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Abstract: The fast, convenient, and accurate determination of railroad cars’ load mass is critical to
ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method
for modeling the mechanical deformations that occur in the rail web under the influence of a static
load transmitted through a railway wheel. According to the proposed method, a railroad car’s weight
can be determined from the rail deformation values. A solid model of a track section, including
a railroad tie, rail, and wheel, is developed, and a multi-physics simulation technique that allows
for the determination of the values of deformations and mechanical stresses in the strain gauge
installation areas is presented. The influence of the loaded mass, the temperature of the rail, and the
wheel position relative to the strain gauge location is considered. We also consider the possibility of
using artificial neural networks to determine railroad cars’ weight without specifying the coordinates
of the wheel position. The effect of noise in the data on the accuracy of determining the railroad car
weight is considered.

Keywords: railway monitoring system; load identification; neural network; finite element modeling;
multi-physics analysis

1. Introduction

Monitoring the mass of railway cars is an important component of ensuring the control
and safety of railway transportation and ease of asset counting [1,2]. The use of railroad
cars with masses exceeding the allowable limit reduces the expected life of the track without
repairs [3,4], and asymmetric loading (greater loading of the wheel on one side of the axle)
can lead to the derailment of trains [5,6].

A railway-weighing system that does not require embedment in the railway track
structure during installation and that is capable of performing dynamic weighing (so-
called WIM—weigh in motion) is a promising object for development and study [7,8].
An analysis of current scientific publications on this topic allows us to conclude that
researchers most commonly suggest using strain gauges [9–13], piezoelectric sensors [14],
or fiber-optic sensors based on Bragg gratings [15,16]. One study [17] provided a general
literature review on the application of optical-fiber-based structural-health-monitoring
systems in railway infrastructure and its possible integration with an AI technique. Due
to their fragility, fiber sensors are never used without packaging, which decreases their
measurement accuracy. To correct the error and improve the measurement accuracy,
a strain transfer theory was developed to establish the quantitative strain relationship
between the sensing fiber and the monitoring material. In [18], a state-of-the-art review
on the strain transfer theory, considering optical-fiber-based sensors developed for civil
structures, is provided. In [19], an optimization design method based on the strain transfer
theory, considering industrialized optical-fiber-based sensors, was investigated, and a
case analysis of employing the developed sensors to monitor the complex deformation of
asphalt pavement was conducted.
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Sensors are commonly installed on the rail web (the side of the rail), but other positions
may also be chosen, e.g., the rail pads or rail ties [20]. Strain, i.e., the mechanical deforma-
tion relative to a reference condition, is one of the most accepted measured quantities within
the structural monitoring and assessment field [21,22]. Strain gauges show less sensitivity
to train speed variations than other sensors [13]. In addition, they are used to evaluate
various values of bending and shear deformation [12]. For example, ref. [23] was devoted to
the development of a method which allows for accurate and reliable railroad measurements
of wheel–rail contact vertical forces and shear strains in rails by using a combination of four
strain gauges. The method proposed in [24] allows for the identification of the axle weight
and axle spacing in regard to the train speed, as well as gross train weight using strain
sensors embedded in the bridge structure (bridge weigh-in-motion (BWIM)). The bridge
strain values at the points of sensor installment, the integral area of the strain data, and the
second derivatives of the strains were used to calculate moving train load characteristics
analytically through the influence line technique, while numerical simulation and case
study measurements proved the method’s feasibility. However, the axle weight determi-
nation that was performed exhibited errors, and the presented method was required as a
preprocessing step for operation. In [12], a deep learning-based axle weight measurement
system was developed for bridges using strain gauge data as an alternative approach to
weigh-in-motion. The authors emphasized that essential information from strain gauges
can be evaluated for maintenance and further research.

