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Abstract: A traffic sign recognition system is crucial for safely operating an autonomous driving
car and efficiently managing road facilities. Recent studies on traffic sign recognition tasks show
significant advances in terms of accuracy on several benchmarks. However, they lack performance
evaluation in driving cars in diverse road environments. In this study, we develop a traffic sign
recognition framework for a vehicle to evaluate and compare deep learning-based object detection
and tracking models for practical validation. We collect a large-scale highway image set using a
camera-installed vehicle for training models, and evaluate the model inference during a test drive
in terms of accuracy and processing time. In addition, we propose a novel categorization method
for urban road scenes with possible scenarios. The experimental results show that the YOLOv5
detector and strongSORT tracking model result in better performance than other models in terms of
accuracy and processing time. Furthermore, we provide an extensive discussion on possible obstacles
in traffic sign recognition tasks to facilitate future research through numerous experiments for each
road condition.

Keywords: traffic sign recognition; deep learning; object detection; real-time application; urban
road scene

1. Introduction

Owing to the increasing market share of the autonomous vehicle industry, funda-
mental technologies for driving assistants and artificial intelligence have been increasingly
studied [1]. One of the most crucial technologies for Advanced Driver Assistance Systems
(ADAS), including self-driving, forward collision warning, or pedestrian recognition, is
contextual awareness of road environments [2]. In particular, traffic sign recognition sys-
tems are core methods for providing vital instructions in safety-critical road regulations
and should perform at highly stringent confidence levels.

Many autonomous vehicles utilize high-definition (HD) maps to provide richer infor-
mation for road environments [3,4]. However, because of the manual and time-consuming
efforts in production, the usage of HD maps is costly [5]. More importantly, HD maps can
suffer from the discrepancies between the stored traffic signs and real-time changes [6].
In addition to assisting drivers, intelligent object recognition systems can facilitate the
maintenance of road surroundings, such as traffic signs, lane lines, and guard rails [7]. For
instance, traffic sign recognition systems can effectively analyze damage or defects through
autonomous vehicles for monitoring purposes because it is nontrivial to inspect an entire
road scene using human resources [8]. Therefore, the traffic sign recognition technique is
an important component both for decision-making systems in vehicles and for monitoring
road management systems.

A traffic sign recognition system should provide stable support in real-time driving ve-
hicles, but faces two major challenges. The first problem is the low quality of images owing
to diverse environmental conditions, such as weather, illuminance, and occlusion [9,10].
Given that blurred and contaminated images can severely deteriorate recognition perfor-
mance, a recognition model should be robust to the noise from various causes. Secondly,
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another critical issue for the traffic sign recognition technique is to detect and recognize
signs in real-time. Therefore, to respond to the frequent changes in driving car scenarios,
the model should guarantee a short processing time for the recognition systems.

Conventional traffic sign recognition methods have been developed in the context of
studying salient features to capture traffic signs. The feature-based models such as color-
or shape-based methods have been proposed to extract candidate regions and classify the
signs in road scene images [11]. However, these feature-based methods are illumination-
sensitive. A recent trend in traffic sign recognition systems is to employ deep learning-based
object detection models, especially Convolutional Neural Networks (CNNs) [2,12]. Deep
learning-based object detection approaches including YOLO models facilitate accurate
traffic sign recognition in several benchmark datasets because they are capable of flexible
and expressible nonlinear representation. Indeed, studies [2,13,14] based on YOLO models
have achieved state-of-the-art performances for publicly available benchmark datasets
(e.g., GTSDB [15], GTSRB [16], and RTSD [17]) for traffic sign recognition.

Although the recent studies for traffic sign recognition systems outperform the con-
ventional methods, they have three prominent limitations. Firstly, there are limited studies
to demonstrate the performance of deep learning-based traffic sign recognition methods in
real-world urban road environments with various noise. Because there can be significant
differences in the quality between benchmark images and urban road scenes, it is crucial
to inspect the types of noise and to verify the recognition results of the models. Secondly,
deep learning-based approaches for traffic sign recognition systems barely consider object
tracking models coupled with detection models for practical usage. Lastly, there is a lack
of studies with respect to the processing time or frames per second (FPS) of the recent
deep learning-based models in driving cars coupled with intelligent cameras. To evaluate a
traffic sign recognition system, it is necessary to implement the entire edge system, from an
edge camera to an edge computing system (e.g., NVIDIA Jetson) in a driving car, rather
than only assessing the performance of models in laboratories.

To address these issues, we propose a traffic sign recognition framework based on
deep learning models to implement the entire system from cameras to processing units and
to validate the accuracy and latency of the proposed system architecture. As our main goal
is to evaluate the traffic sign recognition performance in a driving car, we install the entire
system inside a car, including a camera device, an edge computing unit, and a standalone
server. We categorize the urban road environments based on diverse noise types and
group road images with the corresponding settings [18]. We train several versions of object
detection models and examine the framework with respect to the defined categories of
environmental conditions in terms of accuracy and latency. In addition, we evaluate the
real-time performance of two object tracking models with a detection model. From our
experimental results, we identify the possible obstacles in traffic sign recognition tasks with
extensive discussion to facilitate future research.

The main contributions of this study are as follows:

1. We propose a traffic sign recognition framework coupled with deep learning-based
object detection models. Furthermore, we collect real-world road scene images from a
driving car and define the main categories of noise for the environmental conditions;

2. We evaluate and prove the efficiency of deep learning-based object detection and
tracking models through in-depth experiments considering model types and environ-
mental conditions;

3. We derive the candidate issues from the experimental results and provide insightful
analyses to facilitate future research on traffic sign recognition systems.

