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Abstract: Uncertainties in traffic flows pose significant challenges for the accurate fatigue safety
assessment of bridge structures. Fatigue analysis requires detailed information on heavy vehicle-
induced loads, which can be obtained from weigh-in-motion (WIM) systems. This paper develops
a stochastic traffic load model based on site-specific WIM measurements to evaluate the fatigue
reliability of steel bridges by enhancing simulation efficiency and incorporating correlations in
traffic load parameters. Traffic loading is measured on site by WIM systems and used to develop
a probabilistic model. A heavy traffic scenario load model is developed based on the Gaussian
mixture model (GMM) and Poisson distribution. The correlation between traffic load parameters is
addressed using the Nataf transformation. The fatigue reliability of critical components is evaluated
using this procedure as an illustrative example. The results show that annual increases in traffic load
significantly impact fatigue damage. This research provides a theoretical basis for improved traffic
management and structural maintenance strategies.

Keywords: fatigue; reliability; traffic load; weigh in motion; traffic growth

1. Introduction

Fatigue is one of the most critical forms of deterioration in steel bridges, and the
accumulation of fatigue damage is a major cause of collapse in these structures [1–5]. For in-
stance, a large-span steel box girder suspension bridge, constructed in 1997 in southern
China, demonstrates the importance of addressing fatigue-related issues. The primary
deterioration observed within the steel box girder comprised fatigue cracks in the trans-
verse diaphragms, the U-ribs, and the joints with the top plate. In 2008, visually detectable
fatigue cracks were identified within the steel box girder for the first time, with a total
of 129 occurrences across the bridge. From 2009 onwards, the number of fatigue cracks
has increased by varying extents each year. As of the scheduled inspection in May 2017,
a total of 929 fatigue cracks had been identified throughout the bridge [6]. Steel bridges
are repeatedly subjected to variable-amplitude vehicle loads, resulting in the gradual accu-
mulation of fatigue damage [7]. This poses serious threats to the structural safety of key
components, accelerates material deterioration, and shortens the service life of bridges.
The eventual fracture resulting from accumulated fatigue damage is a significant concern in
bridge health management [4,5]. Therefore, it is essential to assess the fatigue performance
and predict the service life of steel bridges under operational conditions.

Traffic load plays a crucial role in determining the service performance and fatigue
deterioration behavior of bridges. Fatigue damage in bridges caused by vehicle loads
is directly influenced by stress amplitude and the frequency of load cycles. In fatigue-
resistant design and safety assessment, it is common to use either standardized fatigue
load models or models based on measured load data. Design codes such as BS 5400,
AASHTO, Eurocode, and D64 develop corresponding fatigue load models based on each
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country’s traffic characteristics [8–11]. However, due to regional differences in economic
conditions, production patterns, and traffic loads, the fatigue load models used in design
may not accurately represent the actual loads experienced by bridges in service. Meanwhile,
increasing traffic volume and gross vehicle weight (GVW) have posed a threat to the fatigue
safety of existing bridges [12–18].

With advancements in structural health monitoring (SHM) technology, reliable data
on traffic load and structural responses can be collected [5,19]. Meanwhile, probabilistic
updating of structural models using Bayesian inference has been extensively studied in
the field of SHM [20]. This shift presents a new paradigm for assessing and predicting
structural performance, with monitoring data being used to reduce epistemic uncertainties
associated with deterioration processes. This leads to more precise assessments of structural
performance and predictions of service life. Numerous studies have focused on utilizing
monitoring data to predict the remaining fatigue life of bridges. Frangopol et al. [21] pro-
posed a method that integrates SHM data into structural reliability assessments to enhance
predictive accuracy and optimize maintenance strategies. Kwon and Frangopol [22] pro-
posed an approach for the fatigue reliability assessment and prediction of steel bridges by
using probability density functions (PDFs) based on field monitoring data. Ni et al. [23] de-
veloped a fatigue reliability model that combines hot-spot stress distribution with Miner’s
damage rule, using long-term strain data from the Tsing Ma Bridge to evaluate fatigue
life and reliability. Di et al. [24] arranged strain gauges at the hot-spot stress extrapolation
position of the welded parts to obtain strain–time history data. The fatigue performance of
the orthotropic steel bridge decks was assessed using two weeks of monitoring data on
hot-spot stress. These studies have shown the potential of SHM-based data for enhancing
fatigue life predictions. However, real-time measurements are costly and site-specific.

