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Abstract: Timely maintenance of road pavements is crucial to ensure optimal performance. The accu-
rate prediction of trends in pavement defects enables more efficient allocation of funds, leading to a
safer, higher-quality road network. This article systematically reviews machine learning (ML) models
for predicting the international roughness index (IRI), specifically focusing on flexible pavements,
offering a comprehensive synthesis of the state-of-the-art. The study’s objective was to assess the
effectiveness of various ML techniques in predicting IRI for flexible pavements. Among the evaluated
ML models, tree ensembles and boosted trees are identified as the most effective, particularly in
managing data related to traffic, pavement structure, and climatic conditions, which are essential for
training these models. Our analysis reveals that traffic data are present in 89% of the studies, while
pavement structure and climatic factors are featured in 78%. However, maintenance and rehabilitation
history appears less frequently, included in 33% of the studies. This research underscores the need
for high-quality, standardized datasets, and highlights the importance of model interpretability and
computational efficiency. Addressing data consistency, model interpretability, and replicability across
studies are crucial for leveraging ML’s full potential in fine-tuning IRI predictions. Future research
directions include developing more interpretable, computationally efficient, and less complex models
to maximize the impact of this research field in road infrastructure management.

Keywords: machine learning; pavement performance prediction; international roughness index;
predictive modeling; pavement condition assessment; state-of-the-art

1. Introduction

Roads are crucial in transportation and society [1]. To maintain the quality of the road
network, regular maintenance activities are necessary, which require decisions to be made
that are both technically and economically feasible [1]. The cost of these activities often
constitutes a significant portion of government infrastructure budgets, limiting investment
and negatively impacting the road network [2–4]. As such, optimizing funding is essential
to ensure the quality of the road network [4].

Correspondingly, the transportation sector is experiencing transformative shifts due
to breakthroughs in Artificial Intelligence (AI), big data, autonomous vehicles, and decar-
bonization. Nonetheless, these advancements introduce technical challenges demanding
reevaluating traditional paradigms [5,6].

Predicting pavement performance is central for effective road infrastructure man-
agement, as it helps identify and prioritize maintenance and rehabilitation (M&R) activi-
ties [1,4,7,8]. Accurate predictions allow road agencies to allocate resources in an efficient
and cost-effective manner [4,9–11].

Likewise, the deterioration process of road pavement is nonlinear; it typically starts
slowly, keeping the pavement in good condition during the early stages. However, once the
deterioration begins, it progresses quickly [12]. Additionally, inadequate M&R strategies
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throughout the pavement’s life cycle typically lead to structural failures, necessitating major
rehabilitation or reconstruction, thus escalating the overall cost of road maintenance [2,13].
The international roughness index (IRI) is a traditional metric for evaluating road pavement
quality [14]. Hence, numerous pavement management agencies use it as an indicator for
M&R tasks.

Artificial intelligence has made inroads into various fields, with machine learning
(ML) being one of its most prominent [15,16]. ML has been fueled by algorithm advance-
ments, data availability, and reduced computing costs [15]. Essentially, ML is the ability of
computers to learn how to perform tasks such as prediction, classification, clustering, and
pattern recognition [17]; thus, this learning occurs without explicit programming [15].

ML has become popular for pavement performance prediction in recent years due to its
ability to model complex relationships between inputs and outputs [10,18]. ML algorithms
have the ability to predict various aspects of pavement performance, including roughness,
cracking, and rutting [19]. By training on large datasets of pavement data, these algorithms
are able to identify patterns and relationships that may not be easily recognizable to the
human eye. This leads to improved accuracy in pavement performance predictions and
better road infrastructure management [10,18].

However, some challenges must be addressed to make ML a more reliable and effective
tool for pavement performance prediction. One challenge is the availability of high-quality
and sufficient data for training and models, as pavement performance data are often
collected manually and can be time-consuming, expensive, and prone to errors [20–22].

Correspondingly, the absence of a benchmark dataset also affects the ability to compare
different models. Thus, comparing the results of algorithms trained in different contexts
and with different data sources is not feasible.

Additionally, the interpretability of ML models remains challenging, making it dif-
ficult to understand the underlying relationships between input variables and pavement
performance [10]. The variability in pavement performance due to environmental factors
such as temperature, precipitation, and traffic loads is another challenge [23], as these
factors significantly impact pavement performance but are challenging to quantify and
incorporate into ML models [24,25].

Moreover, open science must be accentuated for rapid and significant scientific
progress. The limited availability of information, data, and models in published articles
presents a barrier to replicating studies, hindering the advancement of the field.

