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Abstract: With the advancements in information, communication, and sensing technologies, struc-
tural health monitoring (SHM) has matured into a substantial pillar of infrastructure maintenance. In
particular, wireless sensor networks have gradually been incorporated into SHM, leveraging new op-
portunities towards reduced installation efforts and enhanced flexibility and scalability, as compared
to cable-based SHM systems. However, wireless sensor nodes are installed at fixed locations and
need to be employed at high density to reliably monitor large infrastructure, which may cause high
installation costs. Furthermore, the limited power autonomy of wireless sensor networks, installed
at fixed locations for unattended long-term operation, still represents a significant constraint when
deploying stationary wireless sensor nodes for SHM. To resolve the critical constraints stemming from
costly high-density deployment and limited power autonomy, a mobile structural health monitoring
concept based on legged robots is proposed in the study reported in this paper. The study explores
the accuracy and cost-efficiency of deploying legged robots in dense measurement setups for wireless
SHM of civil infrastructure, aiming to gain insights into the advantages of mobile wireless sensor
nodes in general and of legged robots in particular, in terms of obtaining rich information on the
structural condition. As is shown in this paper, the legged robots, as compared to stationary wireless
sensor nodes, require a smaller number of nodes to be deployed in civil infrastructure to achieve
rich sensor information, entailing more cost-efficient, yet accurate, SHM. In conclusion, this study
represents a first step towards autonomous robotic fleets advancing structural health monitoring.

Keywords: structural health monitoring (SHM); mobile SHM; quadruped robots; legged robots;
wireless sensor networks; infrastructure maintenance

1. Introduction

The effects of climate change, such as extreme rainfall, temperature fluctuations, sea
level rise, wildfires, hurricanes, increased storm surges, and floods, will accelerate the
progressive deterioration of infrastructure [1]. Global infrastructure investment needs are
estimated at USD 97 trillion by 2040 [2]. If the current trend of underinvestment in economic
infrastructure continues, the world will face a gap in infrastructure investments of about
USD 350 billion per year [3]. Regarding the deterioration of transportation infrastructure,
such as bridges, roads, and railways, it is estimated that low-income countries and middle-
income countries will need to spend between 0.5% and 3.3% of their gross domestic product
(GDP), or USD 157 billion to USD 1 trillion, annually on new transportation infrastructure
by 2030—plus additional 1–2% of their GDP on network maintenance [4]. In industrial
countries, estimates show that continued underinvestment in deteriorating infrastructure
will have a cascading effect on the economy and, regarding the US, will cause a loss of
USD 10 trillion in GDP over the next two decades [5]. The situation in other industrial
countries is similar. In Germany, almost 700 bridges are more than 100 years old, and more
than 10% of highway bridges are deficient [6], highlighting the need for timely structural
maintenance, which has been increasingly relying on structural health monitoring (SHM).
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Structural health monitoring has been employed for more than half a century to miti-
gate infrastructure deterioration and its financial implications, gaining momentum with
recent advancements in information, communication, and sensing technologies [7]. While
early SHM case studies have been limited to civil infrastructure of high importance or of
strong academic interest, today’s SHM systems have matured into a significant pillar of in-
frastructure maintenance, representing a supplement to traditional structural maintenance
strategies, such as non-destructive testing and visual inspections [8,9]. Through obtaining
structural information extracted from structural response data collected by SHM systems,
damage indicators are established that may be used for facilitating predictive maintenance
and advancing life-cycle management strategies [10]. Nevertheless, traditional cable-based
SHM systems are capable of yielding relatively limited (spatially coarse) structural infor-
mation, due to the high costs and the laborious installations of cable-based sensors. In
recent years, wireless sensor networks have gradually been incorporated into SHM [11],
leveraging new opportunities towards reduced installation efforts, enhanced flexibility and
scalability as well as lower installation costs, as compared to cable-based SHM systems.

Besides being easy to install, flexible, and scalable, smart wireless SHM systems are
capable of embedded computing and distributed-cooperative execution of SHM tasks,
which enables wireless SHM systems to autonomously detect structural anomalies and to
provide structural information in real time [12]. Since the merits of wireless technologies
have been apparent from the very first wireless strategies in SHM, practitioners have sought
to deploy wireless SHM systems of increasing density, in an attempt to obtain spatially
rich information on structural conditions and resolve a major constraint of cable-based
systems [13]. However, even in wireless SHM systems, the instrumentation density is
limited by aesthetic and operational constraints of monitored structures, notwithstanding
the less intrusive installation of wireless sensor nodes as compared to cable-based sensors.
In addition, particularly dense wireless sensor networks, in which wireless sensor nodes
are installed at fixed locations and are employed at high density to reliably monitor large
infrastructure, may cause high installation costs, thus nullifying the cost-effectiveness
of wireless SHM systems. Furthermore, the limited power of wireless sensor networks,
installed at fixed locations and for unattended long-term operation, still represents a
significant constraint when deploying stationary wireless sensor nodes for SHM [14].
To enrich the SHM-derived structural information, while addressing the aesthetic and
operational constraints, the costly high-density deployment and the limited power of
wireless sensor nodes, mobile wireless sensor networks have been proposed for SHM [15].

In a mobile wireless sensor network, each mobile sensor node is a miniature mobile
robot, equipped with smart sensors, that explores its environment and exchanges infor-
mation through wireless communication. Thus, both constraints inherent to stationary
wireless sensor nodes can be resolved when taking advantage of mobility: First, high spatial
resolutions can be achieved by cost-efficiently deploying a small number of mobile wireless
sensor nodes; second, each mobile wireless sensor node can be enabled to periodically re-
turn to a base station for automatic recharging, eliminating the constraint of limited power.
In the last decades, prototype mobile wireless sensor nodes have been proposed based on
wheeled robots [16]. It has been demonstrated that augmenting stationary sensor networks
with mobile nodes solves many design challenges that exist in stationary sensor networks.
The technological foundations required to implement wheeled mobile wireless sensor
nodes have been well-established, including routing protocols, architecture and topology,
self-organization, energy utilization, scalability, localization, security, and privacy [17,18].
Mobile wireless sensor nodes have successfully been employed for wireless inspections and
wireless structural health monitoring [19]. However, although wheeled robots deployed for
mobile SHM eradicate major disadvantages of stationary wireless sensor nodes regarding
high (and costly) deployment density and power consumption, wheeled robots still offer
room for improvement regarding maneuverability, transversability, and efficiency. These
improvements are inherent to legged robots. Since the emergence of bionics in the middle
of the 20th century, legged robots, mimicking the behavior of living beings, have been
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an objective in robotics research, gaining new impetus with the advent of the Internet of
Things and Industry 4.0 [20].