The numerous critical points where bridge structures are vulnerable to fatigue sub-
stantially increase the cost and complexity of implementing health monitoring systems.
Additionally, current monitoring data cannot predict structural fatigue behavior as traffic
flow characteristics evolve. Therefore, advanced research is needed to simulate fatigue
responses based on modeled traffic flow data. With the aid of weigh-in-motion (WIM)
technology, key vehicle characteristics, including type, speed, wheelbase, and axle weight,
can be efficiently collected [25–27]. These data allow for the development of stochastic
traffic models used for bridge condition assessment [28]. Guo et al. [29] utilized WIM
data from the Throgs Neck Bridge (USA) to characterize the probability distributions of
axle weights, spacings, and vehicle positions. By combining WIM data with stochastic
traffic flow simulation, researchers have proposed traffic modeling methods to evaluate
the extreme responses induced by vehicle loads [30–32]. Such simulations have proven
effective in modeling extreme traffic scenarios and estimating future maximum load ef-
fects. The use of WIM data helps to evaluate the effects of traffic loads on bridge safety
and structural integrity. Wang et al. [33] utilized WIM data to establish probability mod-
els for vehicle parameters, simulating traffic flow through agent-based microsimulation.
Structural responses were then obtained by integrating the traffic flow model with finite
element (FE) analysis. Gao et al. [34] proposed a novel simulation method of the compound
Poisson process based on the stochastic harmonic function to represent the stochastic traffic
load process so that the fatigue damage of concrete bridges under traffic loading can be
efficiently and accurately evaluated. Meanwhile, numerous recent studies have emerged to
address the corrosion–fatigue-coupled deterioration of steel bridges. Fan et al. [35] devel-
oped a reliability analysis framework for the suspenders of a long-span suspension bridge,
incorporating on-site WIM data and corrosion fatigue analysis. This approach accounted
for time-varying corrosion effects and long-term traffic growth. Zhu et al. [36] presented the
probabilistic deterioration of corrosion fatigue in welded joints of weathering steel bridges,
particularly focusing on rib-to-deck joints, which are considered fracture-critical. They pro-
posed a three-stage probabilistic model to track crack growth under uncertainty. Based on
traffic measurements, in [37], a stochastic traffic model was developed in a sampling-based
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manner. In this model, a total of 100,000 vehicles are simulated to derive the fatigue stress
spectra, capturing the variability in traffic loadings that influence the deterioration process.

The cellular automaton (CA) method has gained attention for simulating traffic flow on
bridges due to its precision in modeling random traffic loads at a microscopic level [38,39].
This approach has been foundational in creating a framework for capturing the variability
of stochastic traffic loads, especially for long-span bridges [40]. Notably, Ruan et al. [38]
incorporated axis information into the CA model, enhancing its capability for the detailed
microsimulation of random traffic loads on long-span bridges. This refined CA model
offers an analytical basis that accurately reflects the complex and variable patterns of traffic
flow. However, the CA model does not account for the correlation between traffic load
parameters, such as vehicle weight, axle load, and speed. This omission limits the accuracy
of fatigue damage predictions, as vehicle interactions play a significant role in determining
the loads on the bridge structure. Additionally, the CA method can be inefficient when
simulating the performance of existing bridges, particularly for long-span bridges where
complex vehicle interactions are common [38]. While the CA method provides valuable
insights into the microscopic dynamics of traffic flow, its limitations highlight the need
for more comprehensive models that integrate traffic load parameter correlations and
site-specific characteristics.

Recent advancements have highlighted the advantages of site-specific bridge loading
models, which can result in significant cost savings during rehabilitation. These models
provide a more accurate representation of actual loading conditions, avoiding the biases
associated with code-based load models. Meanwhile, traffic growth presents considerable
complexity due to the substantial variability and unpredictability of traffic data. Con-
sequently, accounting for traffic growth is crucial in the evaluation of fatigue reliability.
To overcome the deficiencies of the current research on the microscopic dynamics of traffic
flow simulation in fatigue reliability assessment, this study aims to develop a stochastic
traffic load model based on site-specific WIM data to assess the fatigue reliability of steel
bridges. Additionally, a fatigue life prediction method is proposed by applying a heavy
traffic scenario model to bridge influence lines, thereby improving the efficiency of fatigue
life assessments. In addition, this study evaluates the impact of traffic growth on fatigue
reliability assessment and provides insights for optimizing lifecycle management and
structural maintenance strategies.

