramics. It was revealed that
during grain-rotation-induced coalescence, the formation of low-energy, low-angle grain boundaries
depend on the rotation step and temperature, as well as grain size [22].

For the crack-free and pre-cracked nanocrystalline materials, the theoretical models were developed
to characterize the nanoscale grain rotation originated from the grain boundary sliding and grain
boundary dislocation climb [23,24]. It was concluded that the rotation deformation rate is dominated
by diffusion, facilitating the climb of grain boundary dislocations. Ovid’ko and Sheinerman further
presented a model to analyze the fast nanoscale rotation in the nanocrystalline materials occurring
through local ideal shear processes. An extreme condition, such as very high applied stress and plastic
strain rate, could lead to such shear-induced fast grain rotation [25,26]. Bobylev and Ovid’ko also
revealed the mechanism of stress-driven GB rotation in their model and the predictions are agree
well with the experimental observations [27]. In addition, the GB viscosity could also affect the grain
boundary sliding and grain rotation [28–30]. For example, Kim et al. considered the contribution of the
boundary viscosity on the GB sliding rate, rotation rate, and stress distribution, and they found that
with increasing boundary viscosity, the sliding rate and rotation rate decrease, as well as the normal
stress on the GBs [28–30].

Note that grain rotation plays an important role in the plastic deformation in polycrystalline
materials, especially in the nanograined materials. The theoretical models mentioned above provide a
comprehensive description for the grain boundary activities that are associated with grain rotations. It
could be helpful to develop an elastoplastic framework for the plastic deformation in polycrystalline
metals by considering grain rotation behaviors. There are still several challenges in theoretical models
for grain rotations. For example: (1) How to distinguish the grain rotation behaviors in face-centered
cubic (FCC), body-centered cubic (BCC), and hexagonal close packing (HCP) metals? (2) How to
characterize the grain rotation under a high strain rate in the models? (3) Can the present models be
applied to describe the grain rotation behaviors of polycrystalline materials at extreme conditions such
as high temperature or high pressure?

3. Molecular Dynamics Simulations of Grain Rotation

Molecular dynamics (MD) simulation is a powerful method to investigate the grain boundary
dynamics at the atomic scale. Upmanyu et al. conducted the MD simulations to monitor the grain
rotation and grain boundary migration [31]. It was found that the local minima in the grain boundary
energy results in the grain rotation, and the rotation rate decreases with increasing grain size. They
also used the interface parameters obtained from MD simulations in phase field modeling to reproduce
the grain boundary dynamics, and a good agreement in grain rotation rate is achieved for the above
two simulation approaches.

Since the coupled behavior between the normal grain boundary motion and the tangential
translation of grains was confirmed using MD simulations [31], Cahn et al. examined the factor of the
GB motion coupled to grain translation using the MD simulations, and found that the coupling factor
is multivalued [32]. They also addressed a geometric model to predict the misorientation dependence
of this factor, which agrees with the MD results. Farkas et al. studied the grain growth kinetics in 4-nm
nanocrystalline Ni by using the three-dimensional MD simulations and revealed that the grain rotation
and the decrease in grain boundary energy dominate the grain growth in the ultrafine nanograins of
Ni [33].

To verify the contribution of grain rotation on the plastic deformation and grain growth, Haslam
et al. addressed the MD simulations to give the first evidence of grain rotation and grain growth,
as shown in Figure 2, and indicated that the rotation–coalescence mechanism coupled with the grain
boundary migration [34]. For the coupling behavior of the normal and tangential grain boundary
motions predicted in Cahn and Taylor [18], Trautt and Mishin [35] carried out MD simulations to give
an insight into the dynamics of grain boundary motion. They found that the normal and tangential
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motions are not perfectly coupled to one another, and grain boundary motion involves a proportion
of sliding.
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Hasnaoui et al. performed large-scale MD simulations to support the GB sliding as the primary
plastic deformation as mentioned in the model of Hahn et al. [36,37], while they found that the
grain rotation can also act as one important deformation mechanism in nanocrystalline materials [38].
Haslam et al. further performed MD simulations to study the grain growth in nanocrystalline materials
under stress and they found that the grain growth comes from the grain boundary migration and grain
rotation, both of which can be accelerated by deformation [39]. Sansoz and Dupont also used atomistic
simulations to study the stress-driven grain growth during nanocrystalline aluminum indentation [40].
The grain rotation is also identified as one important mechanism for grain growth. During the
deformation of nanocrystalline Ni, three-dimensional MD simulations also demonstrated that the grain
rotation and GB activity act as the analogous part of the intergranular plasticity mechanism found
in nanocrystalline metals [41]. Even though the MD simulations could provide the mechanisms of
grain rotation at the atomic scale, it is still a challenge for the MD simulations to monitor the grain
rotation behaviors in the cases of deformation under lower strain rate and a polycrystalline structure
with multi-modal grain size distribution.