The development of legged robot locomotion has continuously been evolving over
the past decades, as it offers distinct advantages compared to wheeled robots in maneuver-
ability, transversability, and efficiency [21]. As compared to wheeled robots, legged robots
have a greater ability to move on almost all surfaces in different terrains, providing better
adaptability to unstructured and unknown environments. Representing a particularly
promising type of legged robots, quadruped robots are ideal in terms of stability and
efficiency and are thus used in applications that require high safety or high payload [22].
Being easy to control, design, and maintain, quadruped robots exhibit better equilibrium
than robots with fewer legs, while walking control is not as complex as walking control of
multi-legged robots [23]. Engineering tasks executed by quadruped robots include mine
inspection, space exploration, or firefighting [21]. However, the utilization of quadruped
robots in wireless SHM has received little attention.

This paper reports on a study proposing a mobile structural health monitoring concept
based on legged, i.e., quadruped, robots, aiming to gain insights into realizing the advan-
tages of mobile wireless sensor nodes in general and of quadruped robots in particular.
The mobile SHM concept builds around an SHM methodology towards obtaining spatially
rich structural information in a cost-efficient manner and at an accuracy comparable to
wireless SHM with stationary wireless sensor nodes. In particular, the SHM methodology
enables the piece-wise synthesis of spatially dense mode shapes, extracted by deploying
the legged robots at overlapping pairs of locations on the structure. The legged robots are
equipped (i) with sensors to collect acceleration data relevant to SHM of civil infrastructure,
(ii) with “light detection and ranging” (Lidar) sensors for navigation, and (iii) with embed-
ded algorithms facilitating autonomous data analysis, communication, and navigation. As
will be shown in this paper, the legged robots, as compared to stationary wireless sensor
nodes, require a smaller number of nodes to be deployed to achieve rich sensor information,
entailing more cost-efficient SHM. As compared to wheeled robots, quadruped robots
provide better maneuverability, as critical parts of civil infrastructure may be hard to reach
by wheeled robots. The mobile SHM concept, with emphasis on the performance of the
quadruped robots regarding the accuracy of SHM, is validated through laboratory tests
and field tests, by comparing the SHM results obtained by the legged robots to the SHM
results obtained by benchmark SHM systems, composed of high-precision sensors for the
laboratory tests and of state-of-the-art stationary wireless sensor nodes for the field tests.

The remainder of the paper starts with a description of the SHM methodology for
the mobile SHM concept, followed by the implementation of the concept into a prototype
mobile SHM system based on the legged robots, placing emphasis on the modular software
architecture. Then, the laboratory tests are presented, followed by the field tests conducted
at a pedestrian bridge located in Hamburg, Germany. Next, the results of the laboratory
and field tests are shown and compared with the benchmark SHM systems, showcasing
the rich sensor information obtained by the mobile SHM system. Finally, the results are
discussed, particularly focusing on the accuracy and cost-efficiency of the mobile SHM
system. The paper concludes with a summary of the key findings and a discussion on
future research that may be conducted to further advance this work.

2. A Mobile Structural Health Monitoring System Based on Legged Robots

In recent decades, structural analysis almost exclusively has been relying on the finite
element method. Furthermore, the ability of finite element analysis to predict elaborate
structural conditions in a piece-wise fashion has enabled design engineers to deviate from
simple geometries and to venture into complex structural systems, which, in turn, deviate
from classical structural conditions that have driven structural design for several years
based on engineering intuition. However, from the perspective of structural maintenance
via SHM, structural complexity inevitably raises the need for rich information on the
structural condition, which cannot be retrieved with the relatively sparse SHM systems
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employed in current practice. The mobile SHM concept, presented in this paper, aims
at enriching the information on the structural condition, while minimizing the efforts,
costs, and intrusiveness, caused by dense wireless SHM systems. Specifically, the legged
robots, being capable of scanning structures in detail, enable SHM practitioners to assess
the condition of the structures at a structural element level and make informed decisions
on the overall structural conditions. Moreover, information on a structural element level
enables comparisons with elaborate finite element models, typically created as part of SHM
strategies, as well as model updating.

Despite the benefits of employing legged robots for SHM, special attention should
be paid to the cost efficiency of the mobile SHM concept. One of the major aspects of
wireless technologies that has been appealing to practitioners is the low cost of wireless
SHM systems, as compared to cable-based SHM systems, especially as far as unit prices
of wireless sensor nodes are concerned. By contrast, the unit price of legged robots may
be considerable. Therefore, due allowance must be made to the size of the mobile SHM
system, in terms of the number of legged robots employed. In this direction, given that
standard SHM data analysis methods are usually built on correlations between data sets
recorded at different locations, the number of legged robots employed in this paper is
reduced to the minimum, i.e., two-legged robots. For example, employing two-legged
robots is in line with operational modal analysis (OMA) requirements, in which the legged
robots collaboratively record and exchange SHM data to estimate mode shapes. As such,
the legged robots also possess capabilities of wirelessly communicating with each other and
exchanging SHM data. The following discussion centers around the SHM methodology, as
well as the hardware and software implementation of the proposed mobile SHM concept.

2.1. Methodology

The methodology followed for the mobile SHM concept in this paper draws primarily
from vibration-based SHM, typically conducted using acceleration response data. Although
the methodology may, in theory, extend to any types of sensors attached to the legged
robots, vibration-based SHM is selected, because accelerometers require neither to be fixed
with strong—quasi-permanent—adhesives for measuring accurately, as is the case with
strain gauges, nor to be insulated, as is the case with temperature sensors. As a result,
accelerometers offer unique advantages as regards the ability of the legged robots to quickly
and efficiently switch from recording acceleration response data to navigating to the next
measurement location.

Following common SHM practices, information on the structural condition via vibration-
based SHM is extracted through analysis of acceleration response data. Over the years, several
algorithms for data analysis in vibration-based SHM have been developed, as evidenced
by the large body of literature [24]. Broadly speaking, algorithms have been devised for
analyzing acceleration response data to extract information in the time domain and in the
frequency domain [25]. The information is usually represented in the modal domain, i.e.,
via estimates of mode shapes, referred to as “experimental mode shapes”. In this paper, the
objective of the SHM methodology is to derive experimental mode shapes via frequency
domain decomposition (FDD) [26]. In what follows, the steps of the SHM methodology
are illuminated.

2.1.1. Definition of Measurement Locations

The first step of the SHM methodology involves defining the grid of measurement
locations, hereinafter referred to as the “measurement grid”, on which the legged robots
are tasked to record acceleration response data. Traditionally, selecting the measurement
locations falls within the broad scope of “design of experiments”, which from the perspec-
tive of SHM, builds upon engineering intuition usually gained from preliminary numerical
simulations. However, the mobility granted by the legged robots alleviates the SHM
methodology followed in this paper from the computational burden of conducting nu-
merical simulations for selecting the most suitable measurement locations. Specifically,
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representing an advantage of the legged robots, the number of measurement locations is
not restricted by the finite number of stationary wireless sensor nodes, as in traditional
wireless SHM systems. Therefore, defining the measurement grid follows a discretization
process, similar to the discretization applied in finite element modeling, by setting a grid
size, accounting for the complexity of the structure and the autonomy of the legged robots,
as shown in Figure 1. Furthermore, the capability to define relatively fine discretizations
allows the detection of high-order modes—provided the excitation energy in the respective
frequencies is sufficiently high—that are usually topologically hard to describe with few
stationary wireless sensor nodes.