The computational complexity of the model directly depends on the type of problem
being solved: static or dynamic. Reducing the problem to static load calculation makes
it possible to reduce the computing resource requirements and is quite common among
other authors [9,16]. As was shown in [9], with a decrease in the railroad car speed and
an increase in the quality of the railway track, the contribution of the dynamic component
tends toward zero and can be neglected. In addition, static weighing is characterized
by a higher accuracy compared with dynamic weighing [25], and it has significantly less
sensitivity to the influence of external factors (train acceleration, redistribution of loads,
and ground subsidence). In turn, the method of axial weighing is versatile, since the
result does not depend on the size of the cars and the number of their bogies or wheelsets
(axles). In addition, it is efficient since it involves simple installation using standard
sensors. The deformation of a rail during the passage of a rail car on it is also affected
by the properties of the ballast on which the rails and railroad ties are located. In [11],
special attention was paid to the mechanical properties of railway tracks. The track model
consisted of three layers of materials with different mechanical properties: rail, ties, and
ballast. Geometrical dimensions, the material density, Young’s modulus, and Poisson’s
ratio were considered, while the rail and the railroad tie were connected through elastic
elements (springs) with particular stiffness and damping coefficients, and the ballast was
connected to a fixed base (the Earth) through elastic elements with a particular stiffness
coefficient. After analyzing the simulation results for various combinations of stiffness and
damping coefficients, the authors concluded that the contribution of these track parameters
to the obtained values of the dynamic loads on the track is insignificant. In the proposed
work, the contribution of the track understructure to the static loads experienced by the rail
was not considered.

The consideration of the temperature component of mechanical deformations seems
to be justified, since the rail tracks in the Russian Federation, in particular, are operated in
a wide temperature range. It is well known that considering and controlling the thermal
expansion of rails is an important issue in track installation; an error could lead to the track
buckling, which is dangerous and requires immediate repair. Reference [26] found that, in
the cold season, the rail temperature is approximately equal to the ambient air temperature,
and in the warm season, it exceeds the ambient air temperature by 20 ◦C. In [10], the authors
used both data from strain gauge sensors mounted on a rail and data from a temperature
sensor; however, the results presented for the correlation of the temperature and mechanical
deformations seem to be ambiguous. In [27], the influence of the bitumic road pavement
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temperature on the error in determining the weight of a vehicle using a WIM system
embedded into the road pavement was examined. Based on an analysis of experimental
data collected from three types of sensors for six months, the authors concluded that the
influence of the sensor’s intrinsic error ranged from −12% to +2% and the influence of
the change in the pavement parameter (sensor external error) ranged from −30% to +20%
over a temperature change range from −20 ◦C to +30 ◦C. The authors proposed using a
nonlinear model that uses the stiffness coefficient for the road surface and the speed of the
vehicle and its weight as the main parameters. In the authors’ opinion, such WIM systems
need two temperature sensors: one at the beginning and one at the end of the road surface
section under consideration.

The data obtained in real conditions during the axial static weighing of a railroad
car with a system based on strain gauges inevitably contain noise. Errors in measuring
the signals from strain gauges are included in the data [13]. In addition, static weigh-
ing in its pure form is rarely used due to its economic inexpediency, and weighing often
occurs in motion, at a low train speed. In this case, the contribution of the dynamic
component becomes difficult to predict. It seems impractical to account for such param-
eters as the quality of the track, properties of the wheels of the train, and variations in
speed during the weighing process. The use of neural networks in railroad car scales
and WIM systems, if they work successfully with data containing noise, is a promising
area of research [28].

A large number of scientific studies are devoted to attempts to use neural networks
to determine the weight of railroad vehicles, their number of axles, and their speed and
movement type. In most of these studies, vibrations when vehicles drive over a bridge
were investigated and simulated. For example, in [29], the problem of training deep
convolutional networks on data from accelerometers installed on the road surface of an
automobile bridge was considered in detail. The data were transformed into spectral
images obtained using the short-time Fourier transform (STFT), Wigner–Ville transform
(WVT), and continuous wavelet transform (CWT) methods. The authors managed to
achieve accuracies for determining the mass (three classes), speed (three classes), and
vehicle type (two classes) of 98.2%, 98.8%, and 99.5%, respectively, for data obtained from a
scaled model of the bridge and vehicle. Note that, with an increase in the measured values
of the mass and speed, it will be necessary to increase either the number of classes or the
step according to these values. Maintaining high accuracy is possible only if a significant
increase in the training set is achieved.