The remainder of the paper is organized as follows. Section 2 briefly reviews related
works on traffic sign recognition tasks. In Section 3, we introduce the proposed framework
and then describe data collection and categorization methods for urban road scene images.
Section 4 includes the experimental setup and evaluation metrics. In Sections 5 and 6, we
present comprehensive results and provide a detailed discussion through in-depth ablation
studies. Finally, Section 7 provides a conclusion and considers future research directions.
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2. Related Work

In the last decade, extensive research has been conducted to detect and recognize traffic
signs as well as moving objects in road scenes. Among the intelligent object detection tasks,
the traffic sign recognition method is core because it is the most critical in safety-critical
road applications. The various types of urban environments (e.g., downtown, residential
areas) are relevant to traffic sign recognition because different types of traffic signs tend to
occur in different environments and traffic signs are also different in size and location [7].
The core challenge in detecting and recognizing traffic signs on roads is the low quality of
images owing to variable urban environments including the influence of weather, the time
of day, and driving of vehicles at high speed. Alongside environmental effects, it is still
problematic to develop intelligent recognition systems because the installation methods of
devices can prompt vibrations in vehicles and result in a restricted view of the surrounding
objects [10]. To reduce the impact of these problems, various image preprocessing methods
are being studied: one approach is based on traditional feature-based methods, and another
approach uses deep learning-based methods.

The traditional feature-based methods typically gather specifically engineered visual
features including Histogram of Oriented Gradient (HOG) features and use those features
to classify traffic signs [1,19,20]. A method based on HOG features [21] was proposed
for object detection purposes in computer vision and image processing; HOG descriptors
are calculated on dense grids of cells placed at uniform intervals and are designed to use
nested local contrast normalization to improve accuracy. These methods have been used
as improvements to balance scale-invariant characteristic transformations with descriptor
and shape contexts, feature-invariance (e.g., illumination, translation, and scale), and
nonlinearity. HOG methods, however, mainly utilize manual features to capture significant
characteristics in images; hence, they often fail to model complex surroundings in road
scene images.

On the other hand, methods utilizing features from the color and shape of a given
image have been proposed for traffic sign recognition tasks [11,22–25]. The main steps
of these methods are to extract visual information contained in candidate areas, capture
and segment traffic signs within an image, and correctly classify the signs through pattern
classification [26]. The color-based methods typically segment specific colors to generate
a color map. These methods find solid color regions and then determine the candidate
regions that are computationally efficient [27]; however, they usually require delicate
color and shape information to increase recognition accuracy. The intrinsic issues of the
environment, such as color fading, subtle illumination change, and occlusion of traffic
signs, are critical in these methods [2]. For instance, color-based methods are dependent
on specific characteristics (e.g., solid colors) of traffic signs; hence they show significant
performance degradation with contaminated images. Similarly, shape-based methods fail
to recognize objects with unclear shapes in blurred images.

Prominent traffic sign recognition methods have used machine learning models includ-
ing Support Vector Machine [28–30] and AdaBoost based traffic signs detection [31]. These
approaches result in relatively fair recognition performances when coupled with specific
image features (e.g., HOG, color- or shape-features). However, they are heavily reliant
on hand manual feature engineering. For this reason, they fail to model complex urban
road surroundings, which is a similar shortcoming inherited from features-based methods.
Moreover, different feature engineering is required for different environmental settings.

Deep learning models, specifically CNN-based models, have achieved rapid advances
in computer vision tasks [32–34]. Similar to object detection tasks, computer vision process-
ing tasks in intelligent transportation systems are also following this trend, and these tasks
are being used practically in ADAS as well as in autonomous vehicles. Accordingly, several
researchers have tried to solve the traffic sign recognition problem using a CNN-based
object detection framework [2,11]. These studies mainly employ object detection models
that can be represented by Faster R-CNN [34] and YOLO models [32,33]. In particular,
Faster R-CNN combines the regression of bounding boxes and object classification. It uses



Infrastructures 2023, 8, 20 4 of 19

end-to-end methods to detect visual objects, which not only improve the accuracy of object
detection but also improve the speed of object recognition. Visual object detection consists
of classification and positioning. Before the advent of YOLO, these two tasks differed in
visual object detection. In YOLO models, object detection is simply transformed into a
regression problem. In addition, YOLO follows the end-to-end structure of the neural
network for visual object detection, and thus simultaneously obtains the coordinates of
the predicted boundary box, the reliability of the target, and the probability of the class to
which the target belongs through one image input [35].

Recently, three versions of YOLO have been proposed: YOLOv3 [32], YOLOv4 [33],
and YOLOv5; YOLOv4 succeeded the Darknet and obtained a remarkable performance im-
provement based on the Microsoft COCO dataset [36]. Compared with YOLOv3, accuracy
and speed have been effectively improved in YOLOv4. Furthermore, it can be considered a
real-time object detection model for traffic sign recognition tasks on Tesla V100 [37], which
has strong computational resources. The most recent model, YOLOv5, outperformed the
previously models both in accuracy and efficiency. It uses several techniques, including
efficient CNN blocks, adversarial training, and augmentation. Compared with YOLOv3,
the detection accuracy of YOLOv5 increased by 4.30%, indicating that the performance was
superior to that of the previous model [38].

Object tracking is another technology that has been actively researched recently. Object
tracking is an algorithm that assigns a unique ID to a detected object and maintains the ID
value unchanged even as frames flow. One of the most successful object tracking methods
is Simple Online and Realtime Tracking (SORT) [39], which employs Kalman filters [40]
and the Hungarian algorithm [40,41]. SORT is proposed for a multiple object tracking task
that efficiently associates detected objects for real-time tracking. Based on the position
information of objects using noise and speed information, SORT obtains the position infor-
mation of objects to come in the next frame. DeepSORT [42] has been proposed to utilize
expressive CNN features to the existing SORT method. DeepSORT has advanced the track-
ing accuracy because the model uses more informative features than SORT. Recently, [43]
proposed StrongSORT which extends DeepSORT. StrongSORT outperformed the previous
models by introducing an appearance-free link model to generate efficient trajectories and
Gaussian-smoothed interpolation to compensate missing detections.