This study conducts a literature review, adhering to the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) guidelines [26] to examine the recent
advancements in ML applications for predicting the IRI of flexible pavements. Recognizing
the critical role of accurate IRI predictions in effective road infrastructure management, this
review synthesizes state-of-the-art methods and highlights challenges, thereby providing a
comprehensive understanding of the current research landscape in this domain.

The main objective of this review is to elucidate the state-of-the-art ML techniques
employed in predicting the IRI for flexible pavements. Accordingly, four research questions
(RQ) were outlined:

RQ 1: What ML algorithms are prevalently utilized in predicting IRI for flexible
pavements?

RQ 2: Which data repositories are most frequently employed for training and eval-
uating ML models within the scope of IRI prediction, and what is their significance in
this context?

RQ 3: What are the essential input parameters that significantly influence the training
efficacy of ML algorithms in accurately predicting IRI?

RQ 4: Which ML models show the greatest potential in accurately predicting IRI for
flexible pavements, and what attributes contribute to their effectiveness?

Accordingly, the research gap addressed in this study is the need for an updated,
comprehensive review that encapsulates recent advancements in ML techniques for IRI
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prediction, specifically for flexible pavements. This study endeavors to answer the afore-
mentioned research questions, focusing on the latest developments in this field.

The paper is structured into five sections. Section 1 provides an overview of the
paper, while Section 2 discusses the background, with particular attention to the pavement
performance model, IRI, and the main ML methods applied to pavements. Section 3
explores the methodology adopted to select and analyze articles for review. Section 4
presents the state-of-the-art techniques for pavement performance prediction using ML.
Finally, the conclusions are in Section 5.

2. Background
2.1. Pavement Performance Models

Pavement performance models (PPMs) are essential tools for predicting the perfor-
mance of road pavements over time [18,27]. Pavement engineers have developed these
models to tackle the challenge of predicting the behavior of complex structures made
of various materials that respond differently to traffic and environmental conditions [3].
The accuracy, scope, and data requirements of PPMs may vary, and high-quality data are
important to maximize their effectiveness.

PPMs are divided into three main categories: mechanistic, empirical, and mechanistic-
empirical [18]. Mechanistic models mathematically model the physics of pavements. Hence,
the model calculates pavement reaction to traffic loads. On the other hand, empirical models
use regression analysis to identify factors such as traffic, weather, pavement age, and others
that impact pavement performance. These models usually use observed data to establish
correlations between inputs and outputs. Therefore, ML-based PPMs are empirical.

Mechanistic-empirical models determine pavement stress and strain responses through
mechanistic analysis and then relate them to pavement performance or deterioration
through regression analysis.

Predicting pavement performance is a crucial aspect of pavement engineering as
it provides insight into how road pavements will hold up under different conditions.
This information is crucial for designing, constructing, and maintaining cost-effective,
durable roads equipped to withstand traffic and weather changes. Therefore, the pavement
performance prediction module is the core of pavement management systems (PMS) [10].

PMS are essential for effectively managing road networks, given the limited funding
available and the need to allocate resources effectively [2,27]. These frameworks pro-
vide decision-making tools and strategies for maintaining the quality of road pavements
throughout their lifecycle, from planning to assessment [1]. The concept of PMS gained
popularity in the 1960s and has since evolved to become the best way to ensure effective
M&R strategies [2].

These tools comprise several modules and manage the entire pavement life cycle,
including data collection and management, pavement condition evaluation, economic
analysis, PPMs, prioritization of M&R activities, and optimization of activities and invest-
ments [1]. The most common components of a PMS include PPMs. These models are
usually based on pavement conditions, traffic, historical data, and environmental con-
ditions. Also, pavements are typically classified based on their current condition using
pavement quality indexes.

Accordingly, a systematic approach is necessary to preserve existing road networks,
starting with pavement condition assessment, performance modeling, strategic planning,
and optimization of M&R activities. This article explores state-of-the-art ML techniques
for IRI prediction and identifies the challenges encountered in the field. By understanding
these challenges and the best practices for IRI prediction, the aim is to provide guidance for
future research.

To ensure that the roads are well-maintained and safe for the users, it is crucial to assess
road pavement performance. There are several methods for evaluating the performance of
road pavements, some of the most common are IRI, pavement condition index (PCI), and
the present serviceability index (PSI).
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The PCI index varies on a numerical scale between 0 and 100, with higher values
indicating better performance. During the initial assessment, the pavement is given a
score of 100, and values are deducted for each type of distress based on its extent and
condition [14].