Reference [30] was also devoted to determining the mass of a vehicle passing over a
bridge. The authors trained an LSTM neural network on deformation data at six points in
the bridge structure, obtained via modeling three scenarios of the passage of vehicles on
the bridge with LS-DYNA®. In total, the authors received 45,000 frames for three scenarios.
After training on data containing 0.1–2.0% noise, the neural network determined the mass
of the vehicle with an accuracy of 61.3–81.3%, depending on the scenario. In [31], artificial
neural networks (ANN) were applied to forecast the weights of cargo trains a year in
advance based on known cargo weights for the three preceding years. For training the
network, error measures such as the root mean square error and mean absolute percentage
error were used, which were obtained from predictive modeled values and the actual
values of cargo weights. Three training algorithms were considered, and the best in terms
of relative, absolute, and network errors proved to be the Levenberg–Marquardt algorithm.
Moreover, no sensor data were used for the network training, and there was no information
on how correct the forecasted trend turned out to be.

In [32], a system for determining wheel load using two pairs of sensors—a shaft pin
sensor and strain gauge sensor—was proposed. The authors combined data from both
types of sensors on one graph. During the experiments, the load mass did not change,
and the speed varied within small limits. Thus, the graph represents the reaction of the
sensors to the passage of the wheel along the studied section of the track. The article
proposed a method for refining the mass of a loaded wheel, determined by the sensors,
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using correction factors fitted by a neural network. The hybrid methodology proposed
in [33] includes several approaches at once: custom loss functions of neural networks
combined with residuals derived after the application of the finite element method for
solving direct and inverse problems. Despite the versatility and relative simplicity of the
methodology, it cannot be used for nonlinear cases, and its usage for solving complex
problems is time-consuming due to the empirical nature of the search and the necessity of
choosing a neural network architecture. In [34], back propagation neural networks were
trained on real data collected from a weighing platform and two types of bridges. It was
proven that the usage of artificial neural networks allows for an increased effectiveness in
vehicle weight identification.

Our aim in this study was to determine the masses of loaded railroad cars accurately
and automatically. The rest of this article is presented as follows. In Section 2, the designed
finite element model of the wheel–rail–tie system, the proposed simulation technique,
and an explanation of how neural networks can be used to determine railcar weight are
described. Section 3 is devoted to the Static Structural and Steady-State Thermal mode
simulation results and their analysis as well as confirmation of the application feasibility of
the ANN. Finally, key conclusions are summarized in Section 4.

2. Proposed Methodology

According to the proposed method, firstly, a finite element model of the track structure
fragment was designed, including a rail fragment, two rail ties, and a rail wheel correspond-
ing to actual existing infrastructure objects. Then, the simulation was carried out in the
Static Structural and Steady-State Thermal modes of ANSYS® CAD. Finally, the comprehen-
sive array of the obtained simulation results containing data about strains, temperatures,
coordinates, and load masses was used to train the neural network. Eventually, the properly
trained ANN was capable of determining the value of a load based on strain data with
sufficiently high accuracy, taking into account possible noise and operating independently
of the wheel coordinates relative to the strain gauge positions.

2.1. Finite Element Model

To simulate static loads that occur on a rail under the influence of car weight, a solid
model was developed, as shown in Figure 1a. The rail fragment corresponding to the
section of the railway track on which the static weight sensors were mounted was rigidly
connected to two railroad ties that were fixed from below. The solid-state model was
geometrically similar to real structures—an R50-type rail [35] and a solid-rolled railway
wheel for freight cars with a tread diameter of 920 mm [36], which are used in the Russian
Federation. Thus, the correct shape of the contact patch was preserved in the model
(Figure 1b). The railroad tie spacing was 510 mm.