Recent deep learning-based traffic sign recognition studies [2,13,14] have shown
significant improvement by outperforming state-of-the-art scores on several benchmark
datasets [15–17]. However, there are limited studies on real-world urban road environ-
ments with the diverse noise types. Since urban road scenes can have different aspects
from benchmark images, it is crucial to investigate deep learning models for real-world ap-
plication. Additionally, deep learning-based approaches for traffic sign recognition systems
barely consider object tracking models, which are essential for practical implementation. In
this study, we develop a traffic sign recognition framework using different YOLO models
followed by two tracking methods (DeepSORT and StrongSORT), and explore those models
on urban roads in a driving car to ensure real-time applicability.

3. Methods
3.1. System Overview

Our goal is to develop and compare the performance of deep learning-based object
detection and tracking models for traffic sign recognition in urban road environments. For
ease of description, we first describe the overall framework for the recognition and tracking
models. In the following section, we then introduce the categorization and labeling method
for urban environment.

Figure 1 shows the overall flow of the proposed real-time traffic sign recognition frame-
work. As depicted in the figure, the framework has a sign recognition and tracking model.
A camera installed on the vehicle takes videos (a sequence of frames) while driving, and
trained YOLO detectors are applied to recognize traffic signs in those images. Afterward,
images of detected traffic signs are fed into the object tracking models (DeepSORT and
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StrongSORT). Note that the overview represents the inference flow in a driving vehicle
scenario. Those models are trained and evaluated in a local server, not in edge resources.
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Figure 1. Traffic sign recognition flows in a vehicle using YOLO and tracking models.

The entire physical framework in Figure 2 of the proposed system has two main
components: a camera device and computing systems. To collect and capture road scene
images in a driving car, we chose a high performance PoE camera, which has 2056 × 1542
(3.17 megapixels) resolution and 36 FPS. The computing resources include a standalone
storage server and a processing unit. We employ a standalone storage server with a
capacity of 930 GB from NEOUSYS to store images captured from the camera. In addition,
we utilize NVIDIA’s Jetson AGX Xavier with built-in GPU (512-core NVIDIA Volta™ GPU
with 64 Tensor Cores) as an edge device to inference using the trained YOLO models in
real-time.
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3.2. Environment Categorization and Data Collection

Inspired by the previous description of weather characteristics in [44], we propose
novel categories of distinct environmental conditions for urban road scenes. There can be
several possible reasons for changes in environments, including seasonal effects, terrain
conditions, and road facilities. Traffic sign recognition performance even with the same
traffic sign can be severely affected by these conditions. Therefore, we categorized possible
conditions of road environments and collected the corresponding images for training. The
environmental conditions included in the data set are clean, cloud, tunnel, night, rain, and
sunlight. The details for each category are described in Table 1.
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Table 1. Proposed categories for various urban environments.

Categories Characteristics of Images

Clean There is no direct interference of strong sunlight and the peripheral vision is clear.

Cloud Because there is no direct sunlight and clouds cover the sun, the surrounding
environment is slightly dark.

Rain The surrounding environment is dark and the traffic signs are usually blurred
by rainwater.

Sunlight Intense sunlight directly interferes with the vision camera, causing light scattering,
and making it difficult to recognize traffic signs.

Night As sunlight is absent, the surrounding environment is very dark. It is hard to
recognize traffic signs with human eyes without a light source.

Tunnel
Tunnels have artificial light sources which are different from natural light.
Additionally, the environments are usually surrounded by static conditions, such as
tunnel walls.

Extreme weather conditions can temporarily degrade the quality of images from a
camera. In addition, deviation in the amount of light or abnormal light types, such as dim
light, overexposure, and glare, can negatively affect the recognition of traffic signs [45,46].
Therefore, we have to consider the impact of urban environmental conditions on the
detection of traffic signs.

A vehicle equipped with a physical system collected video data while traveling on
21 highways in Korea (e.g., Seocheon-Gongju: 62.2 km, Muan-Gwangj: 40.5 km, and
Pyeongtaek-Paju: 36.2 km Expressways). The total distance driven by the vehicle was
1246.65 km, and the data collection period was from 1 April 2019 to 22 August 2019.

The driving for data collection was performed with one driver and an assistant.
After collecting videos, for each appearance of the traffic sign, the acquired video frame
was transformed into an image and stored in the database as post-processing. The data
information stored in this way included the date, time, and road information. Consequently,
we gathered a total of 1,005,162 (one million) images for training; Figure 3 shows examples
of each category in Table 1.
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3.3. Labeling Methods

According to the traffic sign information table from the Korean Institution of Road
Traffic (KoROAD), each sign in the one million images was labeled and assigned into
one of 98 possible classes. The labels consisted of 36 caution signs, 30 regulation signs,
28 indication signs, and 4 other signs. The signs followed specific standards of shape
and color, to effectively deliver information to road users. In particular, all caution signs,
which inform road users that road conditions are dangerous or problematic, have a tri-
angular shape, and a yellow background with a red edge. To inform about prohibited or
restricted road situations, regulation signs are primarily circular in shape and have a white
background with a red border. Indication signs mainly have a circular shape and a blue
background without boundary to inform road users that they give directions. Examples of
the main three sign categories, caution, regulation, and indication are listed in Table 2.

Table 2. Examples of traffic sign classifications: Caution, Regulation, Indication signs.
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Furthermore, we found that the number of traffic signs had biased distributions. In
particular, the smallest class had 61 samples, while the largest one had 238,857 samples.
The numbers in each class are depicted in Figure 4. To be specific, the average number
of samples of caution, regulation, and indication category were 1495, 4713, and 6780,
respectively. This can be considered to be an intrinsic distribution for road condition
because direction indicating signs are typically much more numerous than other signs. We
further discuss the effect of the number of signs in Section 5.5.
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4. Experiment
4.1. Implementation Details

We extracted one million images containing traffic signs from the captured videos
in the driving car. After extraction, we resized each image into 640 × 640. Given that
the entire set of images cannot be stored in the edge computing unit, we employed a
standalone storage in the car. Additionally, we utilized four GPUs (Nvidia RTX A6000) in
parallel during the training process for all the deep learning models. We used a Python
3.8 environment with Pytorch 1.9, OpenCV 4.5, and CUDA 11.2.