Infrastructures 2023, 8, x FOR PEER REVIEW 5 of 23 
 

locations falls within the broad scope of “design of experiments”, which from the perspec-
tive of SHM, builds upon engineering intuition usually gained from preliminary numeri-
cal simulations. However, the mobility granted by the legged robots alleviates the SHM 
methodology followed in this paper from the computational burden of conducting nu-
merical simulations for selecting the most suitable measurement locations. Specifically, 
representing an advantage of the legged robots, the number of measurement locations is 
not restricted by the finite number of stationary wireless sensor nodes, as in traditional 
wireless SHM systems. Therefore, defining the measurement grid follows a discretization 
process, similar to the discretization applied in finite element modeling, by setting a grid 
size, accounting for the complexity of the structure and the autonomy of the legged robots, 
as shown in Figure 1. Furthermore, the capability to define relatively fine discretizations 
allows the detection of high-order modes—provided the excitation energy in the respec-
tive frequencies is sufficiently high—that are usually topologically hard to describe with 
few stationary wireless sensor nodes. 

 
Figure 1. Examples of measurement grids: (a) fine discretization for a complex structure and (b) 
coarse discretization for a simple structure. 

The measurement grid is scanned by the two-legged robots in successive pairs of 
overlapping measurement locations. In other words, assuming that the measurement grid 
includes m locations (L = [L1, L2,…, Lm]T), at least m − 1 measurement setups are conducted, 
ensuring that each measurement setup has one measurement location included in the pre-
vious measurement setup. As will be shown below, the overlap is necessary for computing 
the relative differences in amplitudes among the measurement locations, which are 
needed for synthesizing the experimental mode shapes. 

2.1.2. Data Acquisition and Frequency–Domain Analysis 
Upon reaching the jth measurement setup (pair of measurement locations in the 

measurement grid) (0 < j < m − 1), the legged robots start recording acceleration response 
data. The measurement duration, as well as the sampling frequency (fs), are case-specifi-
cally defined by the users a priori and must be kept relatively modest to ensure that the 
power autonomy of the legged robots suffices to cover the entire size of the measurement 
grid. Care should be taken, however, that the sampling frequency is large enough to cover 

Figure 1. Examples of measurement grids: (a) fine discretization for a complex structure and
(b) coarse discretization for a simple structure.

The measurement grid is scanned by the two-legged robots in successive pairs of
overlapping measurement locations. In other words, assuming that the measurement
grid includes m locations (L = [L1, L2,. . . , Lm]T), at least m − 1 measurement setups are
conducted, ensuring that each measurement setup has one measurement location included
in the previous measurement setup. As will be shown below, the overlap is necessary for
computing the relative differences in amplitudes among the measurement locations, which
are needed for synthesizing the experimental mode shapes.

2.1.2. Data Acquisition and Frequency–Domain Analysis

Upon reaching the jth measurement setup (pair of measurement locations in the
measurement grid) (0 < j < m − 1), the legged robots start recording acceleration response
data. The measurement duration, as well as the sampling frequency (fs), are case-specifically
defined by the users a priori and must be kept relatively modest to ensure that the power
autonomy of the legged robots suffices to cover the entire size of the measurement grid.
Care should be taken, however, that the sampling frequency is large enough to cover the
frequency spectrum captured by the acceleration response data, limited by the Nyquist
frequency (fs/2), so as to ensure that the significant mode shapes are properly detected.
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Once the data acquisition is completed, each legged robot converts its acceleration response
data into the frequency domain using the fast Fourier transform (FFT), which builds upon
the discrete Fourier transform, shown below:

(Yk)jr =
1
N

(
N−1

∑
n=0

yne−i2πk n
N

)
jr

k ∈ Z, i =
√
−1, r = 1, 2 0 ≤ j ≤ m− 1 (1)

In Equation (1), Yk is the kth frequency component (k = 0 . . . N − 1), corresponding to a
frequency equal to fk = k·fs/N, N is the total number of measurements for the measurement
setup, yn is the nth measurement in the acceleration response data, and i is the imaginary
number. Next, each legged robot performs “peak-picking”, i.e., detection of the highest
values (“resonance peaks”) among the amplitudes Ak of the Fourier values Yk, computed
according to Equation (2), that constitute candidates of modal frequency components.

(Ak)jr =

(√
[<(Yk)]

2 + [=(Yk)]
2
)

jr
(2)

In Equation (2), R(•) and I(•), indicate the real part and imaginary part, respectively,
of a complex number. Peak-picking in traditional SHM strategies involves visualizing
the Fourier amplitude spectrum, which would require sending all the Fourier values to
a centralized server, thus burdening the legged robots with extensive, power-consuming
wireless communication. By contrast, peak-picking in the proposed mobile SHM concept is
achieved heuristically by each legged robot in an automated manner, as described below
and in the flowchart in Figure 2:

1. The mean amplitude Ā is computed and used to define the threshold for peak de-
tection. Due to noise and inaccuracies inherent to the measurements and to the
Fourier transform, the non-resonance-peak amplitudes are typically non-zero. There-
fore, given that the number of resonance peaks is low in typical SHM strategies,
the mean amplitude provides an estimate of Fourier amplitudes attributed to noise
and inaccuracies;

2. The threshold for peak detection is defined as Ao = Ā + σ(Ak), where σ(•) represents the
standard deviation. The standard deviation portion is added to ensure that isolated
amplitudes that marginally exceed the mean amplitude are excluded from being
interpreted as resonance peaks;

3. The resonance peaks with the highest amplitudes (i.e., crossing the peak detection
threshold) are successively detected. To confirm that the same resonance peaks are
detected, the legged robots exchange information on the peaks. Upon detecting a
resonance peak, the corresponding frequency and Fourier value are stored in an
array and the amplitude is removed from the Fourier amplitude spectrum before
proceeding with detecting the next resonance peak. Moreover, due to spectral leakage,
it is expected that resonance peaks may be hardly discernible from adjacent frequency
components with similar amplitudes. As a result, upon detecting resonance peak kp, a
relatively short range 2a of frequency components around the resonance peak (kp-a,
kp+a) is also removed before proceeding with detecting the next resonance peak, to
avoid duplicate peak detection of practically the same resonance peak. Nevertheless,
when defining the value for 2a, care should be taken that closely spaced resonance
peaks may still be detected, as shown in Figure 3. In this regard, it is generally
recommended to start with a low value for 2a and dynamically modify the value, in
case the resonance peaks are well-separated;

4. Peak detection is terminated once all amplitudes are below the peak detection threshold.
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Figure 3. Examples of removing amplitudes from the Fourier spectrum following peak detection: A
narrow range of 2a for closely spaced resonance peaks (left) and a wide range of 2a for well-separated
resonance peaks (right).