A sketch of the proposed model is shown in Figure 2. On the rail web, symmetrically to
the center of the studied rail fragment at the points where strain gauges are usually attached,
there are two pairs of strain measurement points: points 1 and 2 on the outside of the rail
web and points 3 and 4 on the inside. Points 1 and 3 are located at a distance of 100 mm
from the symmetry line, closer to the left tie, while points 2 and 4 are located at a distance
of 100 mm from the symmetry line, closer to the right tie. Since the problem is symmetrical
with respect to the strain measurement points, simulation of the wheel moving towards the
center of the rail (line of symmetry, see Figure 2) was carried out. While various types of rail
deformations can be measured in wheel–rail contact studies, like bends or shears [12,23],
this requires relatively complex algorithms for post-processing, and only vertical strains
need to be measured for wheel load identification. This is why this study only took into
account the values of the vertical deformations, although during the simulation, three axes’
deformation values as well as mechanical stress values were obtained.
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Figure 1. Solid-state model for simulation of the static loads that occur on the rail under the influence
of the railroad car weight. (a) Solid-state model of an R50-type rail and a solid-rolled railway wheel.
(b) Shape of the contact patch.
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2.2. Simulation Technique

To collect the rail deformation data, the simulation was conducted under the following
conditions: the wheel moved along the rail sequentially and discretely at 11 different
points from the origin coordinates (the left edge of the rail) to the line of symmetry;
the step between the points was 50 mm; at each point, the load on the wheel varied
discretely from 2500 kg to 12,500 kg in increments of 500 kg. This mass range approximately
corresponds to the load on a single wheel in different scenarios, from an empty car to the
most loaded standard four-axle railroad car. Since the deformation of the wheel was
not considered in this work, the load mass was specified by defining a point mass or
correspondingly changing the density of the wheel material. For each of the mass and
coordinate combinations, a static analysis was carried out, and the vertical deformation of
the rail at four points was calculated as a result.
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Simulation results were obtained with ANSYS® CAD for five rail temperature values:
22 ◦C, 40 ◦C, 50 ◦C, −10 ◦C, and −20 ◦C. It was assumed that 22 ◦C is a standard temper-
ature; 40 ◦C and 50 ◦C are the temperatures of a heated rail in the summer season when
the air temperature is 20 ◦C and 30 ◦C, respectively; and −10 ◦C and −20 ◦C are the tem-
peratures of a rail in the winter season, which are equal to the air temperature [26]. In the
case of the standard temperature, the rail was only loaded with the mass of the car, which
was transmitted through the wheel. In other cases, coupled Steady-State Thermal–Static
Structural problems were solved, in which mechanical stresses and deformations caused by
temperature were used as initial loads in solving the static problem of calculating the rail
deformations induced by the loaded wheel. Thus, in contrast to conventional models, this
model takes into account the temperature deformations of the rail and also uses accurate
three-dimensional models of the railway wheel and rail without simplifying the geometry,
which results in an accurate contact patch between the wheel and the rail and allows for
stress distributions and strain values of the rail material that are close to the actual values
to be obtained.

For each combination of loaded wheel mass, temperature, and wheel position on
the rail, strain values were obtained along the y-axis, coinciding with the direction of
gravitational acceleration (which was taken into account during the simulation) at four
strain measurement points. We proceeded with the assumption that the strain values at
these points were uniquely correlated with the electrical voltage values obtained from the
strain gauges.

2.3. Using a Neural Network to Determine Load Mass

In this part of the study, we considered the potential of using neural networks in WIM
systems and the importance of the temperature of the rail and coordinates when training a
neural network.

