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Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary; ghulam.kibriya@edu.bme.hu (G.K.);
bagi.katalin@emk.bme.hu (K.B.)

2 Department of Machine and Product Design, Faculty of Mechanical Engineering,
Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
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Abstract: This study focuses on an old but still unresolved problem of automatically calibrating the
constitutive parameters of discrete element models. Instead of the troublesome and time-consuming
manual trial-and-error method, which is typical today, the authors suggest using artificial intelligence
techniques. A masonry arch is analysed, whose experimental static load–displacement behaviour
is known from the literature. An attempt is made to match this behaviour with discrete element
models, through finding appropriate quantitative values for the parameters. Two methods (Genetic
Algorithm (GA) and Particle Swarm Optimisation (PSO)) are tested and, since PSO turns out to be
more reliable, a further improved version, ‘Trust-Based Particle Swarm Optimisation’ (TBPSO), is
proposed. The results show that (1) TBPSO quickly leads to suitable alternative parameter sets that
make the discrete element model match the behaviour of the real experiments and (2) the optimal
values of the parameters strongly depend on the loading velocity and the discretisation method used.

Keywords: material parameters; artificial intelligence; optimisation; DEM; 3DEC; mechanical

1. Introduction
1.1. DEM and Its Applications

The Discrete Element Method (DEM) was introduced by Cundall in 1971 [1] as an
alternative to the Finite Element Method (FEM) for the mechanical analysis of systems
consisting of separate solid bodies. The Discrete Element Method has been used for
a wide variety of applications, including rock mechanics, granular assemblies, powder
technology, industrial packaging, pharmaceuticals, mining, agriculture and Computational
Fluid Dynamics (CFD) problems.

The Discrete Element Method considers the structure as a collection of separate blocks.
Each block is able to move (and, in many codes, deform) independently of the others, so
that large displacements of the elements follow, and the elements can make new contacts
with each other while existing contacts can open up, fully or partially. Sliding can also
occur between blocks. Contact forces are transmitted through contacts between neigh-
bouring blocks, according to a wide variety of existing constitutive models. The contact
creation, sliding and separation are automatically followed in DEM, which makes DEM
particularly advantageous for modelling masonry structures. There are many different
commercial and open-source DEM software packages; in the context of masonry mechanics,
the interested reader is advised to consult the book by Sarhosis et al. [2] and Chapter 13 in
Sarhosis et al. [3]. The Combined Finite Discrete Element Method by Munjiza can be
considered as a combination of the FEM and DEM, see [4,5] and the references therein.

Infrastructures 2023, 8, 64. https://doi.org/10.3390/infrastructures8040064 https://www.mdpi.com/journal/infrastructures

https://doi.org/10.3390/infrastructures8040064
https://doi.org/10.3390/infrastructures8040064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/infrastructures
https://www.mdpi.com
https://orcid.org/0000-0002-3308-0508
https://orcid.org/0000-0002-4265-6900
https://orcid.org/0000-0002-7838-6148
https://doi.org/10.3390/infrastructures8040064
https://www.mdpi.com/journal/infrastructures
https://www.mdpi.com/article/10.3390/infrastructures8040064?type=check_update&version=1


Infrastructures 2023, 8, 64 2 of 33

1.2. Material Parameters

The main difficulty with DEM simulations is that only very carefully selected input
micromechanical material parameters result in reliable results that reflect reality. The
material parameters have to be chosen in such a way that the simulation of real physical
behaviour matches the measured results. To calibrate material parameters, researchers
have employed different methods, largely based on manual tuning using trial and error.
There is no standard way to calibrate these material parameters and very little research has
been carried out on the standardisation of the methods used.

One way of choosing the correct material parameters is to directly measure them [6]
at the particle level forming the analysed system (and their contacts). Some of these
parameters may be easy to measure while others may be very complex. Even if all the
parameters can be measured, the complexity of the measurement and the scatter of the
results may be an obstacle in practice.

The other method is to perform an experiment, or a set of experiments, to determine the
bulk parameters [6] of the material or structure. Numerical simulations are then performed
with the same conditions as in the laboratory. The material parameters for numerical
simulation are repeatedly modified and adjusted until the bulk behaviour obtained from
the simulations matches that of the actual experiments.

The simplest method is to use trial and error to calibrate the parameters. This method
can be efficient when a single parameter has to be calibrated but when the number of
parameters increases the calibration process becomes complicated. The solution to such
problems may not be unique and this may result in two or more different sets of parameters
yielding the same bulk behaviour.

While matching the bulk behaviour of the real experiments with numerical simulations,
it should be noted that the available open-source and commercial DEM codes differ in
their contact treatment, element constitutive behaviour and time integration technique,
etc. Therefore, the material parameters calibrated for one DEM code might not necessarily
work for another.

1.3. Previous Works on Algorithmised Calibration

The majority of the work on the calibration of parameters has been carried out for
granular assemblies, due to the use of these materials in pharmaceutical industries and in
soil mechanics. Hardly any work has been carried out on the calibration of DEM models
for masonry structures. There are empirical formulas for some parameters, but these have
been developed over time for specific purposes and cannot be generalised.

The research carried out by Yoon [7], Rackl and Hanley [8], Turkia et al. [9],
Zeng et al. [10], Bhalode and Ierapetritou [11] and Mohajeri et al. [12] used Design of
Experiments (DoE) for the calibration of material parameters for granular materials. These
are systematic methods that establish a relation between input factors (material parameters
of DEM simulations) and responses (bulk behaviour or bulk material properties) using
statistical techniques. The methods described by these authors used different DoE meth-
ods for the procedure. Mohajeri et al. [12] proposed a sensitivity analysis by using “one
variable at a time” to find the sensitivity of the parameters to the bulk parameters. In
this way, the number of variables to calibrate can be reduced. Rackl and Hanley [8] used
Latin hypercube sampling, which is an even yet random distribution, to generate a set
of parameters. Discrete Element Method simulation was then used to identify the bulk
parameters. A statistical regression method, known as kriging [13], was used to predict the
bulk parameters and the unknown set of parameters after obtaining the required data.

Benvenuti et al. [14] used the multiple layer perceptron neural network for the pre-
diction of the angle of repose of a granular material based on DEM simulations. An initial
set of parameters was used to train the neural network, with 85% training data and 15%
validation data. Mean squared error was used as a loss metric for the training process.

Wesbrink et al. [15] used reinforcement learning (RL) to calibrate the parameters of
granular materials. The method works on the principle of maximising reward by changing
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the state. The proposed method results in a faster convergence, depending on the learning
factor, but since the method uses a gradient descent policy the solution obtained could be a
local optimum instead of a global optimum.

Do et al. [16] and Mohajeri et al. [17] used different genetic algorithms [18] to cali-
brate the parameters of granular materials. Since genetic algorithms are stochastic and
approximate, the accuracy of the solution cannot be quantified.

Sarhosis et al. [19] used two different methods to calibrate the parameters of the
non-linear continuum–mechanical constitutive models of masonry. One of them is the
iterative procedure known as Sequential Quadratic Programming, which is similar to the
Newton–Raphson method. The convergence rate of such algorithms is faster but can be
problematic in the case of local optimums. The other method used was a genetic algorithm,
which has been discussed above.

As mentioned five graphs before, DoE methods can be used to calibrate the parameters.
However, with an increasing number of variables to calibrate, the number of simulations to
find the optimum set of parameters can become extensively large. In [12], a preparatory
method used one variable at a time for DoE to rule out certain variables and improve
the speed but the process of ruling out had to be performed manually. Deep learning
methods [20] and applications have been studied more recently, but there is the prob-
lem of getting stuck in local optima and vanishing gradients. Therefore, we chose to
use metaheuristic algorithms for calibration processes, as the application of these algo-
rithms in real-life optimisation problems is very significant and well established. Another
important advantage is that these methods are totally independent of the gradients of
objective functions.