4. TEM Characterizations of Grain Rotation

For determining the change of grain orientation, scanning electron microscopy (SEM) imaging
combined with electron back scattering diffraction is a well-developed method. This method has been
extensively used for coarse-grained materials (grain size over 1 µm) or fine grains (grain size between
100 nm and 1 µm), while is not suitable for measuring sub-10 nm grains. TEM is a powerful technique
to record the grain orientations, together with position, size, morphology, and topological connectivity
among grains of polycrystalline materials. This information can be recorded using electron back
scattered diffraction (EBSD) or X-ray based techniques, too. The spatial resolution for EBSD is around
20 nm, and over 200 nm for three-dimensional (3D) X-ray techniques, in contrast to a spatial resolution
down to 1 nm for TEM [42]. To record grain orientation or boundary misorientation using TEM,
several methods can be used, e.g., selection area diffraction or Kikuchi patterns. Among those methods,
Kikuchi patterns have an outstanding advantage in that both the orientation and microstructure image
can be recorded at the same time. In 1995, Liu et al. developed a rapid method to determine the
orientations and misorientations of crystalline foils with TEM [43]. With this method, the orientation of
crystallite can be measured by the relative position of Kikuchi patterns through tilting the specimen to
allow the low-index zone axes to be close to the beam direction. Afterward, for a region of interest with
many crystallites, the orientations of different crystallites can be determined by moving the specimen
to obtain the Kikuchi patterns of these crystallites. The misorientations between two crystallites can be
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calculated. The accuracy for the orientation is about 1◦. For misorientation angles and axes between
two crystallites, the accuracies are 0.3◦ and 3◦, respectively [43]. Another TEM-based orientation
mapping method, namely automated crystal orientation mapping, was proposed by R.A. Schwarzer in
1998 [44]. This method was developed to extend crystallographic orientation mapping to specimens
that cannot be measured using EBSD-SEM techniques [44–47]. Particularly, it is very effective for
severely deformed metals. This method has been frequently used to map grain orientations in ultrafine
grained samples that are prepared using severe plastic deformation. In this method, the Bragg spot
pattern, rather than Kikuchi lines, is employed, which is more sensitive to lattice parameters than an
SEM-based method [44]. It can be used for both orientation mapping and phase mapping.

To provide direct evidence for grain rotation, in situ TEM observations is essential. An in
situ straining stage combined with lattice imaging can provide the changes in grain misorientation.
Nevertheless, the study addressing the grain rotation for nanograined samples with TEM is rare.
An early study was carried out in 1995. The deformation behavior of nanoscaled gold thin films,
with grain sizes of 10 nm and film thicknesses of l0–20 nm, has been investigated using in situ high
resolution transmission electron microscopy [48]. The grain rotation was characterized by measuring
the variation in the angular relationship between the lattice fringes of two neighboring grains. Because
of the small scattering angle of electron diffraction, fringe images are generally observed only for
the crystal planes whose normals are approximately perpendicular to the incident beam direction.
The variation of the misorientation by grain rotation is then measured by the variation of the angle
between the lattice fringes. This technique works well when the rotation axis is parallel to the electron
beam and the normal of film. They pointed out that the lattice fringe contrast might change in some
of the grains, but not in others. The loss of lattice fringe contrast in a certain grain may be transient.
Grains rotated with respect to each other are extensively observed, which implies the plastic strain
takes place via grain boundary sliding. The local strain tensor and the level of plastic strain associated
with the deformation were also measured with TEM [48]. The two-dimensional (2D) strain tensor
was obtained by measuring the shape change of a triangle in the deforming zone. The normal strain
in three different directions can be determined via a measurement of the change in the length of the
sides of the triangle. However, it is difficult to evaluate the accuracy for the strain measurement.
There are inevitable errors when identifying the same material point step by step, which is necessary
when placing the triangle. Even with the uncertainties in strain determination, the gold films with
a grain size of 10 nm can be deformed to an 30% plastic strain with no apparent dislocation activity.
The grain rotation, combined with the lack of dislocation activity, both imply that deformation at the
nanoscale is accommodated by grain boundary sliding. In contrast, it is further found that traditional
dislocation-based plasticity takes place when silver films with coarser grain sizes around 110 nm were
strained in a similar manner [48].