2.1.3. Synthesis of Experimental Mode Shapes

Once the entire measurement grid has been covered, the legged robots wirelessly
transmit the frequencies and Fourier values of the resonance peaks to a centralized server.
Thereupon, mode shapes are extracted by applying the FDD method. The FDD method
builds upon the relationship between the spectral density matrix Gx of the loads, exerted
on a structure being monitored, and the spectral density matrix Gy of the acceleration
response data, as expressed by the respective frequency response functions. The m × m
matrix Gyk (with m representing the size of the measurement grid) at the kth frequency
component is computed as follows:

Gyk =


S11,k S12,k · · · S1m,k
S21,k S22,k · · · S2m,k

...
...

. . .
...

Sm1,k Sm2,k · · · Smm,k

, with Svw,k = Yv,k ·Yw,k, v, w ∈
[
1 . . . m

]
(3)

where Svw,k denotes the cross-spectral density value between location v and location w
at the kth frequency component of the Fourier spectrum, and the overbar indicates the
complex conjugate. According to the FDD method, the singular value decomposition of
Gyk is related to the experimental mode shapes, provided that the loads can be reasonably
approximated as Gaussian white noise:

Gyk = UΣV∗ → U =
[
u1 . . . um

]
, u1 ∝ ϕk (4)
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In Equation (4), U and V are the matrices composed of the singular vectors, and Σ is the
diagonal matrix that holds the singular values. The asterisk (*) denotes complex conjugate
and transpose. Assuming that the kth frequency component is a modal component, the
left-most vector of matrix U is proportional to the respective mode shape ϕk.

The direct derivation of experimental mode shapes using Equation (4) is only possible
if measurements from all locations on the measurement grid are simultaneously recorded.
Since in the proposed mobile SHM concept the measurement locations are covered in pairs,
Equation (4) is applied for each measurement setup. In particular, for measurement setup j
and at the kth (modal) frequency component, Equation (4) yields the experimental mode
shape sub-vector ϕk,j, which is a 2 × 1 vector that corresponds to measurement locations
v and w. Similarly, from measurement setup j + 1, the mode shape sub-vector ϕk,j+1 is
obtained, including elements for measurement locations w and s. The two sub-vectors are
normalized with respect to the element in the sub-vectors that represents the overlapping
location w between measurement setups j and j + 1, as shown below

Uj =
[
u1,j . . . um,j

]
, u1,j ∝ ϕk,j =

[
ϕkv,j ϕkw,j

]
(5)

Uj+1 =
[
u1,j+1 . . . um,j+1

]
, u1,j+1 ∝ ϕk,j+1 =

[
ϕkw,j+1 ϕks,j+1

]
(6)

ϕks = ϕks,j+1 ·
ϕkw,j

ϕkw,j+1
, ϕkv = ϕkv,j, ϕkw = ϕkw,j ·

1
ϕkw,j+1

(7)

Through the successive normalization of the sub-vectors, the full m × 1 vector of the
mode shape is eventually synthesized, as exemplarily illustrated in Figure 4. Due to the
successive normalization, the accuracy of the sub-vector ϕk,j+1 depends on the accuracy
of the sub-vector ϕk,j. In this context, special attention must be paid that the elements in
sub-vectors from successive measurement setups are of the same order of magnitude. For
example, resonance peaks that in specific measurement setups have low amplitudes, such as
at “zero-crossing points” of mode shapes, may result in poor normalization that may affect
the accuracy of the mode shape. To avoid normalization problems in the proposed mobile
SHM concept, the legged robots are granted the ability to slightly modify the topology of
measurement locations at zero-crossing points of mode shapes, in case amplitudes at peaks
that have been identified as resonance peaks in other measurement locations are lower than
the peak detection threshold.
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The mobile SHM concept is implemented into a prototype mobile SHM system. The
hardware and software specifications of the mobile SHM system are illuminated in the
next subsection.



Infrastructures 2023, 8, 136 9 of 23

2.2. Hardware Design and Implementation

The legged robots employed for the prototype mobile SHM system are of type “intelli-
gent documentation gadgets” (IDOGs). In terms of hardware, the IDOGs are based on the
robot model A1 of Unitree Robotics [27], supplemented by further hardware components
required for SHM. To fulfill the tasks of the mobile SHM concept mentioned previously, the
IDOGs feature capabilities of locomotion in multiple directions, localizing themselves in re-
lation to the structure, recording acceleration response data, and processing and analyzing
data on board.

Figure 5 illustrates the hardware components. Locomotion is managed by the locomo-
tion component, which encompasses twelve motors, distributed evenly on the four legs
of the robot for granting motion at three points of each leg, namely “hip”, “knee”, and
“thigh”. The enhanced locomotion achieved with the twelve motors, essentially twelve
degrees of freedom, represents an important aspect of the mobile SHM system, allowing
the IDOGs to easily switch from “walking posture”, which refers to simply navigating
the measurement grid, to “measuring posture”, which involves lying down to record
acceleration response data.
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The processing component handles the computations necessary for controlling the
locomotion, via the locomotion board. Moreover, the computing board, located also in the
processing component, manages the processing and analysis of acceleration response data
recorded by the sensors installed in the IDOGs, which reside in the sensing component.

The sensing component includes sensors that enable the IDOGs to perform the SHM
tasks. In particular, to gain environmental awareness, a Lidar sensor is installed, which
records point clouds (i.e., discrete sets of data points representing the exterior surfaces of
nearby objects). By matching successive point clouds as the IDOGs move, the processing
component creates a map of the environment and each IDOG localizes itself according
to the map. The localization ensures that the IDOGs record acceleration response data at
locations corresponding to the measurement grid. Connectivity between the Lidar sensor
and the IDOG computing board is granted through Ethernet, which provides a bandwidth
sufficient for the transmission of information to the surrounding environment. In addition,
a LORD MicroStrain 3DM-GX5-25 inertial measurement unit (IMU, [28]) is attached to the
sensing component for recording acceleration response data and for aiding in mapping
and localization through sensor fusion. The IMU features a built-in accelerometer, a
gyroscope, and a magnetometer. A USB 2.0 interface provides a connection between the
IMU and the processing component. While only accelerations are of interest for SHM
tasks, the combination of all three sensor types provides inertial odometry information for
mapping and localization. The gyroscope measures inclinations, while the magnetometer
measures magnetic field strength. The accelerometer is capable of recording acceleration
response data at a maximum sampling frequency of 1 kHz, within a range of ±8 g, and



Infrastructures 2023, 8, 136 10 of 23

with a resolution of 0.02 mg [28]. For SHM purposes, it is important that acceleration
response data is recorded as closely to the surface of the structure as possible, with minimal
interference from the encasements of sensing units, e.g., the mechanical components of the
IDOGs. In the proposed mobile SHM system, the proximity of the accelerometers to the
surface is ensured by the measuring posture, in which the IDOGs lie down on the surface,
as will be demonstrated in the validation tests. The data analysis is performed onboard
the IDOGs via embedded software, which is specifically designed for the mobile SHM
system and involves operational modal analysis. The details of the embedded software are
provided in the following subsection.