2. Methodology for Fatigue Reliability Assessment of Steel Bridge

To ensure the long-term performance and safety of steel bridges under traffic loads,
it is critical to perform a fatigue reliability assessment that accounts for the stochastic
nature of traffic flow and the accumulation of fatigue damage over time. Additionally, the
correlation between truck weights in freight traffic can also influence the accumulation of
fatigue damage. A two-stage probabilistic method is proposed for assessing the fatigue
reliability of steel bridges under stochastic traffic loading. The fatigue reliability assessment
integrates the statistical analysis of traffic loads with fatigue life prediction based on stress
influence lines. The methodology is illustrated in Figure 1. The goal of the first stage is to
establish basic models of traffic loads accounting for the correlation between heavy vehicles,
while the second stage focuses on determining reliability.

In the first stage, real-world traffic data collected via WIM systems are statistically
processed to establish a stochastic traffic flow model. The WIM system captures critical
vehicle parameters, including GVW, axle loads, speeds, the number of axles, etc. [41].
The data collection process utilized real-time monitoring to capture vehicle parameters
as vehicles passed over the WIM devices. These devices measure the axle loads with
high precision. Over a one-year period, the system recorded more than 36 million vehicle
transits on a 52 km segment of the A3 highway in southern Italy, creating an extensive
dataset representative of actual traffic conditions. Comprehensive data filtering and quality
assurance processes were applied to ensure the reliability of the dataset, including the
removal of spurious or duplicate entries and the validation of vehicle dimensions and
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weights. The dataset was further processed to derive the PDFs of key traffic parameters,
such as GVW and vehicle positions on the bridge deck. These distributions serve as the
foundational input for generating realistic stochastic traffic load models for bridge fatigue
analysis. Further details on the WIM dataset and its processing are presented in Section 3.1.
The correlation between the traffic load parameters is considered by employing the Nataf
transformation method. The actual stress history is generated by applying the simulated
traffic flow on the stress influence line.
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Figure 1. Framework of the fatigue life assessment method.

In the second stage, the bridge fatigue reliability is assessed using Monte Carlo simu-
lations. The stress history obtained from the influence line is used to calculate cumulative
fatigue damage based on the Palmgren–Miner linear damage rule. Reliability is then eval-
uated by considering the associated demand and capacity. In the following sections, the
methodology for the fatigue reliability assessment of steel bridges and the procedure for
stochastic traffic modeling will be introduced.

3. Heavy Traffic Load Sequence Model
3.1. Description of the WIM Database

The WIM data collected in Italy served as the foundation for the traffic load model.
The data were collected from a WIM system installed on the A3 Napoli–Pompei–Salerno
highway in southern Italy [41]. The A3 is a major transportation infrastructure that connects
two key cities in the Campania region and provides direct links to the ports of Naples and
Salerno in the Mediterranean Sea. This highway also serves the Sorrento and Amalfi coasts.
The WIM data, covering the period from 6 August 2022 to 6 September 2022, comprise
millions of vehicle records (3,039,725). Each record provides key information, including
(1) the date and time of measurement; (2) the vehicle’s total weight, length, and width;
(3) vehicle speed and acceleration; (4) the axle numbers; (5) each axles’ load, width, and
distance from other axles of the same vehicle; and (6) the left/right partitioning of each
axle’s load. While the dataset is site-specific, it offers a realistic representation of highway
traffic flow in terms of vehicle types and load distributions. The characteristics of this
dataset, particularly the traffic mix and the presence of heavy vehicles, are common to
many highways in Europe and other developed regions. Therefore, the results from this
dataset can be considered applicable to similar road networks with comparable traffic
conditions. More details about the WIM data can be found in [41]. It also should be noted
that dataset may not fully represent traffic characteristics in all global contexts, especially
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in regions with significantly different traffic patterns. Its generalization to other regions
may require careful consideration of local traffic patterns.

Figure 2 shows that the daily traffic volume based on one month of WIM data fluctuates
around 100,000 vehicles, with heavy vehicle flow (vehicles over 2 tons) fluctuating around
40,000 vehicles per day. The threshold of 2 tons is selected due to the fact that lighter
vehicles induce stress amplitudes below the fatigue limit, insufficient to cause cumulative
fatigue damage within the bridge structure’s designed stress range [42]. Figure 3 shows
the segmented distribution of gross vehicle weight. The selected WIM data indicate
that vehicle weights are primarily concentrated in the range of 3 tons for lightweight
vehicles. Additionally, there are noticeable peaks around 18 tons and 45 tons, displaying a
characteristic multi-peak distribution pattern.
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3.2. Probabilistic Model of Vehicle Load Parameters