1.4. Modelling of Masonry Structures

The mechanical analysis of masonry structures is one of the most important fields
of application of DEM. Masonry structures form a significant portion of our architectural
heritage as well as of contemporary buildings and other engineering structures. In particu-
lar, masonry arches, domes and vaults are those structures where failure and damage are
mainly due to the loss of stability caused by phenomena strongly related to the discrete
internal composition of the structure. Due to their specific discontinuous, nonlinear nature,
several alternative methods are applied in the engineering practice for their analysis, in-
stead of or in addition to the usual (continuum-based) FEM. A thorough overview of these
methods is given in D’Altri et al. [21]. Among these, Limit State Analysis (LSA) and the
Discrete Element Method (DEM) are mostly used today in the literature.

The theoretical background of LSA for masonry structures was formalized by
Heyman [22] assuming that masonry blocks are perfectly rigid, their contacts have no
resistance to tension and there is no frictional sliding between them (more accurately, any
forms of tangential relative translations have to be excluded [23]). Within LSA, basically
two approaches (and their combination) can be used: lower-bound approaches, based
on the “Safe Theorem” or “Static Theorem” [24], and upper-bound approaches, based on
the “Unsafe Theorem” or “Kinematic Theorem” [25]. Innumerous numerical techniques
can be found in the literature that use LSA, and the most sophisticated versions take into
consideration cohesion and limited frictional resistance as well [26] or reinforcements [27],
but there are situations when the application of LSA needs special care. The most important
such issue is the “duality gap”, a phenomenon well known in plastic limit state analysis,
which occurs in the case of non-associated flow rules, i.e., when the normality condition
fails. In this instance, the static and kinematic theorems may lead to contradicting results.
The structural behaviour becomes history-dependent, and without a history analysis the
behaviour cannot reliably be assessed. The problem of the duality gap does not occur
if the tangential relative translations between the blocks are completely excluded from
the analysis, or if the friction angle and the dilation angle between the blocks are equal.
In masonry structures, however, relative tangential translations are usually not a priori
excluded by the construction method, and on the other hand the joints approximately obey
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the Coulomb friction law: their frictional sliding angle is usually around 35–50 degrees,
while the dilation angle in the joints is only a few degrees or practically zero. Hence, a
realistic contact failure law is non-associated and the phenomenon of duality gap has to be
faced. Repeated attempts occur in the literature to overcome the problem of the duality
gap [28–30]. To summarize, LSA is problematic for use in situations where the behaviour is
non-associated because of the blocks being not perfectly fixed against tangential relative
translations. Other problematic issues, such as partially opened joints, crosswise tension
resistance depending on the magnitude of compression, etc., should also be mentioned. In
these situations, DEM can be an advantageous alternative. A comparison of a FEM/DEM
procedure, a nonlinear heterogeneous FEM technique and an LSA including friction is
provided in [31].

The Discrete Element Method is usually applied for one of two purposes. The first
of them is to simulate the behaviour of an existing structure. In this case, a DEM model is
constructed using the geometrical data of the real structure, it is attempted to assign realistic
material parameters and then the engineer is able to test the structural response to different
mechanical effects and interventions. While the geometry of an existing structure can be
fairly accurately determined (though there may be hidden parts of the structure where
only approximations can be used), the material characteristics are very difficult to estimate
reliably. In particular, those characteristics related to failure are the most problematic to
determine. One solution is to calibrate a DEM model to another artificially created or less
valuable structure on which loading procedures can be performed, including failure, and
then the material parameters of the well-calibrated DEM model are modified with the help
of engineering intuition according to the differences between the tested structure and the
existing valuable one.

The second typical purpose for applying DEM is to support theoretical conclusions
with virtual experimenting. The literature is rich in theoretical predictions such as the
minimally necessary thickness for arches or vaults, the collapse modes of arches, the
optimal shapes of domes, the necessary level of upfills on vaults, etc. These theoretical
predictions are often supported by DEM-simulated virtual experiments. The basis of the
simulations should be a reliable model of realistic structures: the material parameters in the
models should be chosen in such a way that the behaviour of the models is validated on real
experiments. Then, if the theoretical conclusions are confirmed by the virtual experiments,
a careful sensitivity analysis can explore the range of their validity for other cases when the
micromechanical material parameters are different from the calibrated ones.

In both cases, the basis of the analysis must be a DEM model whose material parame-
ters are calibrated according to a real experiment. This calibration is, however, very time
consuming if performed manually, according to the intuitive guesses of the modeller.

1.5. Aim of Study

The aim of this study is to present a calibration method that can be applied to DEM
problems. This study applies the calibration process to a masonry arch. Circular masonry
arches are the simplest structures that exhibit many of those stability issues and failure
phenomena so characteristic to general single- and multi-span arches, domes and vaults.
That is why the loading procedure of a circular masonry arch is chosen as a benchmark
problem to test different calibration algorithms. Future applications of the calibration
process to other masonry structures and granular assemblies are also possible. A distinct
feature of DEM simulations is that they are computationally extremely expensive. Therefore,
a calibration method has to be found that results in a usable outcome (i.e., a good set of
material parameters) in the smallest possible number of runs of DEM simulations.

Section 2 of the present paper first introduces a laboratory experiment whose outcomes
are applied as the reality to be matched with the well-calibrated DEM model. Then, the
discrete element analysis by Pulatsu et al. [32] is presented, in which the parameters for
their model were manually chosen. Some important remarks are made regarding the
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sensitivity of the behaviour of the loading velocity and the surface mesh density. These
experiences are then relied on in the investigations in the later sections.

Section 3 focuses on those optimisation methods that are promising candidates for
application to the calibration. Particle Swarm Optimisation (PSO) [33,34] and Genetic
Algorithm (GA) [18] are the most widely used metaheuristic algorithms; hence, they are
tested in their basic original form. Based on the results, a modified version of PSO (named
Trust-Based Particle Swarm Optimisation (TBPSO)) is introduced. The objective function
calculates the deviation between the load–displacement curves of the real experiments
and their simulations. Its value is called ‘fitness’. Two versions are used for the objective
function. The first one is based on the raw experimental data containing noise, i.e., the
oscillations originating from the non-zero velocity and drops in force due to the stick-slip
phenomenon. This version is simpler, but not advantageous to use because it often becomes
stuck in local optima. The second one is based on processed experimental and simulation
data that are smoothed using a neural network. This neural network is also introduced.

Section 4 compares the three calibration methods for both objective functions (using
the original geometry of Pulatsu et al. [32] as well as other geometry). Our main finding
is that TBPSO performs better for the current problem with the weight parameters used
in the study; less iteration is needed to reach equally good solutions in both PSO and GA
with a higher number of iterations. However, both TBPSO and the original PSO can be
used for the purpose of the calibration of further DEM simulations. The use of GA is not
recommended in its applied version; however, further studies can be undertaken to find an
improved version of GA or to find the sets of numerical control parameters that work well
with the calibration problems, leading to a faster convergence rate (less time to reach an
optimum solution).

Finally, Section 5 summarises the most important conclusions.

2. Prototype Masonry Arch Quasi-Static Experiment and Analysis
2.1. Experimental Setup of Masonry Arch

In this study, discrete element models were calibrated to match the experiment by
Birhane [35], which was set up at the University of Minho, Portugal. Our analysis focused
on the quasi-static range of behaviour, with the future aim of extending the calibrations to
dynamic phenomena as well. The prototype stone masonry arch was originally designed
to be used in impact response studies. However, the same arch geometry was also used
in quasi-static experiments. The dimensions of the stone masonry arch were determined
by the geometry of the drop-weight apparatus. The out-of-plane thickness of the stone
masonry was WA = 200 mm. The clear span was LA = 1200 mm, and the clear height was
HA = 400 mm. The arch comprised 12 voussoirs, one keystone and two abutments. The
radial thickness of the arch was tA = 160 mm. The radial thickness of the arch ring and
the number of stone masonry units were determined by an iterative limit analysis using
RING software.

To reuse the same units for different experimental setups, the blocks were made of
sound granite rock. The stones were prefabricated by the Artecanter-Indústria Criativa,
Lda. stone working company. A rotary sawing machine was used to cut the units to the
prescribed dimensions; therefore, the stone surfaces were jagged. The physical and material
properties of the stones were given by Vasconcelos [36].