2.3. Software Design and Implementation

The embedded software for the mobile SHM system is designed on the basis of the
“robot operating system” (ROS) [29], which is integrated into the IDOG processing compo-
nent. ROS is an open-source middleware that provides libraries and tools for building and
managing robotic software. At its core, ROS is designed modularly around a peer-to-peer
network of processes that communicate in a “publish-subscribe” pattern. In particular,
the basic communication implementations in ROS are called “nodes”, “messages”, and
“topics”. Nodes represent processes performing computations and are able to communi-
cate with each other by exchanging messages via topics. Messages are strictly typed data
structures. Topics are “buses” over which nodes exchange messages by publishing (i.e.,
sending messages) and by subscribing (i.e., receiving messages).

An extract of the software, designed for the mobile SHM system and embedded into
the IDOGs, is shown in Figure 6 to illustrate the general concept. With the exception of
the taskScheduler and timeSynchronization components, all parts of the embedded software
are based on the ROS middleware. The taskScheduler component ensures the concurrent
beginning of recording acceleration response data by the IDOGs. The timeSynchronization
component synchronizes the internal clocks of the IDOGs involved in the mobile SHM
system, based on the “precision time protocol” defined by the IEEE 1588-2008 standard [30].
The microstrain_inertial node, which handles the operation of the IMU, publishes raw
acceleration response data to the /imu/data topic. Upon completing the measurements, the
embedded SHM analysis is started. First, the fft node, which subscribes to the /imu/data
topic, converts the acceleration response data from the time domain into the frequency
domain, via the FFT, and publishes the results to the /transform topic. The peak_picking
node, in turn, subscribes to the /transform topic, detects the resonance peaks, and publishes
the peaks to the /peaks topic. At the same time, the record node subscribes to and stores the
raw and analyzed acceleration response data. When the required number of measurements
has been recorded, the IDOGs stop recording.
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For deriving the experimental mode shapes, the acceleration response data are linked
with location information. The IDOGs localize themselves using Lidar-generated point
clouds derived from the IMUs, based on which the IDOGs reach the target locations,
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defined on the measurement grid. Localization is performed in two phases. First, following
up on previous work reported in [31], a “simultaneous localization and mapping” (SLAM)
algorithm is employed for creating a 2D grid map of the structure. Second, after storing and
linking the 2D grid map to the coordinate system in which the measurement grid is defined,
the IDOGs perform “pure” localization on the map, i.e., without modifying the map. As
a result of the localization, current IDOG locations are matched with the measurement
grid, thus verifying that current locations match the measurement locations. In this paper,
the Google Cartographer is used for both map creation and pure localization [32]. The
cartographer node subscribes to the/scan topic, which provides 2D representations derived
from the point clouds published by the lidar node. In addition to the point cloud data,
the cartographer node takes the 2D grid map, created by the SLAM algorithm, as input
and computes the position of the IDOG published in the/map topic. Furthermore, the
localization serves as a basis for autonomous navigation of the IDOGs to the measurement
locations. It should be noted that, in this study, to enable efficient validation of the mobile
SHM system, navigation is achieved by prescribing the measurement locations a priori.

The succession of tasks towards fulfilling the SHM objectives is shown in a flowchart
in Figure 7. The mobile SHM begins with time synchronization of the internal clocks of
both IDOGs using the precision time protocol. Next, the sensing components are started,
and both IDOGs enter a loop checking whether a measurement setup has been completed.
If acceleration response data has not been recorded from the entire measurement grid,
the IDOGs assume the walking posture and move to the next measurement locations, as
prescribed by the respective measurement setup. The IDOGs assume the measuring posture
when the measurement locations are reached. Acceleration response data acquisition
begins as soon as both IDOGs have reached the designated measurement locations and
have assumed the measuring postures. Then, acceleration response data is recorded for a
predefined duration, and the IDOGs analyze the respective acceleration response data by
computing the FFT and performing peak picking. Upon covering the entire measurement
grid, the Fourier values at the peaks are sent to a centralized server, where the experimental
mode shapes are synthesized, as described previously.
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3. Validation of the Mobile SHM System

The mobile SHM concept proposed in this study is validated via laboratory tests and
field tests, conducted with the prototype mobile SHM system. The purpose of the laboratory
tests is to validate the accuracy of the IDOGs under controlled loading conditions, while the
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field tests are conducted to demonstrate that the mobile SHM system is capable of obtaining
and analyzing rich sensor information under real-world conditions. For establishing a
benchmark for comparison, benchmark SHM systems are used alongside the mobile SHM
system, both in the laboratory tests and in the field tests. In what follows, the validation
tests are presented and discussed.

3.1. Laboratory Tests

The laboratory tests are devised to verify the accuracy of the acceleration response data
recorded by the IDOGs under controlled excitations. In the remainder of this subsection,
the experimental setup used for the laboratory tests is described and the tests are presented.

The experimental setup includes a shake table, capable of inducing sinusoidal vertical
motion at variable frequencies, as shown in Figure 8. The shake table superstructure
comprises a 1 m × 1 m medium-density fiber plate, which is fixed to an aluminum beam
and on which one IDOG is placed. The beam rests on two hydraulic cylinders, one of
which is vertical and the other inclined so that the cylinders are spaced 700 mm apart at
the connection points with the beam and 840 mm apart at the bases. The vertical cylinder
is 2000 mm long, and the vertical distance between the base of the inclined cylinder and
the base of the vertical cylinder is 290 mm. Both the beam-to-cylinder connections and the
cylinder supports are pinned. The geometrical configuration of the shake table ensures that
the motion of the cylinders induces a sine-wave motion to the plate.
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The scenarios devised for the laboratory tests include forced vibrations at frequen-
cies within a range from 0.5 Hz to 3.0 Hz, at steps of 0.5 Hz, as shown in Table 1. The
displacement amplitude for all forced vibrations is 1 mm. The benchmark system, installed
at the side of the IDOG, comprises a high-precision digital-output accelerometer of the
type “PCB Digiducer” [33]. The sampling frequency of both the IDOG and the benchmark
system is set to fs = 25 Hz. The sampling duration for each scenario is 60 s, corresponding
to N = 1500 measurements per scenario. The accuracy of the acceleration response data
recorded by both the IDOG and the benchmark system is estimated through comparisons
with the input acceleration amplitudes üo of the forced vibrations. Specifically, since the
forced vibrations are harmonic sinusoidal, the input acceleration amplitude for scenario j
with frequency fj is computed as follows:∣∣ ..

uo,j
∣∣ = Rj ·ω2

j = Rj ·
(
2π f j

)2 (8)
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where Rj = 1 mm is the displacement amplitude and ωj is the angular frequency. Since
the FFT is defined across the total number of measurements and the highest detectable
frequency is limited by the Nyquist theorem to fs/2, the Fourier amplitude spectra Yo,j
of the IDOG and Ỹo,j, of the benchmark system, respectively, are “mirrored” around fs/2.
As a result, in the spectra Yo,j and Ỹo,j, the input acceleration amplitude is expected to be
depicted as “halved” between the first resonant peak at frequency fp, which is the closest
to the excitation frequency, and its mirror peak around fs/2 at frequency ffs–p. Therefore,
the metrics for comparison are (i) the root mean squared error εo between the Fourier
amplitudes Yo,j of the IDOG and üo,j/2 and (ii) the root mean squared error ε1 between
the Fourier amplitudes Ỹo,j, of the benchmark system and üo,j/2, for all b = 6 scenarios, as
shown in Equation (9).