We randomly divided the one million images into training and validation sets in a
7:3 ratio for each class. Then, we trained each object detection model with a batch size of
64 and 300 epochs. The training hours could be slightly different for each model, but a
single model took approximately 14 days with four GPUs for one million training images.
Obviously, the training was conducted on the on-premise server with RTX GPUs and the
inference was performed on the edge computing unit (Nvidia Jetson AGX Xavier).

4.2. Evaluation Metrics

To evaluate the performance in terms of accuracy, we compute the widely used metrics
for object detection tasks—mean average precision (mAP)—which takes the average of
average precisions (AP) of the different classes. In particular, we compute mAP scores from
detected bounding box locations with the Intersection over Union (IoU) 0.5 and report
them as mAP@.5. We also average the mAP scores over uniformly spaced IoUs between
0.5 and 0.95 as mAP@.5:.95. In addition, we report Precision, Recall, and F1 scores.

To compare the inference speed of the models, we report FPS to inspect the number
of forwarded image frames per second. For real-time application, including traffic sign
recognition systems, the application must be higher than 30 FPS.

5. Experimental Results

In this section, we validate the recognition performances of the proposed framework
for various environments during road driving. We first compare performance for three
different detection models trained with the same dataset, and then derive an applicable
model for real-time traffic sign recognition system. We also investigate the proposed
categorization method for environmental conditions through in-depth ablation studies,
including different weather and light conditions.

5.1. Comparison of Detection Models

We trained the three different YOLO models for the comparison: YOLOv3 (https:
//github.com/ultralytics/yolov3, 10 November 2022), YOLOv4 (https://github.com/
AlexeyAB/darknet, 10 November 2022), and YOLOv5 (https://github.com/ultralytics/
yolov5, 10 November 2022). The models were trained using the same training set. We
employed the original source codes without modification from the official GitHub pages.
The YOLOv4 model is built in C language, whereas the other models are implemented
in Python. After training all the models, we employed the trained YOLOv5-S model for
inference during a test drive, while collecting a test set. The test set comprises the proposed
categories in Section 3.2. To be specific, we additionally collected 1740 Clean, 244 Cloud,
377 Rain, 179 Sunlight, 1309 Night, and 168 Tunnel images for the test set. Except for
YOLOv5-S, which was already evaluated in a driving car, the other models were evaluated
using this test set.

Table 3 reports the training results obtained with different YOLO models. Note that the
training epochs are set to 300, except for YOLOv5-L, which is trained for 200 epochs because
it needs much longer GPU days owing to the heavy computation for large layers inside
the model. It could be an unfair comparison with other models because the YOLOv5-L
model does not have enough training iteration. Aside from the accuracy performance of
YOLOv5-L, it shows the second slowest inference speed of 76 FPS. From this result, we
conclude that YOLOv5-L model is not suitable for real-time application.

https://github.com/ultralytics/yolov3
https://github.com/ultralytics/yolov3
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
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Table 3. The results of applying each training result model with the same test set.

Models Image
Size Precision Recall mAP@.5 mAP@.5:.95 F1 FPS

YOLOv3 640 × 640 0.935 0.949 0.95 0.814 0.94 102

YOLOv4
416 × 416 0.879 0.880 0.775 0.718 0.88 123
608 × 608 0.880 0.890 0.835 0.776 0.88 70

YOLOv5-S 640 × 640 0.958 0.977 0.977 0.850 0.97 133
YOLOv5-L * 640 × 640 0.898 0.916 0.916 0.784 0.89 76

* YOLOv5-L is trained for 200 epochs where others are trained for 300 epochs.

In terms of accuracy performance, YOLOv5-S achieved the best performance with an
mAP@.5:.95 score of 0.850, followed by YOLOv3. The YOLOv4 model shows the worst
performance when the model is trained with a smaller input size (416 × 416), but it has
slightly improved performance with a similar input size (608 × 608). We could obtain a
higher accuracy value because of the higher resolution, but it has a lower FPS because of
the complexity. One can confirm that the size of a road scene image should be at least
608 × 608.

Based on the FPS performance, YOLOv5-S also shows the best performance followed
by YOLOv4, and YOLOv3. Therefore, we choose YOLOv5-S as the preferred detection
model, because it achieves both the highest mAP and FPS. In addition, if we consider
applying the object tracking algorithm, one can conclude that YOLOv5-S can be used in
real-time applications with 133 FPS.

5.2. Effect of Weather Conditions

It is possible to have diverse weather conditions, such as clouds and rain, as well as
sunlight in summer because of the four distinct seasons. To evaluate traffic sign recognition
in such environments, we conducted an ablation test for Clean, Cloud, and Rain.

Table 4 compares the results for the different weather conditions. Clean shows the
best results in Precision (0.856) and F1 (0.86). Surprisingly, the performance in the Rain
condition has a better mAP@.5:.95 than that in Clean, where the exact Precision is higher
than that of Rain. By definition, the mAP@.5:.95 measure averages several precisions while
changing the thresholds. Therefore, the objects are detected with high confidence scores
when it is Clean weather. However, the objects could still be detected in other conditions,
though with slightly lower confidence scores.

Table 4. Comparison of the recognition performance in different weather conditions.

Categories # of Imgs. Precision Recall mAP@.5 mAP@.5:.95 F1

Clean 1740 0.856 0.923 0.943 0.774 0.86
Cloud 244 0.826 0.899 0.917 0.637 0.81
Rain 377 0.813 0.927 0.947 0.79 0.82

In the case of Cloud, in Table 4 we observe the lowest performance in all indicators
except Precision. To further investigate this result, we report sample images for each
condition in Figure 5. In Figure 5c,d, we can see that Cloud has lower image quality than
the other two conditions. Furthermore, the overall environment appears dark, and the
boundaries between objects are not clear. For these reasons, we evaluate that the Cloud
environment adversely affects recognition of traffic signs, resulting in poor performance
indicators. To improve the performance in cloud weather conditions, we suggest using
bright lighting or post-processing of images to aid the discrimination of objects. In addition,
removal of rainwater formed on the lens during rainfall will elevate the confidence levels
for precision and lead to better results.
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Figure 5. Examples of traffic sign recognition results in different weather conditions: (a) Clean (0.89),
(b) Clean (0.84), (c) Cloud (0.63), (d) Cloud (0.72), (e) Rain (0.82), (f) Rain (0.77), (g) Cloud (0.45), and
(h) Rain (0.75). Note that the numbers in the brackets indicate the minimum confidence score for the
accurately recognized traffic signs in the examples.