Wang et al. investigated the deformation behavior of nanocrystalline Ni under an in situ tensile
deformation using transmission electron microscopy [49]. They used a technique that combined the
use of nanobeam electron diffraction and dark field images techniques. Both the individual grain
rotation and neighboring grain rotation/growth were recorded [49]. Recently, a grain rotation by grain
boundary dislocations in nanocrystalline platinum was reported by Wang et al. [1]. A transition of a
plastic deformation mode from cross-grain dislocation glide in larger grains (>6 nm) to a coordinated
rotation of multiple grains for grains with diameter <6 nm was observed. It was found that the grain
rotation is realized by a dislocation climb at the grain boundary, rather than grain boundary sliding
or diffusional creep. The atomic-scale images indicate that the evolution of the misorientation angle
between neighboring grains is related to the change of the Frank–Bilby dislocation content near the
grain boundary [1].

Usually, the foils for TEM characterizations often have a thickness of about 50–100 nm, which puts
the grain size limitation for TEM measurements as several nanometers. The first solution is to prepare
thin foils with a thickness similar to or lower than the grain size. Recently, a three-dimensional (3D)
method for orientation mapping with TEM was developed by Liu et al. [42]. This method allows for
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recording the orientation and morphology of nanograins when the thickness of thin foils is much larger
than the grain size. Figure 3 is an example of a 3D grain-orientation map for a 150-nm-thick aluminum
film. The data collection is based on conical-scanning dark-field imaging. To enable the reconstruction
of a 3D orientation map for all grains in a sample volume, images are recorded at many tilt angles.
A new approach for the orientation determination and 3D reconstruction was also developed, based on
the grain sweeper and grain spotter algorithms [42]. Although several mechanisms for grain rotation
of nanograins have been revealed by the usage of in situ TEM observation, the as-used foils generally
contain only single-layer grains. This type of constraint condition is quite different from those of
foils with multi-layered nanograins. In future, a combination of 3D orientation mapping technique
and in situ TEM staging techniques can provide a powerful capability to study the grain rotation
of nanograins.

Quantum Beam Sci. 2019, 3, x FOR PEER REVIEW 6 of 12 

 

To enable the reconstruction of a 3D orientation map for all grains in a sample volume, images are 
recorded at many tilt angles. A new approach for the orientation determination and 3D 
reconstruction was also developed, based on the grain sweeper and grain spotter algorithms [42]. 
Although several mechanisms for grain rotation of nanograins have been revealed by the usage of in 
situ TEM observation, the as-used foils generally contain only single-layer grains. This type of 
constraint condition is quite different from those of foils with multi-layered nanograins. In future, a 
combination of 3D orientation mapping technique and in situ TEM staging techniques can provide a 
powerful capability to study the grain rotation of nanograins. 

 
Figure 3. 3D grain-orientation mapping from an aluminum film with a thickness of 150 nm [42]. 