From observation, it can be seen that the vehicle weight distribution exhibits distinct
multimodal characteristics that cannot be accurately described by typical unimodal proba-
bility distribution models. To better represent these multimodal attributes, the Gaussian
mixture model (GMM) is employed, as it effectively captures the presence of multiple peaks
in the data. This finding is also consistent with previous studies on traffic flow [27,43,44].
Thus, the vehicle weight was modeled using a GMM. For the vehicle weight, χ, the PDF of
the GMM can be expressed as Equation (1):

p(χ) =
K

∑
k=1

πk N(χ|µk, Σk) (1)

where N(χ|µk, Σk) is the PDF of the k-th Gaussian distribution with µk and Σk as its mean
and covariance matrix, and the parameter πk denotes the weight of the k-th Gaussian
distribution component, satisfying ∑K

k=1 πk = 1 and 0 ≤ πk ≤ 1.
It is widely recognized that GVWs are correlated within the same lane and between

adjacent lanes. Nowak [45,46] investigated the correlations of GVWs for trucks in the
same and adjacent lanes, identifying three levels of correlation—no correlation, partial
correlation, and full correlation—with corresponding Pearson correlation coefficients of 0,
0.5, and 1.0, respectively. Simulations revealed that full GVW correlation significantly
impacts two-lane traffic loading, a finding validated through site observations. Similarly,
O’Brien and Enright [47] found correlations between successive trucks’ GVWs using WIM
data from the EU, with inter-lane correlations influenced by lane spacing. Zhou et al. [48]
further observed a 5% autocorrelation for trucks within a 5 s time gap. In this paper, it
is assumed that a correlation exists between the weights of heavy vehicles in adjacent
sections. The correlation length in the autocorrelation function for GVWs is estimated
in the proposed traffic model. To simulate this correlation, the Nataf transformation
method is applied. This method effectively establishes a connection between the standard
Gaussian space and the original probability space, allowing for the generation of correlated
random samples in the original space based on independent standard Gaussian samples.
The whole procedure of a Nataf transformation involves two steps. The first step is to
transform the independent standard normal variables G into the correlated standard normal
variables Z with a correlation coefficient matrix Rz. The second step converts the correlated
standard normal variables into variables denoted by χ (i.e., vehicle weight following GMM
distribution). This transformation is depicted in [49].{

Step1 : Z → U = L·G
Step2 : U → χi = F−1

χi
[Φ(U)]

(2)

where L satisfies the equation Rz = LLT, in which L is a lower triangular matrix and
can be obtained by means of Cholesky decomposition on Rz. Φ(·) is the cumulative
distribution function of a standard normal variable. F−1

χi
[] is the inverse of the cumulative

distribution function of the variable χi, which follows the GMM distribution. Rz needs to
be determined first according to the correlation coefficient matrix Rχ at the beginning of
the Nataf transformation. In this process, the Rχ of GVWs is calculated by the exponential
autocorrelation function.

3.3. Vehicle Position Modeling

In the context of heavy traffic scenarios, an appropriate probability distribution must
be determined to model the occupancy of cells by heavy vehicles on specific lanes. Using
a statistical analysis of the number of cells occupied by heavy vehicles in each lane, the
single-lane spatial distribution for heavy vehicles is modeled by a Poisson process. It is
assumed that the number of cells occupied by heavy vehicles within the loading length L
follows a Poisson process. The probability of t occupied cells can be determined as follows:
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P(TL = t) =
(λL)texp(−λL)

t!
, t = 0, 1, 2, . . . (3)

where P(·) represents the probability of the event, and λ denotes the average rate of vehicle
occupancy in the cells. For a stationary distribution process of heavy vehicles, λ remains
constant across the entire loading length.

3.4. Simulation of Heavy Traffic Scenario

The simulation process for representation is as follows: (1) The bridge deck is divided
into 1 m cells within each lane. (2) Based on WIM data, heavy traffic (vehicles over 2 tons)
scenario samples are obtained, where the scenario length corresponds to the bridge length,
with a total of 500 heavy vehicle scenario samples collected from the WIM data. (3) The
parameters of the heavy vehicle weight distribution and the Poisson process parameters for
heavy vehicle positions within the sample scenarios are calculated. Figure 4 compares the
simulation results of the number of heavy vehicles per lane with the WIM sample. Figure 5
presents the weight distribution histogram of heavy vehicles in the sample scenarios along
with a GMM fitting. During fitting, the number of GMM sub-distributions is set to six,
as illustrated by the Akaike information criterion (AIC) plot in Figure 6, which confirms
that selecting six components is reasonable. (4) For each lane, a heavy vehicle weight
is assigned to the cell by employing a GMM and Nataf transformation. With the Nataf
transformation, a sequence of vehicles with specific correlations between pairs of heavy
vehicles can be simulated over a defined correlation length (100 m was selected in this
study based on [34]), and this sequence satisfies the original GMM distribution. (5) Based
on the Poisson process and heavy vehicle distribution characteristic parameters shown in
Figure 4, a simulation of whether each cell in the lane is occupied by a heavy vehicle is
carried out. If a cell is occupied, a heavy vehicle weight is assigned based on the values
from step 4; if unoccupied, the weight is set to 0, as depicted in Figure 7. Note that, in this
step, the number of heavy vehicles per lane in the simulated scenario is assigned based on
the distribution parameters from Figure 4, followed by a Poisson distribution to simulate
cells within the lane that contain heavy vehicles. (6) These steps are repeated for each
lane to generate a set of heavy traffic sequences. Additionally, the average traffic speed
determines the length of the monthly traffic sequence, simulating a monthly traffic flow
sequence for subsequent loading on the stress influence line.
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4. Fatigue Stress–Time History