Figure 5g,h show the failure results of traffic sign recognition. In particular, in
Figure 5h, one can expect a class named Left-Merge, but we obtain Right-Merge. The
possible explanation is that those classes have a similar shape but an imbalanced number
of samples. Note that the Right-Merge class has as twice many samples as Left-Merge
(i.e., Left-Merge: 794, Right-Merge: 1440). To solve this problem, one could consider setting
the number of samples similarly for each class by data augmentation or oversampling.

5.3. Effect of the Amount of Light

In this subsection, we conduct a test to determine the degree of traffic sign recognition
with a vision camera. In places with dim light, it is difficult to recognize traffic signs with
human eyes. Similarly, the vision camera system and the accompanying detection model
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could be heavily affected by the amount of light. To evaluate Daytime, we use the same
test samples as Clean in Table 4 because of similar environmental conditions.

Table 5 shows that the Night condition results in significantly lower performance than
Daytime in all indicators: Precision (0.815), Recall (0.838), mAP@.5 (0.886), mAP@.5:.95
(0.635), and F1 (0.78), as we expected. Although we conducted the test with a similar
number of images, the difference between the two results is significant. We also observe
significant qualitative differences between the two conditions in terms of the amount of
light, as visualized in Figure 6. One can confirm that it is difficult to recognize traffic signs at
night because of the dim light. To improve the recognition of traffic signs in an environment
where there is little light, we propose to install a device that provides illumination to aid
the recognition of objects. In addition, we suggest equipping the traffic signs with LEDs
to enable them to be well recognized at night. On the other hand, we can see the low
confidence results of traffic sign recognition in Figure 6e,f because the number of samples
for learning is not sufficient (e.g., Bypass: 108, Right Turn: 223). To alleviate this issue, it is
important to obtain a lot of high-quality data for training.

Table 5. Comparison of the recognition performance in different amounts of light.

Categories # of Imgs. Precision Recall mAP@.5 mAP@.5:.95 F1

Daytime 1740 0.856 0.923 0.943 0.774 0.86
Night 1309 0.815 0.838 0.886 0.635 0.78
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(b) Daytime (0.78), (c) Night (0.60), (d) Night (0.78), (e) Night (0.46), and (f) Daytime (0.57). Note that
the numbers in the brackets indicate the minimum confidence score for the accurately recognized
traffic signs in the examples.
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5.4. Effect of the Type of Light

In this subsection, we investigate how the type of light affects the vision cameras used
to recognize traffic signs. We define natural light as the amount of light during the daytime
that does not cause discomfort in daily life. We use test samples of natural light on the
same test set as Clean in Table 4 because of similar environmental conditions. We also
evaluate Sunlight, which is the amount of light that is intense, as defined in Table 1. Finally,
we conduct a test on Tunnel, which has artificial light sources.

Table 6 compares the results for the different types of light. Tunnel shows the best
results in all metrics, except for mAP@.5:.95. It can be observed that Tunnel condition has
almost no blurred effect caused by direct sunlight entering the camera; hence, this results
in the best performance scores.

Table 6. Comparison of the recognition performance in the different types of light.

Categories # of Imgs. Precision Recall mAP@.5 mAP@.5:.95 F1

Natural light 1740 0.856 0.923 0.943 0.774 0.86
Sunlight 179 0.939 0.909 0.976 0.875 0.89
Tunnel 168 0.973 0.999 0.995 0.831 0.98

On the other hand, we observe that the performance in the Sunlight condition shows
better results than in the Natural light condition, contrary to our expectations. As shown
in Figure 7, objects in the Sunlight condition have boundaries to their background and
show distinct shapes or colors. One can conclude that the YOLOv5-S model is powerful
enough to classify these small deviations as an object. Nonetheless, to improve traffic sign
recognition, we propose to install filtering to reduce the influence of light interference on
the vision camera.
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Figure 7. Examples of traffic sign recognition results in different types of light: (a) Sunlight (0.84),
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Note that the numbers in the brackets indicate the minimum confidence score for the accurately
recognized traffic signs in the examples.

Figure 7e,f report the failure results of traffic sign recognition. In Figure 7e, we can
confirm that the class name No Automobiles Allowed has a low recognition result of 0.26.
Note that there is a small number of samples for the class (i.e., 267 samples), but the sign
contains relatively complicated images (small cars and automobiles). Figure 7f shows that
Left Lane Ends is recognized as another class, Right Lane Ends, despite the recognition
result value of 0.8. It should be noted that both classes are similar shapes but include small
differences in directions. To alleviate these problems, one could use an extra classifier for
detailed classification to improve the accuracy.

5.5. Evaluation of Real-Time and Tracking Performance

In this subsection, we analyze the detailed real-time performance of the YOLO models
and conduct an additional experiment to evaluate real-time performance for the object
tracking algorithms DeepSORT and StrongSORT. To validate real-time performance, it is
necessary to implement an edge computing system, and we employ Jetson AGX Xavier.
For the test video, we recorded a 36 s video during an additional test drive on urban roads
in Seoul, Korea. While driving, the StrongSORT was evaluated and other models were
tested using the same video.