εo =
1
b

b

∑
j=1

( ..
uo,j/2−Yo,j

)2
ε1 =

1
b

b

∑
j=1

(
..
uo,j/2− Ỹo,j

)2
(9)

Table 1. Scenarios for the laboratory tests.

Scenario Excitation Frequency (fo)
(Hz)

1 0.5
2 1.0
3 1.5
4 2.0
5 2.5

3.2. Field Tests on a Real-World Pedestrian Bridge

To demonstrate that the mobile SHM system is capable of obtaining and analyzing rich
sensor information under real-world conditions, field tests are conducted on a pedestrian
bridge. In this subsection, the bridge and the experimental setup for the field tests are
presented, followed by a description of the field tests.

3.2.1. Description of the Pedestrian Bridge and the Benchmark SHM System

The field tests were conducted on the “Citadel Bridge”, located in Hamburg, Germany.
The bridge, illustrated in Figure 9, facilitates pedestrian traffic over the Lotse Canal, and it
was completed in 2016. The structural system of the bridge comprises two segments, one
“fixed” segment and one “revolving” segment (Figure 10), which allows naval traffic along
the canal. The fixed segment, which has a length of 12.5 m and a constant width of 3.25 m,
rests at its south end on a reinforced concrete pier (“Pier 1”) and abuts, at its north end,
the Lotse square (“Lotseplatz”) quay wall. The revolving segment has a length of 33 m
and variable width between 3.25 m and 5.65 m. At the location with the largest width, the
revolving segment rests on a reinforced concrete pier (“Pier 2”), which is equipped with
rotary actuators that enable the rotation of the segment about the vertical axis. When the
bridge is open to pedestrian traffic, the revolving segment rests at its north end on Pier 1,
next to the fixed segment, via hydraulic supports, and abuts, at its south end, the “Kanal
square” quay wall. The decks of both segments of the bridge consist of steel trapezoidal
box sections of variable heights with transversal stiffeners.

The benchmark system used for the field tests consists of wireless sensor nodes of type
Microstrain G-Link-200 [34]. Each wireless sensor node of the benchmark system features a
triaxial micro-electro-mechanical-systems accelerometer, measuring at a selectable range of
up to ±8 g at sampling frequencies up to 4096 Hz. Moreover, since the experimental setup
of the prototype mobile SHM system includes, as previously illuminated, two IDOGs, the
benchmark system also encompasses two wireless sensor nodes, installed alongside the
IDOGs in each measurement setup. To ensure synchronization between the benchmark
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system and the IDOGs, the precision time protocol, introduced above, is again invoked.
The synchronization between the IDOGs and the benchmark system is verified via post-
processing, i.e., upon completing the acquisition of acceleration response data, based on a
synchronization approach presented in previous work [35].
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3.2.2. Field Tests on the Bridge

Since the two segments of the pedestrian bridge are statically independent of each
other, each segment exhibits distinct structural dynamic behavior. The field tests in this
study focus on the revolving segment, which is more flexible than the fixed segment and,
thus, more likely to undergo unfavorable vibrations. Following up on the steps of the
methodology previously presented, the first step of the validation tests is to define the
measurement grid on the revolving segment. Representing a trade-off between the power
autonomy of the IDOGs and the spatial density of the experimental mode shapes to be
extracted, a measurement grid with 3.0 m spacing is defined, as shown in Figure 11.
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Figure 11. Measurement grid and measurement locations.

As can be seen from Figure 11, the number of measurement locations is smaller than
the total number of grid points. The reasoning behind designating specific points on the
measurement grid as measurement locations and neglecting the inner grid line stems from
the nature of experimental mode shapes. Specifically, since the deck deformations are
expected to be small under the effect of relatively low loads, considered in operational
modal analysis, the cross-section of the deck is expected to remain straight with negligible
shear deformations. As a result, capturing the structural response (via acceleration response
data) only at the edges of the deck is sufficient to describe both the vertical translational
and the torsional components of the experimental mode shapes, since deformations in the
transversal direction relative to the edges are negligible.

The 22 measurement locations of the measurement grid are covered in pairs with
overlapping locations, thus forming 21 measurement setups, as shown in Table 2. The field
tests start with the IDOGs navigating to the measurement locations of the first setup, as
shown in Figure 12 (top). Upon reaching the locations, the IDOGs assume the measuring
posture, which ensures adequate attachment of the accelerometer to the surface of the deck
(Figure 12, bottom left). One sensor node of the benchmark system is placed next to each
IDOG The IDOGs synchronize the internal clocks and record acceleration response data for
a duration of 60 s at a sampling frequency of 100 Hz. Next, the acceleration response data
is analyzed via the embedded FFT algorithm of the IDOGs, and the resonance peaks are
detected. IDOG 1 sends the frequencies of the resonance peaks to IDOG 2, which verifies
that the resonance peaks detected by both IDOGs correspond to the same frequencies.
Resonance peaks with low amplitudes that are detected only by one IDOG are eventually
considered spurious and are discarded. Then, the IDOGs assume the walking posture and
navigate to the measurement locations of the next setup (Figure 12, bottom right). The
process is repeated until all 21 measurement setups have been covered. Upon completing
all measurement setups, the IDOGs send the Fourier values at the resonant peaks to a
centralized server, where the experimental mode shapes are synthesized.

Table 2. Measurement setups.

Setup Location of
IDOG 1

Location of
IDOG 2 Setup Location of

IDOG 1
Location of

IDOG 2

1 1 2 12 11 14
2 1 4 13 13 14
3 3 4 14 13 16
4 3 6 15 15 16
5 5 6 16 15 18
6 5 8 17 17 18
7 7 8 18 17 20
8 7 10 19 19 20
9 9 10 20 19 22
10 9 12 21 21 22
11 11 12
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3.3. Results and Discussion

The outcomes of the validation tests are presented and discussed in this subsection.
First, the results of both the laboratory tests and the field tests are presented, in terms of
resonance peaks and mode shapes. Next, the quality of the acceleration response data,
collected by the mobile SHM system, is verified against acceleration response data collected
by the benchmark system. Finally, the localization results are illuminated.

3.3.1. Results

The results of the laboratory tests are summarized in Table 3. In particular, the
frequency and amplitude of the first peak, which corresponds to the excitation frequency,
are presented both for the IDOG and for the benchmark system, along with the input
acceleration amplitude üo/2 and the root mean squared errors εo and ε1.