The PSI is a method for evaluating the current condition of a road based on visual
observations and ranges from 0 (impassable) to 5 (excellent). The PSI considers slope
variance and can be related to roughness performance metrics such as the IRI [28]. The
PSI reflects the overall functional condition of the pavement, with higher values indicating
better performance. It is calculated using a combination of visual inspections, surface
distress measurements, and other data collected by pavement engineers.

2.2. International Roughness Index (IRI)

The IRI mathematically represents a pavement’s longitudinal profile, rooted in the
World Bank’s 1982 Brazil experiment [29]. Serving as a widely accepted metric, IRI quan-
tifies pavement smoothness by calculating the average longitudinal profile, reflecting
surface variations causing vehicle vibrations [29]. This measurement is taken based on the
hypothetical response of a quarter-car moving at 80 km/h [14].

By quantifying a road’s roughness, the IRI provides essential data in a format easy
to compare: meters per kilometer, millimeters per meter, or inches per mile. Figure 1
delineates the relationship between IRI, road pavement quality, and usage.
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Transportation agencies have traditionally used IRI as a threshold for road mainte-
nance decisions [30]. Regular monitoring of IRI values empowers these agencies to pinpoint
declining roads, enabling efficient resource distribution for M&R.
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Also, Table 1 outlines the IRI thresholds, categorizing pavement conditions into good,
fair, and poor. Higher IRI values signify rougher road surfaces, while lower values indicate
smoother pavements.

Table 1. IRI thresholds (adapted from [31]).

Condition IRI (m/km) IRI (in/mi)

Good <1.5 <95
Fair 1.5–2.7 95–170
Poor >2.7 >170

As technology progresses, the methods for collecting IRI data have become increas-
ingly sophisticated and efficient, leading to abundant available data. This proliferation of
information accentuates the importance of having robust and precise models to predict IRI
based on these data.

2.3. Road Pavement Databases

Effective management of road pavements through a PMS depends significantly on
available historical data, which includes a variety of factors such as pavement structure,
M&R history, climate data, traffic, and performance metrics. Highway agencies often
maintain proprietary databases with varying degrees of comprehensiveness.

The critical role of data quality in these databases must be balanced, especially when
developing ML models to predict pavement quality. Focusing on a data-centric approach is
essential in ML applications, as the data used to train models is a critical determinant of
their predictive accuracy [32,33].

The most significant database with highway pavement data is the Long-Term Pave-
ment Performance (LTPP) program, initiated as part of the Strategic Highway Research
Program (SHRP) in 1987. Managed by the Federal Highway Administration (FHWA), LTPP
is the world’s largest and most comprehensive pavement performance database. It includes
more than 2500 pavement sections across North America, with the goal of studying how
pavement performance is influenced by design factors, environmental conditions, traffic
loads, material characteristics, construction quality, and maintenance practices [34].

LTPP programs encompass two integral components: general pavement studies (GPS)
and specific pavement studies (SPS). GPS focuses on the overall performance of various
pavement types using in-service pavement sections, while SPS investigates the impact of
specific factors such as drainage, layer thickness, and maintenance treatments on pavement
performance. This program has facilitated research to understand different M&R strategies,
adapt performance models to local conditions, and optimize maintenance decision-making
processes [34].

2.4. Fundamentals of Machine Learning

Artificial intelligence, specifically ML, is rapidly advancing, propelled by algorithm
innovations, data availability, and heightened computing power [15]. ML is noteworthy
for its capability to predict outcomes without explicit programming [15], offering transfor-
mative potentials in pavement performance prediction. Nevertheless, this transition poses
new challenges [5,6].

Machine learning serves as a robust alternative to traditional methods in pavement
performance prediction, promising improved accuracy and data-driven decision-making.
Furthermore, ML techniques are categorized as supervised, unsupervised, or reinforcement
learning [35], as illustrated in Figure 2.
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Supervised learning, a key facet of ML, focuses on generating predictions from labeled
data. This involves training models with known input–output pairs, allowing the algorithm
to forecast unknown data. These tasks predominantly involve regression, for predicting
continuous values, and classification, for identifying distinct classes [36]. Accordingly,
these algorithms are inherently task-driven.

Conversely, unsupervised learning, another facet of ML, seeks to uncover hidden
patterns in unlabeled data, focusing on pattern recognition and data clustering [37]. Hence,
they function as data-driven algorithms.

Reinforcement learning is distinct, involving an agent that performs actions in an
environment to achieve maximum rewards. It relies on a feedback loop where the agent
adjusts its actions through positive or negative reinforcement to attain optimal results [38].
Consequently, they are designed to learn from mistakes through trial and error.