To determine the importance of coordinates in the measurement of deformations,
the following model experiment was carried out. From the complete simulation dataset
containing 1155 unique combinations of values for four strain measurement points, only
the values corresponding to the standard temperature of the rail (T = 22 ◦C) were selected.
Random white Gaussian noise was added to the remaining 231 combinations of values for
the four strain measurement points.

The magnitude of the noise was estimated as follows. It is known that in real-life
railway-weighing systems or railroad car scales, for example, those used in Russia, the
RTV-D, VTV, or M8300, the readout discreteness or the division value, which determines
the weighing accuracy, depend on factors such as the maximum permissible speed of the
train during weighing and the maximum load (the upper limit of the mass determined
during weighing). The value of one division could be 200 kg with a maximum load of
100,000 kg. The value of 100,000 kg corresponds to the upper limit of the range of loaded
masses studied in this work for four-axle railroad cars. In terms of a single wheel, the
division value used was 25 kg (200/8). Based on the differences in deformations that
occurred at the measurement points, with and without taking into account the influence
of this additional mass, the relative strain measurement error corresponding to such a
division value (200 kg) was determined, which ranged from 0.2% (for the largest loaded
mass within the range under study) to 1% (for the smallest mass) of the simulation results
for the strain values, and which determines the amount of added noise. Thus, for this study,
it was assumed that the data obtained from strain gauges in railroad scales were noisy, with
an average noise value of 1%. Other noise values were taken for research purposes.

An array of data containing noise were obtained from the original data in accordance
with the formula:

dnoise = d ± d·ε (1)

where d is the original data, ε is the standard deviation with the mathematical expectation
being equal to zero, and dnoise is the noised data.
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Using 1000 randomly generated noise arrays, 23,100 combinations of strain values
for four measurement points containing noise were obtained and used to train the neural
network. The network was trained only on the strain values observed at four strain
measurement points and the load mass values, which were categorized into 21 categories:
category 0 corresponds to a mass of 2500 kg and category 20 to a mass of 12,500 kg. Thus,
the input data of the neural network were vertical strains (obtained from simulation or the
sensors in the case of real operation) and the output data were specified load masses. There
were no coordinate values in the training data. The temperature of the rail was taken into
account indirectly, since the data were initially filtered by the value of 22 ◦C. The described
data were divided into training and test samples at a standard 80/20 ratio. The scheme of
the used neural network is shown in Figure 3.
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Figure 3. Scheme of the used neural network applied for load mass determination.

This neural network is a simple multilayer perceptron model consisting of four layers.
The first fully connected input layer consists of neurons with the ReLU activation function
and receives the strain value at four strain measurement points. The next three layers
are also fully connected with the ReLU activation function, while the number of neurons
gradually increases from 32 to 128. The last fully connected layer is the output layer and
consists of 21 neurons with the softmax activation function, according to the number of
classes. The neural network was trained for 40 epochs.

3. Results and Discussion

The mechanical deformation values, corresponding to four locations where strain
gauges would be expected to be installed on the rail web, were obtained during simulation.
The data array comprises strain values for all combinations of the load masses, tempera-
tures, and wheel coordinates. Based on these data, the characteristics of the deformations
were plotted and analyzed. The accuracy of the neural network in terms of the simula-
tion results was checked for different noise levels, and corresponding confusion matrices
were visualized.
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3.1. Results of Finite Element Model Simulation

Figure 4a shows the dependences of the vertical deformations of the rail at strain
measurement points 1 and 4 on the coordinates for various values of the mass loaded on
the wheel at a standard rail temperature (22 ◦C). Figure 4b,c shows similar dependences
obtained for when the rail temperature was 50 ◦C and −20 ◦C.
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Figure 4. Deformation at the measurement point versus coordinates for different masses and temper-
atures. (a) Dependences of rail deformations for deformation measurement points 1 and 4 on the
loaded mass and the coordinates at a rail temperature of 22 ◦C. (b) Dependences of rail deformations
for deformation measurement points 1 and 4 on the loaded mass and the coordinates at a rail temper-
ature of 50 ◦C. (c) Dependences of rail deformations for deformation measurement points 1 and 4 on
the loaded mass and the coordinates at a rail temperature of −20 ◦C. (d) Influence of rail temperature
on the amount of deformation at deformation measurement point 4.