Table 3. Results of the laboratory tests.

Scenario
Excitation
Frequency

(Hz)

Frequency at First Peak fk (Hz) Amplitude at First Peak Ak (m/s2)
üo/2 εo ε1

IDOG Benchmark IDOG Benchmark

1 0.5 0.488 0.488 0.004 0.003 0.005

0.0088 0.0085

2 1.0 1.025 0.977 0.013 0.011 0.020
3 1.5 1.514 1.514 0.035 0.030 0.044
4 2.0 2.002 2.002 0.079 0.079 0.079
5 2.5 2.490 2.490 0.105 0.119 0.123
6 3.0 3.027 3.027 0.175 0.190 0.178

As can be seen from Table 3, the root mean squared error of the IDOG is relatively close
to the root mean squared error of the benchmark system with the high-precision accelerom-
eter. Therefore, the IDOG is capable of accurately capturing acceleration response data
under forced vibrations. Furthermore, the amplitudes of the IDOG are in relatively close
proximity to the input acceleration amplitudes, with small discrepancies being attributed
to FFT-related factors, such as spectral leakage, which, as evidenced by the amplitudes of
the benchmark system, are hard to eradicate even with high-precision accelerometers.
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In Table 4, the peak-picking results of the field tests are summarized. Specifically, the
frequencies of the peaks detected from each IDOG for each measurement setup are shown.
For comparison purposes, the respective frequencies of the benchmark system are shown
in Table 5.

Table 4. Peak-picking results of the field tests (IDOGs).

Setup
IDOG 1 IDOG 2

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz) f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz)

1 3.08 4.36 - - 3.08 4.36 - -
2 3.05 4.31 - - 3.05 4.31 - -
3 3.06 4.35 - - 3.06 4.35 - -
4 3.06 4.31 - - 3.06 4.31 - -
5 3.04 4.37 - - 3.04 4.37 - -
6 3.06 4.33 7.41 10.52 3.06 4.33 7.41 10.52
7 3.06 4.41 7.52 10.53 3.06 4.41 7.52 10.53
8 3.05 4.33 7.28 10.56 3.05 4.33 7.28 10.56
9 3.10 4.31 7.42 10.53 3.10 4.31 7.42 10.53

10 3.03 4.32 7.17 10.52 3.03 4.32 7.17 10.52
11 3.06 4.30 7.28 10.58 3.06 4.30 7.28 10.58
12 3.04 4.32 7.42 10.60 3.04 4.32 7.42 10.60
13 3.06 4.38 7.32 10.53 3.06 4.38 7.32 10.53
14 3.08 4.31 7.21 10.57 3.08 4.31 7.21 10.57
15 3.05 4.31 7.38 10.55 3.05 4.31 7.38 10.55
16 3.06 4.32 7.41 10.52 3.06 4.32 7.41 10.52
17 3.03 4.26 7.34 10.49 3.03 4.26 7.34 10.49
18 3.05 4.28 7.39 10.60 3.05 4.28 7.39 10.60
19 3.06 4.30 7.34 10.57 3.06 4.30 7.34 10.57
20 3.06 4.31 7.36 10.51 3.06 4.31 7.36 10.51
21 3.04 4.30 7.41 10.61 3.04 4.30 7.41 10.61

Table 5. Peak-picking results of the field tests (benchmark system).

Setup
Benchmark System 1 Benchmark System 2

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz) f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz)

1 3.07 4.34 - - 3.07 4.34 - -
2 3.05 4.28 - - 3.05 4.28 - -
3 3.06 4.33 - - 3.06 4.33 - -
4 3.06 4.30 - - 3.06 4.30 - -
5 3.04 4.36 - - 3.04 4.36 - -
6 3.05 4.35 7.40 10.52 3.05 4.35 7.40 10.52
7 3.06 4.30 7.50 10.52 3.06 4.30 7.50 10.52
8 3.05 4.30 7.07 10.54 3.05 4.30 7.07 10.54
9 3.05 4.30 7.22 10.51 3.05 4.30 7.22 10.51

10 3.05 4.31 7.15 10.50 3.05 4.31 7.15 10.50
11 3.05 4.30 7.30 10.56 3.05 4.30 7.30 10.56
12 3.06 4.31 7.35 10.59 3.06 4.31 7.35 10.59
13 3.06 4.34 7.30 10.51 3.06 4.34 7.30 10.51
14 3.07 4.30 7.31 10.59 3.07 4.30 7.31 10.59
15 3.05 4.33 7.38 10.52 3.05 4.33 7.38 10.52
16 3.05 4.30 7.30 10.51 3.05 4.30 7.30 10.51
17 3.07 4.27 7.32 10.52 3.07 4.27 7.32 10.52
18 3.06 4.31 7.33 10.56 3.06 4.31 7.33 10.56
19 3.03 4.33 7.30 10.56 3.03 4.33 7.30 10.56
20 3.05 4.30 7.34 10.55 3.05 4.30 7.34 10.55
21 3.04 4.29 7.39 10.59 3.04 4.29 7.39 10.59
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As can be seen from Tables 4 and 5, the peak-picking results between the mobile SHM
system and the benchmark system are close. Moreover, random variations of the resonant
frequencies between successive setups follow similar trends in both SHM systems. Four
resonance peaks are identified in total, with the respective frequencies being f 1 ≈ 3.1 Hz,
f 2 ≈ 4.4 Hz, f 3 ≈ 7.4 Hz, and f 4 ≈ 10.6 Hz. The respective mode shapes (ϕm and ϕb
of the mobile SHM system and the benchmark system, respectively) synthesized upon
performing FDD in each measurement setup are illustrated in Figure 13 and tabulated
in Table 6.
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From Figure 13 and Table 6, it is evident that the mode shapes computed by the IDOGs
are in close proximity with the mode shapes extracted with the benchmark system. The first
two resonance peaks exhibit mode shapes that, between Pier 1 and Pier 2, are combinations
of sinusoidal and hyperbolic sinusoidal functions, indicative of fixed-pinned beams. It
can therefore be conjectured that the support on Pier 1 is simple (i.e., “pinned”), whereas
the rotary mechanism on Pier 2 behaves as fixed support. Moreover, the part of the deck
between Pier 2 and the Kanal square quay wall exhibits the mode shapes of a cantilever
beam. Due to the fixed connection of the deck on Pier 2 and the subsequent restraint in the
longitudinal displacement of the deck, it is expected that the first translational longitudinal
mode shape comprises—apart from the longitudinal component—a vertical component,
which is similar to the mode shape of the first translational vertical mode shape. As a
result, the first two mode shapes are similar to each other. To distinguish the mode shapes,
measurements in three directions would be necessary, which fall beyond the scope of
this paper. The third resonance peak is characterized by torsional mode shapes that are
detectable only between Pier 1 and Pier 2 in both systems. The absence of the resonance
peaks in the cantilever beam may be attributed to the fixity against torsion, offered by the
support of Pier 2. Finally, the fourth resonance peak corresponds to a translational mode
shape with one nodal point and is also detectable only between Pier 1 and Pier 2. The
lack of symmetry in the fourth mode shape is attributed to the variable cross-section of the
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deck, which increases in flexibility towards Pier 2, where the largest modal amplitudes are
observed.