The arch was assembled on a reaction steel frame made of I-section steel beams.
The height of the beams was 45 cm, and they were braced sufficiently. The strength and
stiffness of the steel girders were greater than that of the masonry arch. Therefore, it was
assumed that the frame would be able to provide sufficient lateral and vertical constraints to
the arch.

The arch was constructed using formwork, which fitted the intrados of the arch, since
it was a dry joint masonry arch. Assembly started from the left and right abutments,
stacking up the units towards the keystone. The keystone was pressed in between the left
and right rings using a hammer.
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A wooden interface was glued to the fifth voussoir using an adhesive with a horizontal
width of 110 mm, an out of plane thickness of 200 mm and a height of 50 mm on the left
side. A steel bearing with a roller at the top was placed over the wooden interface to ensure
that there was no rotational restraint between the arch and the actuator.

The actuator was placed at the quarter span of the arch. Five linear variable displace-
ment transducers (LVDT) were fixed on the arch to measure displacement, as shown in
Figure 1. Linear variable displacement transducers 1 and 5 were placed to measure the slid-
ing at the abutment–arch interfaces. Linear variable displacement transducer 2 was used to
measure the displacement at the loading point. Linear variable displacement transducers
3 and 4 were placed to measure the opening at rotational hinges on both quarter spans.
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2.2. Quasi-Static Experiment and Results

In the quasi-static experiment, a displacement-controlled load was applied in the
loading cell at a constant loading rate of 0.005 mm/s. The loading rate was determined
to achieve stable progressive damage to the arch. The test was stopped after 2361 s, at
the maximum vertical displacement of 12 mm, and the arch did not collapse. The peak
load was measured as 2.71 kN. The peak strength of the arch was decreased by 35%. Three
rotational hinges and one sliding hinge were observed, as shown in Figure 2: two rotational
hinges at the left and right quarter span, one rotational hinge at the right abutment–arch
interface and one sliding hinge at the left quarter span.
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2.3. Discrete Element Modelling of the Quasi-Static Analysis

The physical experimental results observed in [35] were simulated by Pulatsu et al. [32]
using 3DEC, a commercial 3D discrete element code developed by Itasca Consulting Group,
Inc., Minneapolis, MN, USA.

The discrete elements in 3DEC are of an arbitrary convex polyhedral shape and may
either be perfectly rigid or deformable, using a tetrahedral subdivision of their volume. In
this study, perfectly rigid elements were applied in a similar way to [32]. In this case, each
discrete element had a reference point whose displacements (translations and rotations)
during a small finite ∆t time interval were calculated using Newton’s laws of motion,
taking into consideration the mass and inertia of the element. External forces, such as
gravity and contact forces from their neighbours, can act on the elements.

The mechanical model of the contact behaviour fundamentally determines the be-
haviour of the whole simulated system. The contacts are treated in 3DEC in the following
way. The surface of every rigid element is ‘triangulated’, i.e., subdivided into triangles
whose nodes are those points where the contact forces are received from the neighbouring
elements. This happens to a node when it interpenetrates to the interior of a neighbouring
discrete element. Contact deformation is understood to be the relative translation of the
node, with respect to its image point on the contact plane, and the same applies to the other
contact element as well (see the details in [2,3]). From this deformation, the transmitted
force is calculated with the constitutive model of the contact. The contact/joint model is
a Mohr–Coulomb model with non-cohesive, frictional contacts (similar to dry contacts
in a masonry structure). The following three contact/joint parameters characterise the
behaviour of the structure. The normal stiffness expresses how difficult it is to press a node
through a neighbouring element face (it is the ratio of compressive force to the depth of in-
terpenetration). The tangential stiffness expresses the resistance against tangential relative
translation (it gives the ratio between the increment of tangential relative translation and
the increment of transmitted tangential force). Finally, the coefficient of classical Coulomb
friction sets the limit to the magnitude of the ratio of tangential force versus compressive
force. This study investigates how to efficiently calibrate these three parameters in an
automated manner.

An explicit time integration scheme based on central differences is used in 3DEC
for simulating the motions over time: the motions caused by a given loading history are
achieved by the step-by-step calculation of the displacement increments of the
reference points.

Pulatsu et al. [37] and Godio et al. [38] performed sensitivity analysis of different pa-
rameters for DEM simulations. Both analysed how the density of surface triangularisation
affects the overall stiffness and load-bearing capacity of collections of blocks. The studies
showed that for a greater number of contact points with the same contact stiffness a lower
value of collapse load is received. If the default two-point discretisation (triangulating a
face into 4/8 equal-sized elements using radial or radial-8) of 3DEC is used, then the value
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of the collapse load is higher. Therefore, in this study, the number of contacts along the
joint edge was set to 15.

The normal and shear joint stiffness applied in [32] were calculated based on [39,40].
The joint friction angle φ was estimated through reverse engineering. The values used
for the micromechanical parameters were kn = 4 GPa/m and ks = 1.6 GPa/m. The initial
friction angle was taken as φ0 = 30.5◦. The ratio of initial friction angle (φ0) to residual
friction angle (φres) was taken as 1 based on [41] to obtain a sliding failure mode (prediction
of how the arch will collapse) as with the experimental results. Therefore, the same value
was used for the residual friction angle (φres).

The quasi-static analysis of a dry-joint masonry arch was performed by applying a
vertical displacement rate to the loading plate. The vertical displacement was applied as
a fixed velocity to the block. The blocks in the model were rigid and cohesionless, with
zero tensile strength. The blocks only had frictional resistance. The support blocks and
abutments were fixed in all degrees of freedom and the reaction force was recorded and
stored during the analysis. The obtained failure mode (Figure 3) matches the experimental
observations (Figure 2).
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For the duration of the analysis, displacement was measured at two points:

1. The vertical displacement of the middle of the loading plate shown in Figure 3.
2. The horizontal displacement of the middle of the block at the abutment shown

in Figure 3.

The analysis was carried out using the assumptions of both small and large displace-
ments. While the small displacement analysis could not reflect the softening range, the
results from the large displacement simulation showed good agreement with the experi-
mental results (Figure 4). Specifically, the large displacement results showed a better fit
to the post-peak behaviour, although there was a slight difference between the peak force,
but it was almost negligible. Therefore, all the simulations performed in this study were
carried out modelling large displacements. Local damping with a value of 0.8 was used in
the numerical simulations performed.

A sensitivity analysis carried out in [32] showed the effect of the parameters on the
results of the quasi-static loading. They found that the friction angle did not affect the
peak strength unless its value was less than 30◦. However, it did affect the post-peak
behaviour. At the fixed values of kn and ks, described earlier, a complete sliding failure was
observed for an interparticle friction angle of 27◦ and a complete plastic hinge formation
was observed for a friction angle of 35◦. The experiment showed transitory behaviour: both
sliding failure and plastic hinge could be observed. This behaviour was best reproduced
in the simulations at a value of 30.5◦. The effect of contact stiffnesses on the peak force
could not be seen for a fixed friction angle of 30.5◦ but the displacements obtained for the
peak load increased with the decrease in contact stiffness. The post-peak behaviour was
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influenced by the contact stiffness due to the nonlinear behaviour of dry joint masonry.
Therefore, the contact stiffness should be estimated carefully.
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In the experiment, the loading velocity was 0.005 mm/s. The computational cost
of applying the same loading velocity in the simulations as in the experiment would be
extremely high (approximately 1 h for 1 mm/s loading velocity); therefore, using the same
velocity for calibration would be inefficient. Sensitivity analysis needs to be carried out
to find a trade-off between the accuracy of the analysis and the computational cost (see
Section 2.4.2). The main outcome was that, for loading velocities less than or equal to
10 mm/s, the results agreed with those in the experiment, while loading velocities greater
than 10 mm/s resulted in unrealistic oscillations or noise in the results. The results in [32]
can be replicated with a loading velocity of 5 mm/s but (possibly due to a typing error) the
loading velocity mentioned in that paper was 50 mm/s. The values 5 mm/s and 50 mm/s
are used interchangeably within their article.