5. X-ray Characterizations of Grain Rotation 

The computation models usually cannot deal with texture evolution well and often overestimate 
the rate of texture development. The lack of local-scale experimental input is the main reason, and 
the models are built on global assumptions without considering the local surroundings of individual 
grains. In order to obtain the local-scale dynamic data, Margulies et al. used three-dimensional (3D) 
X-ray diffraction microscopy [5] to examine a high-purity aluminum sample (3 mm thick and 300 μm 
across in diameter) at various strain levels. The grain rotation and grain subdivision were measured 
during the deformation of polycrystals. This technique allows for simultaneous measurements on 
multiple grains and provides statistical analysis for ensembles of the sample grains. A 3D grain map 
can be extracted to record the information on neighboring relations. From the grain boundary maps 
in the deformation, the changes in the grain shape and texture evolution can be generated. This 
technique bridges the grain and subgrain length scales. The measurements can provide the necessary 
information for establishing and testing the local models, e.g., finite-element analysis algorithms. 
Experimental information on grain rotations are not consistent with the traditional Taylor and Sachs 
models, indicating that the local dynamic information is important for the solid modeling of grain 
rotation. 

For the grain rotation at the nanoscale, several mechanisms have been proposed, such as grain 
boundary sliding with atomic shuffling, stress-induced disclination dipoles, and disorder-enhanced 
mobility of atoms at grain boundaries. At the Berlin Electron Storage Ring Society for Synchrotron 
Radiation (BESSY), Zizak and co-workers investigated the radiation-induced deformation properties 
of nanocrystalline titanium by examining the bombardment-induced texture changes. They found 
that a substantially large amount of strain is induced by the collective rotations of multiple 
nanocrystals [3], which, in contrast, is immeasurably small or absent in microcrystals. Grain rotation 
can be correlated with the radiation-induced movement of amorphous matter at grain boundaries. 
The nanograins float around by the disclination dipoles at grain boundaries. In nanocrystalline 
ceramics, the plastic strain is thought to originate from the grain boundaries and the grain interiors 
do not deform plastically (we have found that this assumption is not true in real cases). Although 
there is no complete freedom for grains to rotate, the mutual hindrance is small. The rotation rate and 

Figure 3. 3D grain-orientation mapping from an aluminum film with a thickness of 150 nm [42].

5. X-ray Characterizations of Grain Rotation

The computation models usually cannot deal with texture evolution well and often overestimate
the rate of texture development. The lack of local-scale experimental input is the main reason, and the
models are built on global assumptions without considering the local surroundings of individual grains.
In order to obtain the local-scale dynamic data, Margulies et al. used three-dimensional (3D) X-ray
diffraction microscopy [5] to examine a high-purity aluminum sample (3 mm thick and 300 µm across in
diameter) at various strain levels. The grain rotation and grain subdivision were measured during the
deformation of polycrystals. This technique allows for simultaneous measurements on multiple grains
and provides statistical analysis for ensembles of the sample grains. A 3D grain map can be extracted
to record the information on neighboring relations. From the grain boundary maps in the deformation,
the changes in the grain shape and texture evolution can be generated. This technique bridges the grain
and subgrain length scales. The measurements can provide the necessary information for establishing
and testing the local models, e.g., finite-element analysis algorithms. Experimental information on
grain rotations are not consistent with the traditional Taylor and Sachs models, indicating that the local
dynamic information is important for the solid modeling of grain rotation.

For the grain rotation at the nanoscale, several mechanisms have been proposed, such as grain
boundary sliding with atomic shuffling, stress-induced disclination dipoles, and disorder-enhanced
mobility of atoms at grain boundaries. At the Berlin Electron Storage Ring Society for Synchrotron
Radiation (BESSY), Zizak and co-workers investigated the radiation-induced deformation properties
of nanocrystalline titanium by examining the bombardment-induced texture changes. They found that
a substantially large amount of strain is induced by the collective rotations of multiple nanocrystals [3],
which, in contrast, is immeasurably small or absent in microcrystals. Grain rotation can be correlated
with the radiation-induced movement of amorphous matter at grain boundaries. The nanograins float
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around by the disclination dipoles at grain boundaries. In nanocrystalline ceramics, the plastic strain
is thought to originate from the grain boundaries and the grain interiors do not deform plastically
(we have found that this assumption is not true in real cases). Although there is no complete freedom
for grains to rotate, the mutual hindrance is small. The rotation rate and shear rate are coupled.
In nanocrystalline metals, the authors assume that the plastic strain occurs exclusively in the grain
interior, presumably in the form of dislocation loops. The transient stress fields arising from subsequent
ion bombardment may induce an array of dislocations and thus pileups at the grain boundaries. When
the pileup stress exceeds a critical value, climbing dislocations occur due to splitting. Disclination
dipoles move along the grain boundaries, inducing shear and grain rotation. Shear and grain rotation
need not stop simultaneously. Grain rotation will cease when the dislocation arrays pass a triple line
with no disclination dipoles formed.