The symmetry of the simulated system with respect to the sensor pairs (Figure 2)
made it possible to use the values of deformation at strain measurement point 2 to plot a
deformation versus coordinate graph at strain measurement point 1 for coordinate values
located to the right of the symmetry line. The values of deformation at strain measurement
point 3 were used to plot a deformation versus coordinate graph at strain measurement
point 4 for the same reasons. The graphs for strain measurement points 2 and 3 are
mirror images of the graphs for strain measurement points 1 and 4 and, therefore, are not
shown here.

As can be seen from Figure 4a, the influence of the loaded mass on the deformation
value depends on the location of the wheel on the rail. When the wheel was above the
middle of the railroad tie, the effect of the mass on the deformation was almost zero, and
an intersection of characteristics could be seen in this area. As the center of the wheel
approached the locations of the strain gauges, the effect of the mass on the deformations
became increasingly significant, and the steepest sections of the characteristics for strain
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measurement point 1 were observed in an area approximately corresponding to coordinates
ranging from 250 mm (when the wheel moved off the railroad tie) to 350 mm (i.e., not
reaching 50 mm up to strain measurement point 1) and from 550 mm to 750 mm, while the
curves’ peaks were at approximately 450 mm. The steepest sections of the characteristics
for strain measurement point 4 corresponded to coordinates ranging from 250 mm to
450 mm and from 650 mm to 750 mm, while the largest absolute strain values corresponded
approximately to the point with a coordinate of 550 mm. Thus, in measurement by strain
gauges when the wheel moves along the rail, the areas between the ties and sensors can be
considered as the most suitable areas in terms of the degree of influence of the mass on the
resulting deformations.

However, the exact placement of railroad cars and their wheelsets relative to the
sensors and ties during static weighing, or determining the required time to perform mea-
surements during dynamic weighing, is a non-trivial task. In this study, we investigated
the possibility of developing a wheel-load determination system that takes into account
the influence of external factors (in this case, the rail temperature) and does not require
exact positioning. Whether the rail temperature measurement is direct (when a temper-
ature sensor is installed together with strain gauges [10,27]) or indirect, for example, by
using different coefficients at different times of the year, these values could be used when
analyzing the output electrical voltage values of strain gauges.

Figure 4b,c shows that the shapes of the coordinate–deformation curves are approxi-
mately the same for different temperatures; however, a change in the ranges of the measured
deformations is noticeable. In the case of standard conditions (T = 22 ◦C), rail deformations
could exceed 100 µm, and their direction coincided with the direction of gravity, while in
the areas where rails cross railroad ties, the deformation values tended toward zero. As the
temperature rose, the rail slightly bent upwards; therefore, in the measured range of the
loaded masses, the degree of influence of the mass on the deformation was weaker than
the degree of influence of the temperature, and the rail was deformed, but in the direction
opposite to that of gravity. In the region of the ties, the value of the deformation of the
rail was 120 µm as a result, while in the middle of the rail section between two ties, due to
mutual compensation, the strain was, on the contrary, the smallest (approximately 25 µm).
In the case of negative temperatures (T = −20 ◦C, winter period, when the rail temperature
is approximately equal to the ambient temperature [26]), the rail slightly bent downward,
and this deformation was added to the deformation exerted by the loaded wheel, so the
entire range of deformations was located in the negative value region, and the greatest
absolute value of deformation exceeded 240 µm.