To summarise, the main data of Pulatsu’s 3DEC model were:

• Element size along the arch thickness (eight blocks): 10 mm;
• Block material: rigid; eight blocks along the arch thickness (radial direction);
• Loading velocity: 5 mm/s;
• Contact stiffness values: kn = 4 GPa/m; ks = 1.6 Gpa/m;
• Contact friction angle (initial as well as residual): 30.5◦.

2.4. Modified Surface Discretisation
2.4.1. Introduction

3DEC uses explicit time integration, which means that, even though rather strong
artificial damping is used in the simulations, the calculated response oscillates around
the exact solution of the problem. This results in unrealistic oscillations of the simulated
load–displacement curves around what would be the structural response if infinitely
small timesteps could be applied. However, the magnitude of the oscillations can be
decreased by reducing timestep length, reducing the velocities in the model and refining
the subdivision density of the geometry. In the model made by Pulatsu et al. [32], each
stone was made of eight sub-blocks that were clumped (made to be a group of discrete
elements adhered together with rigid connections to behave as a single unit) (see Figure 3)
to increase the number of contact points and have a sufficiently high resolution of contact
mechanics. This is referred to as ‘Pulatsu’s geometry’ hereinafter. 3DEC’s sub-contact
method, which sub-divides the faces of the blocks into smaller triangles, offers infinite
solutions to segment a geometry. In the case of Pulatsu’s geometry, each face was divided
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into eight triangles by connecting its centroid with the corners and edge midpoints. The
subdivision pattern can have an influence on the mechanical behaviour of the model; hence,
a different segmentation was tried as well. In this second type of geometry, each stone
was made of only two rigid blocks (see Figure 5) and the triangle mesh was generated
algorithmically. Geometries made in this way are called ‘surface meshed geometries’
hereinafter. Figure 6 shows the results of different discretisation techniques on a single
stone block: Pulatsu’s and surface meshed geometries with mesh sizes of 12 mm and 35 mm.
The necessary mesh density of the modified discrete element model needed to be found in
such a way that the results obtained from Pulatsu’s geometry, and those obtained from the
surface meshed geometry, become sufficiently close. (The surface meshed geometries were
also used to investigate the effect of the surface mesh density on the calibrated parameters.)
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2.4.2. Effect of Loading Velocity

As discussed earlier, the laboratory experiment was carried out by applying very low
loading velocity (0.005 mm/s) but, because of the extreme computational costs, in a DEM
simulation it was not feasible to use the same loading velocity. Therefore, a compromise
was required between the loading velocity and accuracy of the solution. Pulatsu et al. [32]
performed a sensitivity analysis for the model and used a loading velocity of 5 mm/s
for the results presented in their paper. In this study, a similar sensitivity analysis was
undertaken for loading velocities of 1, 5, 10 and 50 mm/s for different types of meshes,
as shown in Figure 7. The force–displacement data obtained from simulations with lower
loading velocities showed less oscillation. The larger oscillations increased the maximum
force obtained.

The loading velocity also affected the stiffness of the structure: lower loading velocity
resulted in lower peak force and softer post-peak behaviour. For a 1.6 mm displacement of
the loading plateau, the loading force was approximately 16% smaller for 1 mm/s than for
50 mm/s in the case of Pulatsu’s geometry, and the difference became about 35% for the
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surface meshed geometry. This result suggests that the choice of contact/joint parameters is
strongly affected by the loading velocity applied in the simulations. Therefore, calibration
has to be carried out for the chosen specific loading velocity. In Figure 7, a good agreement
can be seen between the 1 mm/s, 5mm/s and 10 mm/s simulations considering their
force–displacement diagram. Reducing the loading velocity results in lower fluctuations,
but it also significantly increases computational time. The simulations had to be repeated
numerous times in this study; therefore, the calibration was carried out at the highest
possible loading velocity, which still provided realistic results; hence, 10 mm/s loading
velocity was chosen. The reason for and effect of the sudden drop in force after 2 mm of
displacement are discussed in Section 3.4.2.
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2.4.3. Effect of Mesh Density

Sensitivity analysis was carried out for each stone made of two blocks. Surface meshes
with edge sizes of 10, 12, 15, 20, 25, 30 and 35 mm were created. A good agreement can be
seen between the 10 mm, 12 mm and Pulatsu’s element geometry (Figure 8). For 15 mm,
the pre-peak response is similar to that of Pulatsu’s element geometry, but the post-peak
response is different. Even though the post-peak response is different, the failure mode is
similar. For larger mesh sizes, the failure mode is different from that of Pulatsu’s geometry
with a loading velocity of 10 mm/s. By reducing the surface mesh size, the accuracy of the
solution increases. However, the denser surface mesh increases simulation time as well. A
compromise between the accuracy and time required to reach a calibrated set of parameters
had to be made without compromising the effectiveness of the solution. Therefore, the
12 mm mesh size was used in the calibration tests in the study.
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3. Calibration Methods for the Model Parameters
3.1. Genetic Algorithm

The genetic algorithm (GA) [18] is an evolutionary algorithm inspired by natural
selection, which is the process by which a species’ population evolves to adapt to change.
The fittest individuals (i.e., those having the lowest values of objective function) survive
and produce similar offspring, while weaker individuals start to become extinct over time.

In the genetic algorithm, the ‘population’ refers to a set of solutions participating in
the process of optimisation, while the candidate solution to the problem is known as a
‘chromosome’. Each chromosome can contain N genes, which contain the variables to
be optimised.

The genetic algorithm consists of a population of chromosomes with genes. The genes
store the variables that need to be optimised. The variables in genes can be encoded in
different ways, such as binary or value, although binary encoding is more commonly used
for its quick crossover and mutation operations. We used real-value encoding, in which the
genes are represented by a string of real numbers instead of a string of 1s or 0s, as is the
case for binary encoding.

The first step in the genetic algorithm is to replace the existing population by a new
population through the selection of suitable parents. The choice of parents is extremely
important for the crossover since the new solutions will be from these parents. A variety of
methods exist for the selection process. We used fitness proportionate selection, in which
each solution is given a probability range based on the value of objective function. As
a result, a solution with a lower value of objective function will have a better chance of
being selected.

Crossover mimics the reproduction of the natural selection process. The genetic
information of two individuals (called ‘parents’) is exchanged to produce two new indi-
viduals (called ‘offspring’). There are different methods to perform crossover. We used
uniform crossover, in which each gene for an offspring is selected from both parents with a
0.5 probability. If a gene is selected from parent 1, then the gene with the same index is
selected from parent 2 for the other offspring.

Mutation allows the introduction of new traits in the genetic information of the
offspring. This operator helps to maintain diversity and to make sure that the population
does not converge to local optima. We applied random mutation, in which the value of a
gene is replaced by a randomly generated value in the search space. In this study, a 10%
mutation probability was used.

After the crossover and mutation is completed, the final step is replacing the old
population with a new population. The new population is then evaluated by objective
function and the process continues until the number of maximum iterations is reached.

In the genetic algorithm, the set of candidate solutions is a population. A population
consists of n chromosomes and a chromosome consists of N genes. In this case, N is the
number of parameters that need to be calibrated, which are kn, ks and φ. The number of
chromosomes, which are the set of these parameters, can be chosen freely. For this study, a
population of 10 chromosomes were chosen for the genetic algorithm.

3.2. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was proposed and developed by Eberhart and
Kennedy in 1995. The method was introduced in two papers [33,34]. Particle Swarm
Optimisation applies the concept of social interaction to problem solving. It has a profound
connection with social relations, concepts and behaviours that emerged from computational
study and the simulation of a simplified model of the movement of a swarm of bees or a
flock of birds seeking food.