Table 7 reports the real-time performance results obtained by the different YOLO
models. We report results for two GPU environments: one for the local server with RTX
A6000, where the models have been trained; and the other for the edge device installed in
vehicle, Jetson AGX Xavier. Obviously, one can confirm that all models have lower FPS
results on Jetson AGX Xavier compared with the results on the local server. Nevertheless,
in Table 8, one can see that the FPS performance of YOLOv5-S is remarkably higher in the
edge device. YOLOv5-L shows a lower FPS than YOLOv5-S because of the complexity. It
indicates that YOLOv5-S is optimized for real-time compared with YOLOv3 and YOLOv4.
Based on the results in Table 8, we conducted the experiments for object tracking using the
YOLOv5-S model.

Table 7. The results of real-time performance (FPS) testing of each model. In this section, we use two
GPU environments: one is Nvidia’s RTX A6000 equipped on the local server in laboratory; and the
other GPU mounted on the Xavier in vehicle is Nvidia’s 512-Core Volta GPU with Tensor Cores.

Models Image Size A6000 Xavier

YOLOv3 640 × 640 102 12

YOLOv4
416 × 416 123 14
608 × 608 70 8

YOLOv5-S 640 × 640 133 42
YOLOv5-L 640 × 640 76 8
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Table 8. The results of real-time performance (FPS) applied tracking algorithms DeepSORT and
StrongSORT coupled with YOLOv5-S.

YOLOv5-S A6000 Xavier

Without tracking 133 42
DeepSORT 40 13

StrongSORT 75 23

We employed the original source codes and pretrained checkpoints for DeepSORT
(https://github.com/nwojke/deep_sort, 10 November 2022) and StrongSORT (https:
//github.com/dyhBUPT/StrongSORT, 10 November 2022) from the official GitHub site.
Note that our framework first detects traffic signs and then the detected features are fed
into the tracking models. Table 8 reports the FPS results from DeepSORT and StrongSORT
coupled with YOLOv5-S. In both GPU environments, one can see that object tracking
methods are highly costly because the FPS drops sharply with the tracking methods.
Nonetheless, we observed that the FPS of StrongSORT is twice as good as that of Deep-
SORT. We achieved 23 FPS with StrongSORT for the best speed in the edge device, but this
is reduced by half compared with the result before StrongSORT was applied. We can con-
clude that StrongSORT should be recommended over DeepSORT for real-time traffic sign
recognition system.

Figure 8 represents the results of StrongSORT coupled with YOLOv5-S on Jetson AGX
Xavier. We confirm the consecutive image frames maintain recognized object information
when drawing tracking paths. We also can see that high confidence is maintained while
tracking the detected traffic signs (e.g., Caution Children: 0.89, Speed Limit 30: 0.90).
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Figure 8. Examples of object tracking results applying StrongSORT coupled with YOLOv5-S. These
pictures are the result of tracking traffic signs detected in consecutive frames flowing from (a–d).
Note that the dotted lines on the image represent the trajectories of the detected traffic signs.

6. Discussion

In this section, we perform an additional experiment for the number of training
samples. For deep learning models, the number of training data is one of the most important
factors. Although we trained the models using a dataset with one million images, in this
study, the number of training data varies for each class. We compare results according to
the number of samples in each class.

https://github.com/nwojke/deep_sort
https://github.com/dyhBUPT/StrongSORT
https://github.com/dyhBUPT/StrongSORT
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In Table 9, we divide the whole class into six clusters, based on the number of class
samples. We define each cluster based on the number of samples using the following
ranges: less than 100, 100 to 500, 500 to 1000, 1000 to 5000, 5000 to 10,000, and over 10,000.
In addition, the mAP@.5:.95 values of each class are classified according to each range and
averaged. We can confirm that the larger the number of samples, the greater the value of
mAP@.5:.95. Evidently, the model performance increases sharply when we train the model
with more samples.

Table 9. Recognition performances of each cluster based on the number of samples.

# of Samples # of Classes Average of mAP@.5:.95 Values

<=100 20 0.5204
101~500 20 0.7647
501~1000 17 0.8013

1001~5000 19 0.8879
5001~10,000 7 0.9279

10,001<= 15 0.9417

To further investigate, Table 10 reports the recognition performances for the sampled
classes. For instance, Up-Hill shows results significantly lower than for the other classes
in all indicators except Recall: Precision (0.54), mAP@.5 (0.556), and mAP@.5:.95 (0.408).
We deduce that Up-Hill has the worst results because it used less than 100 samples of data
for training. In contrast, Speed Limit 40, Speed Limit 50, and Bicycle Cross Walk all show
good results compared with the class with more than 1000 samples. In addition, the Bicycle
Cross Walk class presents the best results in all indicators: Precision (0.991), Recall (0.998),
mAP@.5 (0.995), and mAP@.5:.95 (0.974).

Table 10. Recognition performances for each traffic sign class (sampled classes).

Class Labels Images # of
Samples Precision Recall mAP@.5 mAP@.5:.95

Up-Hill
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Furthermore, Figure 9 shows the relationship between the number of samples and
mAP@.5:.95 for each class. We observe that the results of mAP@.5:.95 do not exceed 0.8
for the class with less than 200 samples. In general, the higher the number of samples, the
better the value of mAP@.5:.95. In particular, when the trained model is applied to images,
a class with a small number of samples is not recognized at all or is recognized as a similar
but different class. To prevent this problem, a potential guideline for reasonable recognition
performance is to exploit as many training samples as possible.
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7. Conclusions

In this study, we propose a traffic sign recognition framework based on deep learning
from a camera to an edge processing unit to validate an entire system of complex urban road
environments in a driving car. Recent traffic sign recognition studies using deep learning-
based detection models have shown significant advances in addressing the performance
constraints of traffic sign systems resulting from the low quality of images. However,
they lack both practical validation on real-world urban road environments including
object tracking models, and assessment of the processing time for heavy computation in
deep learning models. To alleviate these limitations and provide insightful discussion,
we developed a traffic sign recognition system using YOLO models as detectors and
SORT-variants models as trackers. We also propose a novel categorization method for the
frequently changing urban road environments based on diverse noise types.