Table 6. Mode shape vectors.

Point
Mobile SHM System Benchmark System

ϕm1 ϕm2 ϕm3 ϕm4 ϕb1 ϕb2 ϕb3 ϕb4

1 −1.121 1.186 - - −1.095 1.145 - -
2 −1.000 1.000 - - −1.000 1.000 - -
3 −0.531 0.481 - - −0.523 0.509 - -
4 −0.487 0.410 - - −0.483 0.426 - -
5 −0.179 0.095 - - −0.179 0.033 - -
6 −0.095 0.030 - - −0.112 0.047 - -
7 0.057 −0.039 −0.505 0.460 0.063 −0.032 −0.138 0.486
8 0.034 −0.039 0.372 0.647 0.040 −0.054 0.095 0.642
9 0.255 −0.209 −0.660 2.108 0.281 −0.194 −0.363 2.369

10 0.236 −0.241 0.596 2.066 0.260 −0.257 0.374 2.230
11 0.590 −0.504 −0.790 3.447 0.603 −0.469 −0.583 3.578
12 0.560 −0.491 0.817 4.040 0.554 −0.466 0.572 4.207
13 0.806 −0.776 −0.867 3.344 0.813 −0.780 −0.832 3.741
14 0.853 −0.819 0.965 2.876 0.875 −0.791 0.766 3.038
15 0.951 −0.953 −1.128 4.698 0.965 −0.937 −1.267 3.665
16 1.000 −1.000 1.000 1.000 1.000 −1.000 1.000 1.000
17 0.935 −0.962 −1.384 −9.968 0.934 −0.939 −1.576 −5.921
18 0.953 −0.954 1.372 −7.172 0.967 −0.939 1.574 −5.900
19 0.773 −0.776 −1.143 −31.461 0.745 −0.819 −1.716 −10.246
20 0.778 −0.785 1.174 −24.509 0.800 −0.784 1.754 −12.158
21 0.370 −0.381 −0.601 −28.204 0.351 −0.410 −1.160 −8.706
22 0.350 −0.335 0.600 −27.313 0.346 −0.370 1.149 −8.731

A limitation of the mobile SHM system, as a consequence of the non-permanent
installation of the legged robots, is the lack of long-term acceleration response data that
would help characterize the variability of the mode shapes due to diurnal/nocturnal
cycles or due to seasonal effects. As has been shown in literature, resonance peaks and
mode shapes may vary significantly due to the aforementioned effects [36]. It is therefore
recommended, to deploy the mobile SHM system more than once at different times of day
and under different climatic conditions so as to corroborate the accuracy and investigate
the variability of the resonance peaks and the experimental mode shapes.

3.3.2. Data Quality Assurance

To verify the quality of the acceleration response data, collected by the mobile SHM
system, the data were checked for consistency, accuracy, completeness, and integrity.
Furthermore, a metric for comparison between the mode shapes of the mobile SHM system
and the mode shapes of the benchmark system, the “modal assurance criterion” (MAC),
was applied [37].

MACij

{
ϕmi,ϕbj

}
=

∣∣∣ϕT
mi ·ϕbj

∣∣∣2(
ϕT

mi ·ϕmi
)
·
(
ϕT

bj ·ϕbj

) i, j = 1 . . . 4 (10)

The MAC values are presented in the form of a matrix, shown in Figure 14. MAC
values close to unity indicate large similarity between the mode shape vectors, whereas
values close to zero represent low similarity. The data of Setup 12 is provided in the
Supplementary Materials, Listing S1.
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The similarity between the mode shapes extracted by the mobile SHM system and the
mode shapes computed by the mobile SHM system, observed in the mode shape plots of
Figure 13 and in the mode shape vectors in Table 6, is corroborated by the MAC values
shown in Figure 14. Minor discrepancies are only observed in high-order mode shapes,
which are more sensitive to external interference, e.g., from ambient noise. As a result, the
quality of the acceleration response data, as well as the capability of the mobile SHM system
to yield mode shapes of comparable accuracy as a wireless SHM with stationary sensor
nodes, is validated in real-world conditions with a minimal deployment of two-legged
robots, thus ensuring cost-effective SHM.

3.3.3. Localization Results

The localization results are visualized in Figure 15. As can be seen, the map was
created using Lidar data, and Cartographer is linked to the measurement grid shown in
Figure 11. The IDOGs move alongside the deck edges and collected the acceleration data in
close proximity to the measurement positions defined in the measurement grid.
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4. Summary and Conclusions

Structural health monitoring (SHM) has become a crucial component of infrastruc-
ture maintenance, leveraging advancements in information, communication, and sensing
technologies. Cable-based SHM systems are gradually being replaced by wireless sen-
sor networks, taking advantage of reduced installation efforts, increased flexibility, and
scalability. However, wireless sensor nodes need to be deployed at high density to reli-
ably monitor civil infrastructure, causing high costs. Moreover, stationary wireless sensor
nodes have limited power autonomy, representing a significant constraint for unattended
long-term operation.

To resolve the critical constraints stemming from costly high-density deployment and
limited power autonomy, a mobile structural health monitoring concept based on legged
robots has been proposed. The legged robots are equipped with sensors to collect accel-
eration data pertinent to SHM of civil infrastructure, with cameras and Lidar sensors for
navigation, and with embedded algorithms that allow for data communication, processing,
analysis, and synchronization. Laboratory tests and field tests, conducted on a pedestrian
bridge, have been devised to validate the accuracy and cost-efficiency of the legged robots
deployed in dense measurement setups for wireless SHM of civil infrastructure, aiming to
gain insights into the advantages of mobile wireless sensor nodes in general and of legged
robots in particular, in terms of obtaining rich information on the structural condition. Mea-
surements recorded by the legged robots of the mobile SHM system have been compared
with measurements obtained by high-precision benchmark SHM systems. The laboratory
tests have showcased the capability of the mobile SHM system to collect measurements
of high accuracy under controlled excitation conditions. Moreover, the field tests have
demonstrated the capacity of the mobile SHM system to yield rich modal information in
real-world conditions.

As has been shown in this paper, the legged robots, as compared to conventional
stationary wireless sensor nodes deployed for SHM, require a smaller number of nodes
to be installed in civil infrastructure to achieve rich sensor information, entailing more
cost-efficient, yet accurate, SHM. In conclusion, this study represents a first step towards
autonomous robotic fleets advancing structural health monitoring. Future research will
focus on further advancing the perception of the robots with respect to incorporating
semantic and 3-dimensional information of structures, aiming to improve autonomous
navigation when performing SHM tasks.
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