Particle Swarm Optimisation is different from GA, since PSO is a trajectory-based
algorithm, i.e., the values are updated by movement in a search space, while the values are
updated by the interaction of chromosomes with each other in GA.
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Particle Swarm Optimisation is an iterative technique for optimisation, starting with
several ‘particles’, whose ‘position vectors’ are the sets of possible values of the parameters
to be calibrated. (The coordinates of a particle are the actual values of the parameters.)
This collection of particles is known as a swarm of particles. The particles change their
‘positions’ as the values of those parameters to be calibrated gradually change. The value
of objective function is calculated for every particle: the actual coordinates (i.e., parameter
values) determine how close the force–displacement diagram is to the real experiment (the
way in which the value of objective function is determined is described in Section 3.4). In a
swarm, each particle knows its best individual position, value of objective function and
best global position for the swarm.

For each iteration, the velocity and position of each particle in the swarm are repre-
sented by N-dimensional vectors, which are influenced by individual and social knowledge,
and this leads to a repeated flight of particles in a solution space to a problem in search of
an optimum solution. The velocity of each particle i in a swarm at every iteration of k is
updated according to the following equation [42]:
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called ‘cognitive’ and ‘social’ weights and they act as the weights in the velocity update
equation. These values have an influence on how much the individual and global best
position affects the velocity and position of the particle. A greater value of cognitive weight
encourages exploratory behaviour, i.e., the particle will explore more of the search space,
while the social weight encourages exploitative behaviour, meaning that the particles will
move towards the best solution already present. Both values influence the optimal solution.
If a higher value of the cognitive component is used, the solution may not converge. If a
higher value of the social component is used, the solution may converge to a local optimum.
In the original algorithm, the values of both the cognitive and social components were
taken to be 2. The position of the particle can be updated after calculating the updated
velocity [42]:
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where yk is the global best position in the entire swarm in an N-dimensional search space.
Particle Swarm Optimisation has gained attention over time, resulting in more and

more research being undertaken. The research in [43] has revealed some problems with the
original version of PSO, such as entrapment in local optima, performance problems and
velocity explosion [34]. Velocity explosion occurs when the value of velocity obtained after
each iteration starts to grow towards infinity or extremely large values.
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Shi and Eberhart [44] suggested the use of inertia weight ω of a particle. This parameter
controls the effect of the particle’s previous velocity on the current velocity. The range of
values suggested for ω ∈ [0.9, 1.2].
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A relationship between the cognitive component, social component and inertia weight
is given by [45]:

ω >
1
2
(φ1 + φ2)− 1. (5)

The modification of ω can be carried out by using a linear function [46]:

ω(k) = ωmax −
(

ωmax −ωmin
kmax

)
k, (6)

or by using a nonlinear function [47].

ω(k) =
(

kmax − kmin
kmax

)n
(ωmin −ωmax) + ωmax, (7)

where k is the iteration number and kmax and kmin are the upper and lower limits of the
iterations. In this study, a linear variation for updating ω between 0.8 and 0.4 was used.
The value of both the cognitive and social component was taken as being 2, as per the
original algorithm. Another suggested modification is the use of a constriction factor [48],
which could facilitate faster convergence. The constriction factor K is given by:

K =
2∣∣∣2− φ−
√

φ2 − 4φ
∣∣∣′ (8)

where φ = φ1 + φ2 and φ ≥ 4. Equation (4) can be given as:
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Kar et al. [49] combined the inertia weight and constriction factor. This combination
showed improvement in the effectiveness and efficacy of optimisation. The modified form
of Equation (1) can be given as:
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3.3. The Novel Method: TBPSO

A distinct feature of the calibration of DEM models is that the evaluation of objective
function is computationally very expensive. Hence, an improved version of Particle Swarm
Optimisation was introduced to reduce the number of generations/iterations required to
reach the optimum solution. The basic principle is that a competent particle (lower value
of objective function) will not trust a less competent particle (higher value of objective
function) at all. Similarly, if a particle’s competence improves then the trust of the less
competent particles in that particle will increase and if a particle’s competence does not
improve the trust of the less competent particles in that particle will decrease. The new
method was named TBPSO (Trust-Based Particle Optimisation). Note that a different PSO
approach already exists with a similar name [50], but it is abbreviated as TMPSO.
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In this case, the distance of a particle i to another particle j, dij
k is calculated at step k.

Similarly, the distance to all the other particles j = [1 . . . n] is also calculated. Based on the
calculated distances, the relative distance dij

rel,k of a particle i to a particle j is calculated as:

dij
rel,k =

dij
k

∑n
j=1 dij

k

. (11)

Then, the trust Cij
k of a single particle in other particles is calculated based on the

competence of other particles. The competence of a particle can be defined based on its
personal best objective function value. The goal is to minimize the value of objective
function; therefore, a lower value of objective function means a more competent particle
and vice versa. If a particle i’s best objective function value is less than that of particle
j, then the trust of particle i in particle j becomes zero. Now, if particle i’s best objective
function value is greater than that of particle j, and particle j’s current value of objective
function is either equal to its best objective function value or less than the best objective
function value of particle j, then the trust of particle i in particle j increases by 1. Similarly,
if particle i’s best objective function value is greater than that of particle j, and particle j’s
current objective function value is greater than the best objective function value of particle
j, then the trust of particle i in particle j decreases by 1.

In summary, a hierarchy is defined for the particles. The most competent particle in
the swarm will not trust other particles. Similarly, the least competent particle will trust all
other particles. The mathematical representation of the trust calculation is as follows:
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(12)

The vector difference in position ∆xij
k of each particle to another particle is calculated as:

∆
→
x

ij
k =

→
x

i
k −

→
x

j
k ∀j ∈ {1, 2, 3, . . . , n}. (13)

After calculating the relative distances, trust and difference in vector positions, the
velocity can be calculated. The relative distance and trust act as weights for calculating the
trust-based velocity component. The component of velocity is calculated based on trust,
using the following equation:

→
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k . (14)

The velocity update equation (Equation (12)) becomes:
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In the current case, the parameters φ1, φ2 and φ3 are set to values 1, 1 and 2, respectively.
Ri

3k, Ri
1k and Ri

2k, are uniformly distributed N scalars, each corresponding to a dimension
of the particle’s position. The weight is updated linearly, in the same way as in PSO.
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3.4. Objective Functions

In optimisation problems, the choice of objective function has a significant importance
in the accuracy of the optimised values, along with the time taken to converge to a specific
value. In problems involving mathematical linear or nonlinear functions and constraints,
the evaluated value of an objective function has a direct relation with the variables to be
optimised but, in more practical problems (such as the problem of calibrating micromechan-
ical material parameters for DEM simulation), the choice of objective function is greatly
limited by the experimental results.

It is also important to note that the change in certain variables might not affect the
simulation results at all; therefore, the ‘most impactful’ experimental results need to be
present for the calibration with simulation results. In the problem of the calibration of joint
parameters for a masonry arch, it cannot be said with surety that a certain experimental
result would be sufficient to optimise the material parameters.

The sensitivity analysis carried out in [32] showed that the most important factor in
determining the failure mode of the arch is the initial friction angle of the contacts (φ0).
This also has an impact on peak strength, given that its value is less than 30◦. The other
most important parameter is the normal contact stiffness kn, which can have a considerable
effect on post-peak behaviour. Shear stiffness ks is dependent on normal stiffness, according
to [39,40]. The ratio kn/ks is usually set between 2.4 and 2.5.

The previous calibration attempts, discussed in Section 1, calibrated the parameters
to a set of bulk parameters. However, in this case a similar approach cannot be used to
calibrate the micromechanical parameters to achieve a “single bulk parameter or multiple
bulk parameters”. Instead, the available results are force–displacement diagrams. The
displacement data available at two points were shown earlier, in Figure 3. The simulations
for calibration were only performed until the maximum vertical displacement of 12 mm
and there was no collapse of the arch.

To make use of the available data and the material parameters that need to be cali-
brated, two different objective functions were used. The loss calculation procedure was
the same for both objective functions, but the data obtained from the experiments and
the simulations were processed differently. The data used for objective function 1 were
raw (i.e., the data are not modified before evaluating the objective function) while, for
objective function 2, with the application of the deep neural network (see Section 3.4.2), an
approximation of data obtained from both the experiment and simulation was used. By
reducing the noise or oscillations in the data, it is the authors’ opinion that the efficiency of
the optimisation process can be improved.