The accurate estimation of bridge fatigue life under stochastic traffic flow requires
a reliable record of the fatigue stress–time history, which can be achieved by applying a
simulated stochastic traffic load sequence to the bridge’s stress influence line. Figure 8
illustrates the calculation of the response time history: as each vehicle crosses the bridge,
it generates a corresponding set of response–time histories. The duration of each vehicle
being on the bridge is determined by the bridge length divided by the vehicle speed, and
the shape of these response–time histories corresponds to the shape of the influence line.
Using three moving vehicles from the traffic flow as an example, Figure 8 demonstrates
the loading principle behind stochastic traffic flow on influence lines with different vehicle
speeds. In this study, vehicles are assumed to travel at a constant speed as they cross the
bridge. It should be noted that this assumption simplifies the calculation of stress influence.
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This assumption might not accurately represent the real-world variability in vehicle speeds,
particularly in congested traffic, which can affect fatigue loads and, subsequently, the
fatigue life of bridge components. The effects of the vehicles’ speed on fatigue reliability
will be addressed in a future study. When vehicles successively cross the bridge, the
interval between the entry times of consecutive vehicles is denoted as t, with vehicle speeds
represented as v1, v2, and v3. The overall response–time history of the bridge, generated
by the vehicles, is the linear superposition of their individual response–time histories.
This method effectively captures the dynamic interaction between vehicle loads and the
bridge, providing a reliable basis for predicting the bridge’s fatigue life under stochastic
traffic conditions.
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5. Fatigue Reliability Assessment
5.1. Fatigue Damage Analysis Under Heavy Traffic Scenario

Structural fatigue damage accumulates over the service life of bridges due to traffic
loads. The fatigue failure of a structural component is typically assumed to occur when the
cumulative fatigue damage reaches a critical threshold, corresponding to a certain number
of stress cycles. The conventional approach for estimating structural fatigue damage
accumulation combines the S-N curve with Miner’s linear damage accumulation theory.
While Miner’s damage rule is widely used for estimating fatigue damage in structural
components, it does have limitations when applied to stochastic traffic conditions, where
the traffic loads exhibit significant variability. Specifically, Miner’s rule assumes linear
damage accumulation, and this assumption may not fully capture the complexities of
real-world traffic. To address these limitations, future research could explore alternative
models for fatigue damage that account for non-linear damage accumulation and sequence
effects, such as Paris’ law for crack growth. These models would allow for a more realistic
representation of how fatigue damage develops under stochastic traffic conditions because
the fatigue stress ranges induced by heavy traffic vary in amplitude due to the randomness
of traffic loads. An equivalent stress range method based on the linear cumulative damage
criterion provided in Eurocode 3 [50] was used in this study, expressed as follows:

D = ∑
Si≥∆σD

niS3
i

KC
+ ∑

Si<∆σD

njS5
j

KD
=

NeqS5
eq

KD
(4)

where D denotes the cumulative fatigue damage; ∆σD is the constant amplitude fatigue
limit; Si and Sj are the stress ranges; ni is the number of stress range Si (larger than ∆σD)



Infrastructures 2024, 9, 238 10 of 17

and nj refers to the number of stress range Sj (smaller than ∆σD); and KC and KD represent
the fatigue strength coefficients when Si ≥ ∆σD and Si < ∆σD, respectively, and are
calculated as follows:

KC = ∆σ3
C × 2 × 106 (5)

KD = ∆σ5
D × 5 × 106 (6)

where ∆σC is the detail category. Based on the fatigue damage equivalence principle,
the equivalent stress range and corresponding cycle count can be determined using the
following equations:

S5
eq =

∑
Si≥∆σD

niS3
i

KC
+ ∑

Si<∆σD

njS5
j

KD

Neq/KD
(7)

Neq = ∑
Si≥∆σD

ni + ∑
Si<∆σD

nj (8)

In this study, the rainflow counting method is applied to the stress–time history
generated by the simulated traffic load on the bridge. The rainflow counting algorithm
extracts cycles from the stress history obtained from the simulation. As a result of the
counting, several cycles and half-cycles with different amplitudes and mean values are
obtained. This process involves rotating the stress–time history by 90◦ so that the time
axis is oriented vertically downward, creating a visual representation of a pagoda roof.
Hypothetical “rainflows” are then imagined to start at each extremum point (local maxima
or minima) and descend along the “roof”. A stress reversal, or half-cycle, is defined by
tracking each rainflow as it continues downward until it either encounters a larger opposing
extremum, intersects with another rainflow descending from a higher point, or drops below
the level of the roof. Full cycles are subsequently formed by pairing reversals that meet
these criteria, effectively delineating hysteresis loops. The rainflow counting method was
implemented by using an algorithm in MATLAB 2023b [51].

5.2. Fatigue Reliability Analysis

Based on the limit-state function g(X) = R–S, the failure probability of a structural
member can be defined as Pf = P(g(X) < 0). Given the stochastic nature of traffic flows, it is
crucial to evaluate the uncertainty in structural fatigue damage and accurately predict the
remaining fatigue life under repeated vehicle loading. Meanwhile, the vehicle load directly
impacts fatigue life, and the life prediction model must account for traffic growth. This
study assumes an annual increase in daily traffic volume, incorporating a growth coefficient
to represent the increase in load cycles and simulate traffic flow growth. Using the fatigue
stress history derived from influence line loading, the fatigue limit-state function (LSF)
under stochastic traffic flow can be expressed as follows:

g(X) = D f − D f (t) = D f −
365 × Neq × S5

eq

KD

[
1 +

t

∑
i=1

vehi
veh1

]
(9)

where D f represents the critical fatigue damage of a bridge component; D f (t) is the
accumulated damage at time t; and veh1 and vehi are the first and i-th year’s annual daily
truck traffic (ADTT), respectively.

The time-dependent fatigue reliability index for structural components can be defined
using the following equation:

β = Φ−1
(

1 − Pf

)
= −Φ−1

(
Pf

)
(10)

where Pf is the probability of failure and Φ−1 denotes the inverse standard normal cumula-
tive distribution function (CDF).
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6. Illustrative Examples
6.1. Stress Influence Line of the Key Component of Steel Bridges

A fatigue reliability analysis was conducted on a hypothetical four-lane steel bridge,
with its stress influence line used as an illustrative example to demonstrate the effects of
varying traffic loads on structural fatigue performance. The stress influence line considered
in this study is illustrated in Figure 9. An exponential autocorrelation function was applied
with an assumed 100 m correlation length to consider the associated traffic load parameter
correlations. The selection of a 100 m correlation length was based on previous studies [31].
It should be noted that this length is a parameter within the model that could vary depending
on the specific site conditions. The Monte Carlo method was utilized to assess the fatigue
reliability. The Monte Carlo method generates a wide range of possible traffic scenarios
by randomly sampling traffic parameters based on their probability distributions. By
running multiple iterations, Monte Carlo simulations capture both typical and extreme
traffic conditions, reflecting the full range of possible outcomes over the bridge’s service life.
This probabilistic approach enables the estimation of fatigue damage under varying traffic
loads, improving the accuracy of fatigue life predictions. Furthermore, the simulations
allow for the inclusion of rare but high-impact events, ensuring that extreme scenarios are
considered in the reliability assessment. By employing a probabilistic model of the fatigue
stress range, the fatigue reliability is evaluated over the bridge service life. In practice, traffic
volume tends to increase alongside socioeconomic development. The growth of traffic
volume cannot be ignored in the fatigue reliability assessment. In most studies, it is typically
assumed to have a constant growth rate. However, such an assumption is oversimplified
and lacks a solid basis. Therefore, this study considers growth in the ADTT by employing
two models. These two models were developed based on data collected from a national
database www.autostrade.it (accessed on 1 November 2024 covering the period from 1990 to
2020 [52]. The traffic volume growth models are presented in Table 1. The traffic volume is
assumed to remain constant within every single year, with the variate average growth ratio
serving as the growth coefficient of traffic volume between consecutive years. The effects of
traffic growth on fatigue are studied by sampling stochastic traffic. Figure 10 represents the
PDFs of response values obtained every second. The response distribution of the simulated
traffic flow shows good agreement with the original WIM data. Moreover, the quality of the
fitting results is quantified by the Kullback–Leibler divergence, D, defined in [53].