The dependences of the deformations at deformation measurement point 4 on the
coordinate and loaded mass for different temperatures of the rail are shown in Figure 4d.
As can be seen, there were no intersections between the three-dimensional surfaces formed
by the sets of deformations for various combinations of loaded masses and coordinates
corresponding to different temperatures of the rail (the graphs have no common points), so
it could be concluded that temperature makes the combination of parameters unique and
is needed to indirectly determine the loaded mass. The use of temperature as a parameter
is also justified because it has a significant effect on the amount of strain recorded by strain
gauges, which is noticeable in Figure 4a–d.

3.2. Results of the Artificial Neural Network Application

The results of training the neural network show that, with a noise level not exceeding
1% (which corresponds to a relative error in measuring the deformations at the lowest
value of the loaded mass of 2500 kg and taking into account the value of the division value
in the railway scales used in practice), it is possible to determine the category of the load
mass with an accuracy of 78% or greater. With a noise level within 0.1%, the neural network
correctly determined the category of the load mass in 100% of cases.

A graph of the dependence of the accuracy of test data classification by a neural
network on the noise level with and without taking into account the temperature of the rail
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is shown in Figure 5. Figures 6–8 show the confusion matrices of the networks trained on
test data for noise values of 0.1%, 1%, and 10%, respectively.
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To determine the importance of taking into account the temperature of the rail, the
neural network was trained on the entire data array at temperatures of 22 ◦C, 40 ◦C,
50 ◦C, −10 ◦C, and −20 ◦C, while leaving the remaining parameters of the neural network
unchanged. At a noise level of 1%, the accuracy of determining the category of load mass
was 27%, and at a noise level of 0.1%, the accuracy of determining the category of load
mass was 54%. The analysis of these results allows us to conclude that considering the
temperature of a rail when measuring deformation in order to determine the load mass can
significantly affect the accuracy of the scales, especially in cases where full automation of
such system is assumed or a neural network is used.

4. Conclusions

In this paper, a method for determining the masses of railroad loads based on combina-
tions of mass categories and corresponding strain values obtained from simulation results
for four strain measurement points was proposed. The influence of the rail temperature
on the deformations that occur under the influence of a loaded wheel was studied. A
technique for using an artificial neural network to analyze the load on a railway wheel by
combining four values of mechanical deformation of the rail web material with the addition
of random noise to these values was presented. It was suggested that the use of a trained
artificial neural network can reduce the requirements for the quality of sensors and signal
processing systems. The following conclusions can be drawn:

• Thermal loads affect the mechanical stress and the deformation values obtained when
the considered static problem of the load transmitted through the railroad wheel to
the rail has been solved;

• The surfaces plotted as a function of deformations versus the coordinates, correspond-
ing to the position of the wheel geometric center, and the mass of the loaded wheel
for different temperatures, do not intersect; that is, the deformation values for this
combination are unique. Therefore, the combination of the four strain values will
also be unique, which will allow the mass of the loaded wheel to be determined from
these values;

• Determining the mass of a loaded wheel using the proposed method based on neural
networks does not require specifying the exact value of the coordinates. The accuracy
of determining the mass without using coordinate data is high enough at 78% with a
noise level as high as 1% of the measured deformation values and a relatively large
number of categories;

• Despite the declared applicability of the proposed method, it has some limitations:
while there is no need to know the exact location of the wheel to determine the mass,
the railroad car should still be positioned so that the wheel is placed between two ties;
the usage of a neural network implies a probabilistic choice of preliminary specified
categories corresponding to loaded mass rather than a true measurement; and finally,
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additional factors like temperature should be taken into account when determining
mass as, otherwise, the accuracy could be too low.

The proposed approach could be useful for automated mass determination in railway
infrastructure based on the simple installment of a set of typical sensors using machine
learning, as it does not require precise rail car positioning. Further development of this
research area could consider the improvement of the designed models and refinement of
the boundary conditions. So far, only simulation data have been used for neural network
training, but field tests on the track are planned in the future to check the feasibility and
accuracy of the proposed model.
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