3.4.1. Objective Function 1

Objective function 1 uses a sum root squared error between the experimental and
simulated force–vertical displacement and force–horizontal displacement diagrams to
calculate the fitness value. The additional displacements after the structure was equilibrated
for self-weight were taken into account. Therefore, the lower and upper bounds of both
vertical and horizontal displacement are set as

wlb = max
(
min

(
wexp

)
, min(wsim)

)
, (16)

wub = min
(
max

(
wexp

)
, max(wsim)

)
. (17)

where wexp and wsim are the displacement data from the experimental and simulation
data, respectively. wlb and wub are the lower and upper limit set for the displace-
ment, respectively.

Two hundred uniformly distributed points are then generated between the upper and
lower bounds of both the vertical and horizontal displacement. Using linear interpolation,
the value of force corresponding to each displacement value, for both horizontal and
vertical displacements, is calculated. Now, the square root of the sum of the square
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difference between experimental and simulation data points is calculated for both vertical
and horizontal displacements.

fver =
√

∑i

(
Fexp,ver,i − Fsim,ver,i

)2, (18)

fhor =

√
∑i

(
Fexp,hor,i − Fsim,hor,i

)2
. (19)

where Fexp,ver,i and Fsim,ver,i are interpolated force values for the vertical displacement of
the experimental and simulation data. Fexp,hor,i and Fver,hor,i are interpolated force values
for the horizontal displacement of the experimental and simulation data. Instead of a
multi-objective function optimisation using fver and fhor, a single objective function giving
the same weightage to both fver and fhor is used:

f = min( fver + fhor). (20)

3.4.2. Objective Function 2

Objective function 1 uses raw experimental and simulation data that contain noise
(unrealistic oscillations) to calculate the fitness value. This can cause problems in the
calibration process, resulting in being stacked at local optimum values. To avoid this,
an artificial neural network model is used in objective function 2 to smooth the graphs
of both the experiment and simulation. Figure 9 shows the force–displacement graph
of one of the simulations and the effect of different smoothening techniques. It can be
seen that the original data along with having oscillations have a drop in force due to the
stick-slip phenomenon. Even though the main trend of the curve matches the experimental
result well, the fitness value is lower than expected due to the presence of the oscillations
and drop.
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displacement diagram.

The oscillations of the force in the force–displacement graphs are directly caused by
the numerical errors of the explicit time integration scheme. The numerical result always
oscillates around the perfect solution. The precision of the numerical solution can be
increased by decreasing the timestep length or the occurring velocities in the model, as
seen in Section 2.4.2, where a decrease in loading plate velocity caused a reduction in the
oscillation amplitudes. However, such a low loading plate velocity could not be applied,
due to the significant increase in simulation time. The sudden drop is caused by a stick-slip
phenomenon, which is also a result of the numerical integration. The normal force between
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the blocks oscillates, which causes the temporary decrease in maximum allowable friction
force between the blocks, leading to a sudden slip. The slipping stops when the normal
force increases again.

Because oscillations in numerical results are not connected to real physics, they should
be disregarded during the analysis of the results, which means that they should not
affect the fitness values. The moving average can be helpful in reducing the amplitude
of oscillations but cannot eliminate the drop perfectly. To overcome this issue, a neural
network is used that can entirely remove the effect of oscillations and drops from the
fitness value.

A neural network is based on the biological neural network and tries to mimic its
behaviour. Neurons are a group of components or nodes that make up a neural network.
These neurons are linked together by a connection known as a synapse. A neuron can
communicate a signal or information to another neuron nearby via a synapse. The signal
can be received, processed and then passed on to the next neuron by the receiving neuron.
The process continues until an output signal is created.

The input xi received by a neuron is multiplied by a corresponding weight wi. The
sum of all the products of the weights, with inputs and bias β, is then calculated and passed
through an activation/transfer function, which is mostly nonlinear, to produce the output
of a neuron. An individual neuron without an activation function is similar to a linear
regression problem. Figure 10 shows the illustration of an individual neuron.
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Figure 10. Illustration of an individual neuron.

A neural network consists of layer(s) of neurons and a layer can consist of a single or
multiple neurons. The layers are then connected to each other to make a neural network.
Each neural network has an input layer, a hidden layer and an output layer. If the number
of hidden layers is greater than 1, then the neural network is referred to as a deep neural
network. Figure 11 shows an illustration of a deep neural network.
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A neural network learns by modifying the weights and biases after each iteration
of the neurons. The weights and biases of neurons are updated based on the loss value,
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which is the difference between the output produced by the model and expected output.
Modification is achieved by using backpropagation, which is a two-step process. The first
step is a forward pass in which the output is evaluated for a given input. To update the
weights, a backward pass is made, in which the partial derivatives of model parameters
(weights and biases) are calculated with respect to loss [51]. The weights and biases
are updated to minimise the loss. The process continues until the maximum number of
iterations are reached or the loss value falls below a threshold.

A Dense Neural Network was created with five hidden dense layers (each hidden
layer containing 20 neurons with a hyperbolic tangent activation function) and the mean
absolute error loss function. Loss is minimised using the Adam optimisation algorithm [52].
The force–displacement graphs were discretised into 200 points. Generalisation was not
required and all data were used as training data. The same data were used for training for
which the final output was needed. There was no need to test the DNN. Each simulation
produced two force displacement graphs (one for the vertical and one for the horizontal
displacement); hence, two DNNs were trained, one for each graph. Overfitting can cause
the DNN to learn the noise instead of learning only the overall trend of the curve. Therefore,
it was made sure not to overtrain the DNN. Figure 9 shows that the DNN was able to learn
that trend.

3.4.3. Representation of Objective Function

To give a visual impression of how the micromechanical parameters affect the fit
between simulated and real behaviour, a 2D grid with linear spacing is created for normal
stiffness and friction angle. The ratio of normal to shear stiffness is taken to be constant, at
2.5. Objective function 1 is evaluated for these parameters and a contour plot is created to
show the response of objective function to the change in these parameters. Figure 12 shows
that the minimum value of objective function for normal stiffness is between 2 × 109 and
1010, while the friction angle is close to 30◦.
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3.5. Software Background and Workflow

The DEM simulations were run in 3DEC and the rest of the calculations were per-
formed using Python. The geneticalgorithm library was used for the GA computations
and the neural network was built using TensorFlow. The PSO and TBPSO methods were
programmed relying only on the NumPy library. Figure 13 shows the workflow of the cali-
bration process. The calibration started with the random generation of material parameters
in Python and the data were then fed to 3DEC. When the simulation was performed, the
simulation results were written into a text file. The Python script read this data file and
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evaluated the objective function. Based on the evaluation of objective function, the values
of material parameters were updated and the process was continued until the stopping
criteria were reached.
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4. Numerical Analysis, Results and Discussion

Pulatsu’s geometry and surface meshed geometry (with 12 mm mesh size) were
both calibrated with a 10 mm/s loading velocity. The main aims during the calibration
process were to reach an accurate solution and to achieve those results in the minimum
number of DEM simulations possible. A simple termination criterion was used for all of the
calibrations; the number of iterations/generations had been specified before the beginning
of the calibration process.

In order to compare the results objectively, the algorithms were set up in such a way
that each iteration would evaluate the objective function exactly ten times, i.e., ten DEM
simulations. Therefore, the swarm size for PSO and TBPSO was ten and the number of
individuals for GA was also ten. No constraint equations were used in the problem.

The values for normal stiffness, shear stiffness and friction were initially generated
from a random uniform distribution. The minimum and maximum values were based
on the previous literature and the response of objective function 1 (see Figure 12). The
minimum value for kn and ks was set as 108 Pa/m and the maximum value was set as
1010 Pa/m. The minimum and maximum values for friction were set as 25◦ and 45◦,
respectively, although, based on the preliminary runs, the maximum and minimum range
could have been narrowed down or extended further, but the aim in this study was to
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achieve the calibrated set of parameters in a given range without having to manually search
for the parameters conforming to the experimental behaviour.