We evaluate the proposed framework in a driving car on several expressways to
validate the system in terms of accuracy and latency. In particular, we investigate the
results from different types of YOLO architectures and tracking models to understand the
effect of different road environment conditions on models in terms of mAP performance
and inference time. Furthermore, we conduct in-depth ablation studies for a proposed
categorization method for complex urban road environments. Additional analyses per-
formed include the effect of weather, light conditions, and the number of traffic signs.
Finally, we provide detailed analyses and identify potential issues for recognizing traf-
fic signs in urban road scenes. We believe that this study can become a solid stepping
stone and facilitate future research on traffic sign recognition systems. Potential future
work includes the identification of broken traffic signs from road scenes. Furthermore,
although it is currently difficult to collect data across all environments, we will be able
to obtain more informative results if we add various environments (e.g., ice, snow cover,
snow fall). Moreover, pretraining the detection models and incorporating them in down-
stream tasks could also be an interesting future study that maximizes the advantages of
knowledge transfer.

Author Contributions: Conceptualization, J.P. and Y.-s.L.; Data curation, C.-i.K. and W.J.; Formal
analysis, C.-i.K., and Y.P.; Funding acquisition, Y.-s.L.; Investigation, C.-i.K. and J.P.; Methodology,
J.P.; Project administration, Y.P.; Resources, Y.-s.L.; Software, C.-i.K. and W.J.; Supervision, J.P. and
Y.-s.L.; Validation, Y.P. and W.J.; Visualization, C.-i.K. and W.J.; Writing—original draft, C.-i.K. and
J.P.; Writing—review and editing, J.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by a Korea Agency for Infrastructure Technology Advancement
(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21AMDP-C160853-01).

Institutional Review Board Statement: Not applicable.



Infrastructures 2023, 8, 20 18 of 19

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: We declare that we have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References
1. Xie, Y.; Liu, L.F.; Li, C.H.; Qu, Y.Y. Unifying visual saliency with HOG feature learning for traffic sign detection. In Proceedings of

the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009.
2. Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel, S.; Kolter, J.Z.; Langer, D.; Pink, O.; Pratt, V.; et al. Towards fully

autonomous driving: Systems and algorithms. In Proceedings of the 2011 IEEE intelligent Vehicles Symposium (IV), Baden-Baden,
Germany, 5–9 June 2011.

3. Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauss, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt, N.; Keller, C.G.; et al.
Making bertha drive—An autonomous journey on a historic route. IEEE Intell. Transp. Syst. Mag. 2014, 6, 8–20. [CrossRef]

4. Zhang, P.; Zhang, M.; Liu, J. Real-time HD map change detection for crowdsourcing update based on mid-to-high-end sensors.
Sensors 2021, 21, 2477. [CrossRef] [PubMed]

5. Kim, K.; Cho, S.; Chung, W. HD map update for autonomous driving with crowdsourced data. IEEE Robot. Autom. Lett. 2021,
6, 1895–1901. [CrossRef]

6. Rajendran, S.P.; Shine, L.; Pradeep, R.; Vijayaraghavan, S. Real-time traffic sign recognition using YOLOv3 based detector. In
Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kanpur, India, 6–8 July 2019.

7. Fazekas, Z.; Balázs, G.; Gyulai, C.; Potyondi, P.; Gáspár, P. Road-Type Detection Based on Traffic Sign and Lane Data. J. Adv.
Transp. 2022, 2022, 6766455. [CrossRef]

8. Kortmann, F.; Fassmeyer, P.; Funk, B.; Drews, P. Watch out, pothole! featuring road damage detection in an end-to-end system for
autonomous driving. Data Knowl. Eng. 2022, 142, 102091. [CrossRef]

9. Liu, W.; Ren, G.; Yu, R.; Guo, S.; Zhu, J.; Zhang, L. Image-adaptive YOLO for object detection in adverse weather conditions. In
Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, CA, USA, 22 February–1 March 2022.

10. Ellahyani, A.; El Ansari, M.; El Jaafari, I. Traffic sign detection and recognition based on random forests. Appl. Soft Comput. 2016,
46, 805–815. [CrossRef]

11. Bahlmann, C.; Zhu, Y.; Ramesh, V.; Pellkofer, M.; Koehler, T. A system for traffic sign detection, tracking, and recognition using
color, shape, and motion information. In Proceedings of the IEEE Proceedings Intelligent Vehicles Symposium, Las Vegas, NV,
USA, 6–8 June 2005.

12. Tao, J.; Wang, H.; Zhang, X.; Li, X.; Yang, H. An object detection system based on YOLO in traffic scene. In Proceedings of the
2017 6th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 21–22 October 2017.

13. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers. In
Proceedings of the 2018 IEEE International Congerence on Big Data, Seattle, WA, USA, 10–13 December 2019.

14. Liu, C.; Tao, Y.; Liang, J.; Li, K.; Chen, Y. Object detection based on YOLO network. In Proceedings of the 2018 IEEE 4th
Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018.

15. Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; Igel, C. Detection of traffic signs in real-world images: The German Traffic
Sign Detection Benchmark. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX,
USA, 4–9 August 2013.

16. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German traffic sign recognition benchmark: A multi-class classification compe-
tition. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011.

17. Shakhuro, V.I.; Konouchine, A.S. Russian traffic sign images dataset. Comput. Opt. 2016, 40, 294–300. [CrossRef]
18. Fazekas, Z.; Gerencsér, L.; Gáspár, P. Detecting Change between Urban Road Environments along a Route Based on Static Road

Object Occurrences. Appl. Sci. 2021, 11, 3666. [CrossRef]
19. Yang, Y.; Luo, H.; Xu, H.; Wu, F. Towards real-time traffic sign detection and classification. IEEE trans. Intell. Transp. Syst. 2016,

17, 2022–2031. [CrossRef]
20. Ellahyani, A.; El Ansari, M.; Lahmyed, R.; Trémeau, A. Traffic sign recognition method for intelligent vehicles. J. Opt. Soc. Am. A