Another synchrotron-based technique, X-ray absorption near-edge structure spectroscopy
and photoelectron emission spectromicroscopy (XANES-PEEM), has been found to be useful for
characterizing the grain rotation of materials that have a strong X-ray linear dichroism effect.
The polarization-dependent imaging contrast (PIC) mapping with XANES-PEEM detected the gradual
ordering processes in mollusk shell nacre [50]; the mineral blocks that have alternating orientations in
sea urchin teeth [51]; and the mechanism of secondary-nucleation-mediated co-orientation, also in
sea urchin teeth [52]. Gilbert et al. explored this technique further and determined the orientations
of individual calcite nanocrystals with a spatial resolution of 10 nm [11]. The XANES spectra of the
carbon K edge were collected from a single crystal of calcite at different angles of the linear polarization
vector. The polar angle represents the angle between the linear polarization vector and the calcite c
axis, which completely describes the calcite crystal and its c-axis direction. The intensities of the π*
(pi antibonding) and σ* (sigma antibonding) peak are anticorrelated: at large polar angles (90◦) the
π* peak has a minimum and σ* peak has a maximum intensity. The intensity of the π* peak is the
strongest at low polar angles (0◦). XANES-PEEM can achieve spatial resolution on the order of several
nanometers. This experimental technique will be especially useful for elucidating the well-controlled
nanoscale organization of biominerals.

For the plastic deformation of nanomaterials, an inverse Hall–Petch size dependence has been
reported for the strength of nanometals below a critical length scale because in the plastic deformation
at the lower nanoscale, dislocation activity fades away and GB sliding, diffusion, and grain rotation
take over the role [53]. GB-mediated mechanisms are reported yielding a d−4 dependence on grain
rotation rate, where d represents the grain size [54], i.e., grain rotation activity is greatly enhanced
in ultra-fine nanocrystals. Crystallographic alignment due to grain rotation has been observed in
2-to-3-nm ferrihydrite nanocrystals [55–57], which seems to be the supportive evidence for the grain
rotation enhancement with decreasing grain size. In contrast, computer simulations reveal that GB
mobility weakens with decreasing grain size [33,58]. Although the in situ examinations of grain rotation
of micrometer and coarser crystals during plastic deformation are feasible [5,59], in situ measurement
of grain rotation at the nanoscale is difficult and remains to be explored. In radial diamond-anvil-cell
X-ray diffraction (rDAC XRD) experiments, Chen et al. investigated the texturing of bulk-sized
platinum embedded in nickel particle with sizes from 500 nm down to 3 nm [60]. They found that the
texture intensity of the platinum of the same grain size drops rapidly with decreasing grain size of the
surrounding nickel medium, which indicates that grain rotation occurs in a more active mode in the
smaller nickel nanocrystals. It has been established that dislocations glide in preferred directions giving
rise to a deformation texture whereas grain rotation through GB sliding alone will randomize the grain
orientation distribution and thereby destroys texture formation. Basically, under uniaxial compression,
the texture of a polycrystalline material is mainly determined by the slip activities, i.e., the maximum
texture strength for fcc platinum at (110) is expected [60], similar to the texture pattern for fcc nickel
(Figure 4). However, the observed big change in the texture profile of platinum indicates that some
other external factors introduced in the experiments destroyed the typical correlation between the
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texture profile and slip activities. The authors conclude that the grain rotation of the nickel nanocrystals
in the mixtures of the platinum sample was responsible for the texture loss of platinum [60].