To summarise the most important algorithm parameters, a linearly updating weight
parameter for both PSO and TBPSO (from 0.8 to 0.4) was used. The values of the cognitive
and the social components for PSO were chosen to be 2. For TBPSO, the values used for
the cognitive, social and trust components were 1, 1 and 2, respectively. For GA, a uniform
crossover with 50% probability and a random mutation with 10% probability were used.

The number of iterations for the basic versions of PSO and GA were first set by running
100 iterations several times. Particle Swarm Optimisation reached an optimum solution
after 25–30 iterations (in a few cases), with most of the optimum solutions being reached in
40–50 iterations. For GA, the optimum solution was reached by 40–50 iterations while, in a
few cases, it got stuck in local optima and remained in that position for 100 iterations. Since
no improvements were seen after 50 iterations, it was decided that PSO and GA would be
run for 50 iterations.

Trust-Based Particle Swarm Optimisation was observed to be significantly faster:
it reached the optimum solutions obtained in 50–100 iterations by PSO and GA, in
15–20 iterations in most cases.

The number of iterations for PSO, TBPSO and GA were based on the preliminary
runs and these settings seemed optimal for both objective functions. Each calibration for a
single objective function was carried out at least 10 times due to the stochastic nature of
the algorithms. The results for both Pulatsu’s geometry and surface meshed geometry are
presented below.

During the calibration process, the approximate runtime of one instance of Pulatsu’s
geometry while running 6 threads (6 core/12 thread Intel Core i7-8750-H processor with
base frequency of 2.2 GHz, turbo frequency 4.10 Ghz and 16 GB RAM) was between 4 and
6 min. For the surface meshed geometry with mesh size of 12 mm, the average run time on
the same configuration was 5 to 8 min. The time demand of the whole calibration can be
calculated by determining population/swarm size, the number of necessary iterations and
the number simulations that can be run simultaneously.

4.1. Pulatsu’s Geometry
4.1.1. Objective Function 1

Objective function 1 was calculated from raw experimental and simulation data (see
Section 3.4.1). Table 1 shows the solution set obtained by PSO and GA after 50 iterations
and the solution set obtained after 20 iterations by PSO and TBPSO. Figure 14 presents
the five best solution sets obtained from PSO, TBPSO and GA for objective function 1 on
Pulatsu’s geometry. It can be seen that most of the values obtained for kn are between
3 and 4 GPa/m except for one case, where it is slightly larger than 4 GPa/m. The value of
ks is about the same, except for two cases in which the value is greater than 4 GPa/m. The
solutions obtained for φ in each set are either close to 30◦ or above 30◦. The best solution
was found using 30◦ by PSO with 50 iterations. There are multiple possible, equally good
parameter sets for a single DEM model. Usually, the kn/ks ratio is fixed during manual
calibration because the influence of ks is often limited. It was not the case in the automatic
calibration; the algorithm could pick any value between the boundaries; therefore, large
differences occurred in the kn/ks values between the different parameter sets. It should be
noted that GA parameters showed a large scatter in comparison to the other methods.

Figure 15 shows the force versus horizontal and vertical displacement diagrams for the
best calibrated set of parameters obtained from objective function 1 for Pulatsu’s geometry.
The diagrams show a good agreement with the experiments and also with those obtained
from Pulatsu’s parameters, except for the post-peak response in the vertical displacement
diagram. The failure mode (three hinges + one sliding surface) with displacement mag-
nitude is shown in Figure 16 and, obtained from these parameters, is similar in Pulatsu’s
model and the experiments.
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Table 1. Five best solution sets for objective function 1 of Pulatsu’s geometry.

Calibration
Process

Number of
Iterations Run ID kn (GPa/m) ks (GPa/m) φ (◦) Fitness (-)

PSO 50

1 3.13 3.66 30.31 43.4
2 2.99 3.16 30.05 45.9
3 2.89 2.92 29.89 46.0
4 2.87 2.76 29.63 46.7
5 2.85 2.99 29.83 46.9

GA 50

1 3.30 3.01 30.40 55.0
2 3.20 3.36 30.50 56.0
3 3.24 2.86 30.40 56.3
4 3.09 5.00 29.80 62.0
5 3.53 5.22 29.90 63.0

PSO 20

1 4.17 1.17 29.67 63.3
2 4.02 1.44 29.83 63.7
3 4.42 1.00 29.78 64.9
4 3.09 2.54 34.68 82.4
5 3.24 3.47 39.11 85.0

TBPSO 20

1 3.03 2.64 30.16 45.4
2 3.30 3.33 30.15 45.8
3 3.80 2.56 29.70 61.1
4 4.68 3.09 29.78 61.9
5 3.62 2.61 29.79 63.1
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4.1.2. Objective Function 2

Objective function 2 was calculated from smoothed experiment and simulation data
(see Section 3.4.2 and Figure 9). Table 2 shows the best solution sets obtained after
50 and 20 iterations. Figure 17 presents the five best solution sets obtained from PSO,
TBPSO and GA. The values obtained for kn and ks are similar to the ones obtained from
objective function 1. However, in the case of the solutions obtained for φ, all the values
obtained are equal to or slightly above 30◦.

Figure 18 shows the load versus horizontal and vertical load displacement diagrams for
the calibrated set of parameters obtained from objective function 2 for Pulatsu’s geometry.
An important aspect of using objective function 2 (see Figure 9) is that the friction angle
values obtained by this function are consistent. The calibrated parameters gave an improved
fit in comparison to those parameters originally applied in [32]. Figure 19 shows the failure
mode (three hinges + one sliding surface) is similar to the mode obtained in experiment [35]
along with displacement magnitude.
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Table 2. Five best solution sets for objective function 2 of Pulatsu’s geometry.

Calibration
Process

Number of
Iterations Run ID kn (GPa/m) ks (GPa/m) φ (◦) Fitness (-)

PSO 50

1 3.18 3.58 30.19 43.4
2 3.34 3.26 30.27 44.9
3 3.24 2.70 30.23 45.9
4 3.40 3.49 30.25 46.1
5 3.37 2.80 30.32 46.3

GA 50

1 3.13 6.68 30.2 43.9
2 3.05 4.15 30.2 47.7
3 2.44 4.35 30.0 54.9
4 3.38 5.73 30.1 60.2
5 2.54 2.97 30.1 63.7

PSO 20

1 3.90 2.38 30.55 60.0
2 3.40 3.15 29.97 61.0
3 2.93 1.95 30.08 63.1
4 5.30 0.82 29.78 65.5
5 3.20 1.69 36.40 90.2

TBPSO 20

1 3.31 3.37 30.18 43.8
2 3.22 3.21 30.30 45.5
3 3.42 3.63 30.45 50.5
4 3.40 2.29 30.41 53.4
5 3.56 2.10 30.35 56.9
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4.2. Surface Densely Meshed Model

A new model with dense surface meshing was also introduced in this study for
comparison with Pulatsu’s geometry and to investigate the effect of the subdivision method.

4.2.1. Objective Function 1

Table 3 presents the solution set obtained from PSO and GA after 50 iterations and
the solution sets obtained from PSO and TBPSO after 20 iterations. Figure 20 presents the
five best solution sets obtained from the PSO, TBPSO and GA for objective function 1 and a
densely meshed model. The values obtained for kn are similar to the values used in [32].
The value of ks is, however, rather scattered between 2 and 4 GPa/m, which suggests that
the mechanical behaviour is not very sensitive to the value of ks. The value of φ is mostly
calibrated above 30◦ but, in some cases, it is calibrated to values less than 30◦. It should
be noted that all of the methods lead to results with a large scatter, presumably due to the
oscillating nature of the force–displacement behaviour.
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Table 3. Five best solution sets for objective function 1 of densely meshed geometry.