2018, 35, 1907–1914. [CrossRef] [PubMed]
21. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005.
22. Zeng, Y.; Lan, J.; Ran, B.; Wang, Q.; Gao, J. Restoration of motion-blurred image based on border deformation detection: A traffic

sign restoration model. PLoS ONE 2015, 10, e0120885. [CrossRef] [PubMed]
23. Fleyeh, H. Color detection and segmentation for road and traffic signs. In Proceedings of the IEEE Conference on Cybernetics

and Intelligent Systems, Singapore, 1–3 December 2004; Volume 2, pp. 809–814.
24. Won, W.J.; Lee, M.; Son, J.W. Implementation of road traffic signs detection based on saliency map model. In Proceedings of the

2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 542–547.

http://doi.org/10.1109/MITS.2014.2306552
http://doi.org/10.3390/s21072477
http://www.ncbi.nlm.nih.gov/pubmed/33918443
http://doi.org/10.1109/LRA.2021.3060406
http://doi.org/10.1155/2022/6766455
http://doi.org/10.1016/j.datak.2022.102091
http://doi.org/10.1016/j.asoc.2015.12.041
http://doi.org/10.18287/2412-6179-2016-40-2-294-300
http://doi.org/10.3390/app11083666
http://doi.org/10.1109/TITS.2015.2482461
http://doi.org/10.1364/JOSAA.35.001907
http://www.ncbi.nlm.nih.gov/pubmed/30461850
http://doi.org/10.1371/journal.pone.0120885
http://www.ncbi.nlm.nih.gov/pubmed/25849350


Infrastructures 2023, 8, 20 19 of 19

25. Belaroussi, R.; Foucher, P.; Tarel, J.P.; Soheilian, B.; Charbonnier, P.; Paparoditis, N. Road sign detection in images: A case study. In
Proceedings of the IEEE 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 484–488.

26. Wang, C. Research and application of traffic sign detection and recognition based on deep learning. In Proceedings of the IEEE
International Conference on Robots & Intelligent System (ICRIS), Changsha, China, 26–27 May 2018; pp. 150–152.

27. Chourasia, J.N.; Bajaj, P. Centroid based detection algorithm for hybrid traffic sign recognition system. In Proceedings of the IEEE
3rd International Conference on Emerging Trends in Engineering and Technology, Goa, India, 19–21 November 2010; pp. 96–100.

28. Wang, G.; Ren, G.; Wu, Z.; Zhao, Y.; Jiang, L. A robust, coarse-to-fine traffic sign detection method. In Proceedings of the IEEE
International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013.

29. Liang, M.; Yuan, M.; Hu, X.; Li, J.; Liu, H. Traffic sign detection by ROI extraction and histogram features-based recognition. In
Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013.

30. Wang, G.; Ren, G.; Wu, Z.; Zhao, Y.; Jiang, L. A hierarchical method for traffic sign classification with support vector machines. In
Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013.

31. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR, Kauai, HI, USA, 8–14 December 2001.

32. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
33. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
34. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings

of the 29th Annual Conference on Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 7–12 December 2015.
35. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
36. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In European Conference on Computer Vision 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham,
Switzerland, 2014; pp. 740–755.

37. Xing, J.; Yan, W.Q. Traffic sign recognition using guided image filtering. In International Symposium on Geometry and Vision;
Nguyen, M., Yan, W.Q., Ho, H., Eds.; Springer: Cham, Switzerland, 2021; pp. 85–99.

38. Kuznetsova, A.; Maleva, T.; Soloviev, V. Detecting apples in orchards using YOLOv3 and YOLOv5 in general and close-up images.
In International Symposium on Neural Networks; Han, M., Qin, S., Zhang, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 233–243.

39. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International
Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468.

40. Gunjal, P.R.; Gunjal, B.R.; Shinde, H.A.; Vanam, S.M.; Aher, S.S. Moving object tracking using kalman filter. In Proceedings of
the 2018 International Conference on Advances in Communication and Computing Technology (ICACCT), Sangamner, India,
8–9 February 2018.

41. Sahbani, B.; Adiprawita, W. Kalman filter and iterative-hungarian algorithm implementation for low complexity point tracking
as part of fast multiple object tracking system. In Proceedings of the 2016 6th International Conference on System Engineering
and Technology (ICSET), Bandung, Indonesia, 3–4 October 2016.

42. Hou, X.; Wang, Y.; Chau, L.P. Vehicle tracking using deep sort with low confidence track filtering. In Proceedings of the 2019 16th
IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019.

43. Yeh, K.H.; Hsu, I.C.; Chou, Y.Z.; Chen, G.Y.; Tsai, Y.S. An Aerial Crowd-Flow Analyzing System for Drone Under YOLOv5
and StrongSort. In Proceedings of the 2022 International Automatic Control Conference (CACS), Kaohsiung, Taiwan,
3–6 November 2022.

44. Zhang, J.; Zou, X.; Kuang, L.D.; Wang, J.; Sherratt, R.S.; Yu, X. CCTSDB 2021: A more comprehensive traffic sign detection
benchmark. Hum. Cent. Comput. Inf. Sci. 2022, 12, 23.

45. Seraj, M.; Rosales-Castellanos, A.; Shalkamy, A.; El-Basyouny, K.; Qiu, T.Z. The implications of weather and reflectivity variations
on automatic traffic sign recognition performance. J. Adv. Transp. 2021, 2021, 5513552. [CrossRef]

46. Fazekas, Z.; Simonyi, E.; Gáspár, P. Glare in Street View images may signify unsafe road locations. In Proceedings of the
International Scientific Conference Modern Safety Technologies in Transportation, Kosice, Slovakia, 24–26 September 2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1155/2021/5513552

	Introduction 
	Related Work 
	Methods 
	System Overview 
	Environment Categorization and Data Collection 
	Labeling Methods 

	Experiment 
	Implementation Details 
	Evaluation Metrics 

	Experimental Results 
	Comparison of Detection Models 
	Effect of Weather Conditions 
	Effect of the Amount of Light 
	Effect of the Type of Light 
	Evaluation of Real-Time and Tracking Performance 

	Discussion 
	Conclusions 
	References