Texture measurements do not give direct information regarding grain rotation. As a continuing
exploration of the above observation in rDAC XRD experiments, Zhou and co-workers used Laue
X-ray micro-diffraction to track the orientation marker in nanosized media of different sizes and
investigated the size dependence of grain rotation [12]. For good detection signals, 6~8 µm tungsten
carbide (WC) particles were mixed with nickel particles to measure the rotation magnitude of nickel
nanograins. The very small amount of WC was well-diluted in the nickel nanocrystals. In order to
extract the size effect on the grain rotation, they compared in the same differential stress conditions.
They observed that the WC marker crystals in the nickel medium of the 70 nm grain size rotated more
than in any other sized nickel media. It is inferred that the trend turnover in the size dependence of the
grain rotation originates from the crossover between two different mechanisms: the grain boundary
dislocation-mediated and grain interior dislocation-mediated rotation mechanisms. The activities
of the grain interior dislocations are evidenced by a separate study on the deformation texturing of
the nickel nanocrystals. This new finding will help to better unveil the deformation mysteries of
nanomaterials and to optimize material properties. As shown in Figure 4, the same sample volume
can be mostly kept in the beam in the deformation. Laue XRD measurements can generate the direct
information of grain rotation. Due to the beam size used in the study of Zhou et al. [12], the smallest
grains that can be identified directly from the individual diffraction spots are of 1 µm in diameter.
The emerging Laue XRD techniques with a nanosized beam can identify grains with a size down to
10 nm and has great potential for exploration on this topic.
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Figure 4. Representative Laue XRD patterns (top) and close-up views on two Laue spots ((10-4)
and (10-5)) of a marker grain under pressure (bottom). Basically, by indexing the Laue patterns, the
orientation of each crystallite can be obtained. The biggest diffraction spots, coming from the entrance
diamond anvil (a big single crystal), can be used as references. In the compression, the variations of the
WC marker’s diffraction spots with respect to the spots of the diamond signalize the change of the
marker’s position and orientation [12].
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Mechanical properties of materials are also affected by dynamic processes [61]. TEM can image
grain lattice and grain boundaries with atomic resolution, but its temporal resolutions are very limited;
meanwhile, XRD can give better temporal resolution and works more flexibly with different sample
environments, but provides only the average structure of grains. Huang and co-workers developed an
in situ X-ray nanodiffraction method by combining a brilliant synchrotron beam, Kirkpatrick–Baez
(KB) mirrors, and a high-resolution X-ray detector (PILATUS 6M or 1M, DECTRIS AG, Baden,
Switzerland) [62], as shown in Figure 5. They obtained the diffraction patterns from individual grains
with a temporal resolution of several milliseconds. In this study, by tracking in situ the photolysis of
AgBr grains and the formation of Ag nanograins, they observed lattice deformation and grain rotation
during chemical reactions for the first time. If combined with various sample environments, such as
high pressure, high temperature, and external fields, this in situ X-ray nanodiffraction technique will be
even more powerful for grain rotation studies and can find wide applications in multiple disciplines.
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Figure 5. Schematic layout of the X-ray nanodiffraction where a 5 ms temporal resolution was achieved.
(a) Two KB mirrors focus monochromatic X-rays onto a spot size of approximately 370 nm × 270 nm.
(b) Real-time tracking of the photolysis of AgBr grains and the formation of Ag nanograins (temporal
resolution: 140 ms) [62]. Because of the nanosized beam, the number of sample particles is relatively
small, and so diffraction spots, rather than continuous diffraction rings, can be acquired. By indexing
the diffraction patterns, the orientation of each crystallite can be obtained.

6. Summary

In this article, the theoretical models, computer simulations, and experimental studies on grain
rotation are reviewed. Grain rotation is actually related to multiscale physics and a spectrum of
techniques are needed for various investigations. The information at the atomic level, such as
chemical bonding, crystal defects, local strain/stress environments, etc., are necessary for examining
the grain rotation behaviors and mechanisms. The information at the nanoscale and microscale may
correlate grain rotation with the macroscopic properties of materials such as texturing, materials
strengthening, crystal growth, phase transition, etc. A few techniques are reviewed in this article only
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as representative cases. The advances in techniques enable grain rotation probing with high spatial
and temporal resolutions, which provides more and better information for improving the theoretical
models of grain rotation, and broader applications are expected in materials science, physics, chemistry,
and nanoscience.
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