Calibration
Process

Number of
Iterations Run ID kn (Gpa/m) ks (Gpa/m) φ (◦) Fitness (-)

PSO 50

1 3.11 2.22 30.20 57.3
2 2.92 4.46 30.33 61.4
3 2.82 1.55 29.76 61.7
4 2.70 5.79 30.03 61.9
5 3.89 1.54 29.97 63.9

GA 50

1 3.40 3.99 30.00 59.9
2 3.54 3.16 30.00 60.4
3 3.75 7.12 30.20 64.6
4 3.10 3.61 30.40 66.5
5 3.03 3.95 29.60 66.8

PSO 20

1 3.27 3.33 30.01 66.0
2 7.00 0.94 28.78 67.9
3 6.76 0.51 28.53 68.9
4 2.11 3.23 37.38 108.2
5 2.49 2.45 36.71 112.4

TBPSO 20

1 2.92 6.20 30.20 56.3
2 3.56 3.47 29.68 61.2
3 3.58 2.65 30.10 63.4
4 3.19 4.44 30.00 64.2
5 3.25 1.78 29.66 65.7
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Figure 20. Position of calibrated material parameters of densely meshed geometry (objective function
1, PSO and GA: 50 iterations; TBPSO: 20 iterations).

In the force displacement diagrams shown in Figure 21, the dark lines denoted as
‘Pulatsu’ show the simulation results given by the original Pulatsu model (geometry as well
as material parameters) without automated calibration. It can be seen that the results gained
with the surface densely meshed model and automated calibration closely match the results
from Pulatsu’s geometry and parameter set. The difference between the Pulatsu model and
surface densely meshed model is the higher noise levels in the simulation data obtained
from the densely meshed model. The post-peak behaviour shown in the experiment is
better captured by the models using automatic calibration than by the original material
parameter set in [32]. The failure mode obtained (three hinges + one sliding surface) from
the best set of parameters is shown in Figure 22 and agrees with what was seen in the
experiment [35].
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4.2.2. Objective Function 2

The calibrated materials obtained from objective function 2 are very similar to the
values obtained previously, as can be seen in Table 4. Most of the values of kn, ks obtained
are close to 3 GPa/m and most of the values of φ are also above 30◦. The calibrated
parameters obtained are shown in Figure 23.

The force displacement diagrams shown in Figure 24 are similar to the previously
obtained diagrams, showing a greater level of noise and a downward trend, which is
in agreement with the experimental results and better captured by the models using
automatically calibrated material parameters than by the original parameter set in [32].
The scatter of the alternative calibrated parameter sets (Figure 24) is smaller for objective
function 2 than for objective function 1 (Figure 20), particularly the TBPSO results, which
became less scattered. Figure 25 presents a similar failure mode (three hinges + one sliding
surface) as observed in experiment [35].
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Table 4. Five best solution sets for objective function 2 of densely meshed geometry.

Calibration
Process

Number of
Iterations Run ID kn (GPa/m) ks (GPa/m) φ (◦) Fitness (-)

PSO 50

1 2.99 6.71 30.19 48.1
2 3.07 1.94 30.04 49.0
3 2.81 2.77 30.13 49.1
4 2.98 2.95 30.23 50.0
5 2.94 1.22 29.74 50.5

GA 50

1 2.79 3.55 30.31 57.4
2 1.71 3.06 30.30 59.1
3 3.24 4.08 29.70 59.4
4 3.40 3.99 30.00 59.9
5 3.54 3.16 30.00 60.4

PSO 20

1 6.78 0.56 29.64 57.5
2 4.66 0.62 29.61 58.1
3 4.96 2.69 29.45 63.2
4 2.43 2.84 36.49 71.7
5 3.67 0.25 29.32 110.7

TBPSO 20

1 3.14 2.45 30.50 46.7
2 2.68 3.44 30.21 47.4
3 2.84 3.76 30.18 50.4
4 3.02 3.05 30.43 52.2
5 2.97 2.98 30.48 54.9
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The automated calibration procedure performed better in matching the load dis-
placement curves obtained by the experiments and the parameter sets obtained from the
calibration procedures shown in Figures 15, 18, 21 and 24 (compared to the load displace-
ment curves obtained from the parameter set used in [32]). The failure modes (three hinges
+ one sliding surface) shown in Figures 16, 19, 22 and 25 are also in line with the experiment
and with the outcome from the parameter set applied in [32].

4.2.3. Reduced Loading Plate Velocity

The velocity of the loading plate was 5·10−3 mm/s in the experiment and 10 mm/s in
the simulations, which is a significant difference. The calibration procedure could not be
performed with a smaller velocity in reasonable time and it was discussed in Section 2.4.2
that realistic behaviour could be computed with 10 mm/s as well. However, verification
simulations could be run with smaller speeds. Figure 26 shows the results of simulations
with a loading velocity of 0.5 mm/s using the surface meshed geometry and calibrated
parameters with objective function 2. A decrease in the amplitude of numeric oscillations
is clearly visible. The post-peak force also decreased in the case of the algorithmically
calibrated parameters and became similar to Pulatsu’s original parameters. The decrease in
force agrees with the observation made in Section 2.4.2 that lower loading velocity results
in lower peak force and softer post-peak behaviour.
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5. Conclusions

With the preparatory investigations carried out at the beginning of this study, it was
found that the load–displacement behaviour of the DEM models of masonry arches is very
sensitive to the velocity of (displacement-controlled) loading. Before starting the calibration,
a necessary step would be to carefully select both mesh density and loading velocity for
use in the simulations. These values are usually a compromise between accuracy and
computational time. By the careful selection of these two values, a considerable amount of
time can be saved during the calibration process while preserving accuracy.

In the main part of this study, three different algorithms were employed for the
purpose of the calibration of a masonry arch. The reason for the choice of PSO and GA
was that these are well established methods and work efficiently on a variety of real-world
problems. The choice of algorithm can affect the efficiency and accuracy of the calibration
process. However, it should also be kept in mind that no optimization algorithm is best
for every problem [53]. The main aim is not only to automate the calibration process but
also to find a speedy method where the number of iterations (i.e., the number of necessary
simulations of the loading process) is low. Seeing best solution sets obtained from the
PSO and GA after 50 iterations in Sections 4.1 and 4.2 (see Tables 1–4), it can be said
that, although PSO and GA were both run for 50 iterations, the PSO leads to significantly
better results (lower values of objective function). From the solution sets obtained after
20 iterations by PSO and TBPSO (see Tables 1–4), it can be seen that the TBPSO reaches a
better match of simulation and experimental results than PSO. In some cases, contrarily
to TBPSO, PSO did not converge after 20 iterations, leading to higher values of objective
function. Based on this, it can be concluded that TBPSO performs better than PSO in the
current problem. It can also be concluded that PSO performs better than GA.

We recommend using PSO, TBPSO and perhaps other improved forms of PSO instead
of GA, due to faster convergence to a better solution. However, the calibration process is
highly dependent on the parameters controlling the optimisation process. These parameters
(which control the behaviour of optimisation algorithms, such as weight parameters in
PSO, mutation probabilities in GA, etc.) can be changed and, in turn, affect the optimisation
process. The tuning of such parameters is very important. Therefore, it should be noted that
changing the parameters used in this study might improve the performance of GA, perhaps
even making it comparable with PSO and TBPSO. Further investigations are required
in future.

The calibration process could also be improved by the presence of additional load
displacement diagrams. The reason for this is that, by tracking the motion of more points
of the structure, the behaviour of the whole structure would be better captured and,
hence, a better set of calibrated parameters produced. Any point of the structure can be
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tracked in the simulation software but in real experiments the number of sensors is usually
limited. Therefore, the placement of sensors during laboratory testing has to be performed
strategically, so as to capture complete structural behaviour. In the current case, the load
displacement data are only available for two points and both of those points are utilised in
calibration, while the failure mode is used for validating the results.

It is hard to obtain detailed experimental data about the mechanical behaviour of
masonry structures. Because historical buildings cannot be tested, assumptions are often
made regarding their mechanical parameters. For the same reason, experiments are often
conducted with structures that represent a typical class of masonry structure or a typical
failure mode. Even when in possession of experimental data, it is still a challenge to calibrate
the numerical models. The introduced method offers a tool to automatise and accelerate
this calibration process and to increase the chance of finding the optimal parameter values.
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