D(P ∥ Q) =
∫ ∞

−∞
p(x)ln(

p(x)
q(x)

) (11)

where p(x) and q(x) denote the probability densities of the response obtained from WIM
data and simulated data, respectively.
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Table 1. The traffic volume growth models.

Models Equations

Model 1 Veh* = (year/a)1/b, a = 1434.25 and b = 0.031
Model 2 Veh = 60000/{1 + exp[−(a + b·year)]}, a = −95.87 and b = 0.05

Note: Veh* is the annual average daily traffic.
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The K-L divergence calculated from Equation (11) shows that the Kullback–Leibler
divergence of the response data is 0.078232. This result indicates that the simulated data
can characterize the WIM data distributions well.

6.2. Statistics of Variables

Probabilistic modeling of the variables is essential for carrying out the reliability
evaluation. This study assumes that the critical fatigue damage index follows a lognormal
distribution with a mean value of 1 and a standard deviation of 0.3, and the fatigue strength
coefficient in terms of resistance is also assumed to follow a lognormal distribution with
a mean value of 3.47 × 1014 and a standard deviation of 1.56 × 1014 [5]. The statistics of
the variables in the LSF, including the equivalent stress range, Seq, and the corresponding
number of cycles, Nd, derived from both actual traffic flow data (i.e., WIM data) and the
proposed traffic load model, are provided in Table 2.

Table 2. Probability distribution properties for fatigue analysis.

Variables Mean Value Standard
Deviation Distribution Type Source

Df 1.0 0.3 Lognormal [51]
KD 3.47 × 1014 1.56 × 1014 Lognormal [51]
Seq 10.2640 0.2709 Lognormal
S∗

eq 9.6519 0.9049 Lognormal
Nd 15,370.2 128.98 Lognormal
N∗

d 16,614.0 1163.60 Lognormal
Note: S∗

eq and N∗
d are calculated using the original WIM data loading.
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6.3. Results and Discussion

The Monte Carlo method was applied to analyze fatigue reliability under different
traffic flow conditions. The main computation involved is the simulation of traffic flow and
the generation of fatigue stress histories based on pre-defined traffic parameters, which can
be carried out relatively quickly using Monte Carlo simulations. The model does not require
intensive training phases or complex optimization processes, which are characteristic of
machine learning approaches like CA and Temporal Fusion Transformers [54]. A target
fatigue reliability index of 2 was selected for this study, based on recommendations found
in the literature [36,55], corresponding to a failure probability of 2.3%. Figure 11 shows the
fatigue reliability under simulated traffic scenarios and WIM data without considering the
continuous increase in traffic volume (i.e., the AADT is constant). Both the simulated and
WIM data show a general decline in the reliability index over time. This decline reflects the
progressive fatigue deterioration expected in structures under traffic load cycles. Through
the refined simulated traffic flow method proposed in this study, it was found that the
162-year fatigue reliability index of the bridge is below 2. Based on the WIM data, the
service time is 150 years. The reliability indices for the simulated data and the WIM data in
the 100th year were reduced to 2.90 and 2.60, respectively. The intersection of the two lines
in Figure 11 may be attributed to the high standard deviation of the WIM data. This is due
to the inclusion of different traffic types, such as weekday and weekend variations. This
difference shows the need for further optimization of the proposed model by simulating a
broader range of traffic scenarios to capture mixed traffic flows more accurately.
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Figures 12 and 13 illustrate the results of fatigue reliability considering the traffic
volume growth by using model 1 and model 2, respectively. The power regression law
(model 1), representing continuous traffic demand growth, contrasts with the logistic
distribution (model 2), which models a saturation point in vehicle numbers, simulating
a cap on daily traffic flow at three times the bridge’s original design load. The power
regression model is ideal for scenarios where traffic growth is continuous, but it may
overestimate long-term deterioration rates if traffic saturates. Conversely, the logistic
regression model reflects saturation effects, providing more realistic predictions in capacity-
constrained networks. Model 1 is suitable for urban bridges experiencing consistent
growth due to high urbanization rates or critical economic corridors with continuous
increases in freight traffic. Model 2 is particularly useful for bridges in areas with mature
traffic infrastructure or where traffic growth is expected to stabilize due to economic or
geographic constraints.

Under model 1, the service times for a fatigue reliability index below 2 were found
to be 77 years (WIM data) and 80 years (simulated data). For the fatigue damage induced
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by simulated traffic flow incorporating traffic growth, the point at which the fatigue relia-
bility index reaches 2 is 82 years earlier than that without considering the traffic growth.
Accounting for traffic growth using model 1 results in higher traffic demand prediction,
which in turn leads to a more conservative estimation of the bridge’s fatigue reliability.
Consequently, the reliability index decreases more rapidly, reflecting an intensified risk due
to the unbounded increase in traffic load effects. This implies that under the power regres-
sion model, the bridge may require earlier and more frequent maintenance interventions to
mitigate the fatigue damage caused by increasing traffic loads.
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Model 2, utilizing a logistic regression approach, introduces a saturation point for
traffic growth. Model 2 yields a more stable prediction of traffic demand, reflecting a plateau
effect as traffic approaches the bridge traffic capacity limit. Accordingly, the reliability index
decreases at a slower rate. Over a 100-year service life, the reliability indices calculated
using both simulated data and WIM data decrease to 2.76 and 2.45, respectively. These
results are close to those obtained without accounting for traffic growth and are significantly
higher than those produced by model 1 (i.e., 1.22 for simulated data and 1.29 for WIM data).
Using model 2 implies that the bridge fatigue reliability is preserved for a longer period
under capped traffic growth conditions. The results suggest that different considerations of
traffic load variations induced by traffic growth will result in significant differences in the
bridge’s fatigue evaluation results.
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A comparison of these two models’ results highlights the critical impact of the selected
traffic growth assumptions on fatigue reliability assessments. The power model, while
conservative, may overestimate the long-term deterioration rates if actual traffic growth
reaches saturation. On the other hand, the logistic model could provide a more realistic
assessment for infrastructure planning under anticipated traffic limits, balancing mainte-
nance needs with expected traffic load scenarios. Furthermore, incorporating WIM data
can enhance the models by providing empirical data, which can improve the accuracy of
traffic load prediction, leading to more informed decisions regarding bridge maintenance
and lifecycle management.

7. Conclusions

Traffic data measured by the WIM system offer a good basis for deriving traffic load
models for the fatigue reliability assessment of road bridges. This study demonstrates
a probabilistic approach for conducting fatigue reliability analyses of bridges under the
influence of heavy traffic loads. By employing a Gaussian mixture model and a Poisson
process, the probabilistic traffic model effectively captures the distribution and occurrence
probability of heavy trucks based on real-world traffic data obtained from WIM technolo-
gies. The integration of the Nataf transformation method enables the consideration of
correlations between key traffic load parameters, enhancing the model’s accuracy. The pro-
posed method provides a comprehensive framework for predicting bridge fatigue damage,
offering significant improvements in the reliability and precision of fatigue life assessments
for bridge structures under heavy traffic conditions.

Since traffic loading is a primary source of bridge fatigue, changes in traffic volume
over the bridge’s entire service life must be considered for accurate fatigue life prediction.
Neglecting traffic growth could lead to an overly optimistic assessment of long-term
structural reliability. Using the refined simulated traffic flow method proposed in this
paper, it was found that the 80-year fatigue reliability index of the bridge falls below 2 when
accounting for traffic flow growth modeled with a power regression law. Different traffic
load growth models will result in significant differences in the bridge fatigue evaluation
results. Appropriate consideration of traffic growth in fatigue reliability assessment is
crucial for effective lifecycle management, as it allows for more accurate scheduling of
maintenance interventions to ensure structural safety across the service life of bridges. The
results of this case study are expected to support more informed decision-making in bridge
maintenance and management strategies.

Future research will investigate the effects of different levels of GVW correlation and
heavy truck platooning on bridge fatigue life. A comprehensive sensitivity analysis to
identify the key parameters that most significantly affect the fatigue reliability of bridge
components should be conducted. Additionally, the correlation between GVWs for traffic
modeling should be determined using site-specific traffic data with appropriate statistical
tools, ensuring the model’s accuracy and applicability to real-world scenarios. These as-
pects will be explored in subsequent studies to provide a more robust understanding of
traffic load effects on bridge reliability. Meanwhile, numerous fatigue life prediction meth-
ods have been proposed and applied over the years. Among these, data-driven approaches
are particularly significant for assessing the service performance of steel bridges [56].
A comprehensive comparison should be conducted using state-of-the-art fatigue models
and advanced deep learning techniques, such as the spatiotemporal embedding fusion
transformer [54]. This model leverages attention mechanisms and feature fusion to effec-
tively capture dynamic dependencies in traffic data. These investigations will lead to more
precise models and predictive tools, advancing the reliability of bridge infrastructure in the
face of traffic evolution.
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