Supervised learning is particularly effective for tasks requiring predictions or decisions
based on historical data. Then, they are the branch of ML algorithms most used in PPMs.
In analyzing pavement quality through the IRI, algorithms utilize labeled data, associating
pavement conditions (input) with specific target IRIs (output) to predict IRI for unseen
pavement quality.

Popular Algorithms in Pavement Analysis

In pavement management, regression analyzes are frequently employed for forecast-
ing. When incorporating ML, supervised learning algorithms are the choice. This section
will discuss prevalent algorithms for predicting the IRI over time.

The support vector machine (SVM) [39] is a versatile, supervised ML method used for
classification and regression tasks, determining optimal boundaries to segregate different
classes with precision and reliability [39,40].

Artificial neural networks (ANN) [41] are ML models consisting of interconnected pro-
cessing nodes and have been influential in pavement analysis [42]. Deep learning models,
have proven efficacy in pavement-related tasks such as distress detection [22,43–45]. Addi-
tionally, many road management tasks involving visual inputs are likely to significantly
benefit from the capabilities of neural networks [21,45–48].

Decision trees (DT) [49] classify data and make decisions through a hierarchical
structure, where nodes represent features, branches represent possible values, and leaf
nodes signify outcomes.

Progressing from traditional decision trees, ensemble methods [50] in ML combine
multiple models to create a single, more accurate, and reliable predictive model [50]. Specif-
ically, tree ensemble models consolidate predictions from numerous decision trees, improv-
ing precision and stability by balancing out individual errors from each tree. Boosted trees
enhance prediction quality by amalgamating outputs from multiple trees and correcting
preceding trees’ errors, providing comprehensive and accurate predictions for pavement
IRI [51].
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In conclusion, the union of traditional engineering knowledge with advanced ML
models presents an opportunity to increase the quality of road infrastructure, translating
into cost reduction and a better user experience.

3. Methodology

This study’s methodology involved a literature review, focusing on integrating pave-
ment engineering and ML within state-of-the-art research. It specifically sought out articles
that explored the use of ML techniques for modeling and predicting pavement performance,
with a particular focus on forecasting the IRI in flexible pavements. Inclusion criteria were
limited to peer-reviewed articles published within the last five years and written in English.
The specific selection criteria are delineated in Table 2.

Table 2. Criteria applied to select articles in the review.

Inclusion Exclusion

Related to pavement performance prediction Not written in English
Use IRI as a quality index Published before 2018

Train an ML model
Study focused on flexible pavements

Peer reviewed article

The articles were searched in the Scopus database, and the query used was:
TITLE-ABS-KEY ((pavement*) AND (predict* OR model* OR perform*) AND (“ma-

chine learning” OR “artificial intelligence” OR “deep learning” OR “neural network*”)
AND (“international roughness index” OR IRI) AND (flexible OR asphalt)) AND PUBYEAR
> 2017 AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, English)).

Consequently, the search encompassed the title, abstract, and keywords for a range of
the following terms:

• Pavement*;
• Predict* or model* or perform*;
• Machine learning or artificial intelligence or deep learning or neural network*;
• International roughness index or IRI;
• Flexible or asphalt.

It should be noted that the asterisk (*) functions as a wildcard character in the query,
indicating that all variations stemming from the root of the term following this symbol are
to be included in the search results.

The outcomes of this query, along with the proposed framework for article selection
based on the PRISMA guidelines [26], are presented in Figure 3.

After the initial search in SCOPUS yielded 27 articles, we expanded our search through
a snowballing method, adding 41 articles. By examining the reference lists of the selected
articles and any papers that cited them, we identified additional studies that met our
inclusion criteria. Each new paper was subject to the same selection process. Likewise,
papers considered low relevance in the eligibility criteria were discarded for not training an
ML model or for displaying results that significantly differ from those of their counterparts.
In the end, 18 articles were selected for review.

Despite the filters for the previous five years, most selected articles were published
from 2020 onwards, with just one article from 2018 and 2019 meeting the inclusion criteria.
Figure 4 represents the publication years for the articles considered in this review, high-
lighting the focus of state-of-the-art research in predicting the IRI of flexible pavements.
Nonetheless, it is important to acknowledge that this outcome is a consequence of the
specific methodology and query employed in this study rather than an indication of a trend.
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For the chosen articles, relevant information was extracted to address the previously
outlined research questions, namely:

RQ 1: Which ML algorithms are most commonly used in predicting the IRI for flexible
pavements?

RQ 2: What databases are used to train and test ML models in IRI prediction?
RQ 3: What key input parameters are essential for training ML models to predict IRI?
RQ 4: Among the various models, which exhibit the highest potential for accurately

predicting the IRI of flexible pavements?
In addition to answering these questions, the study thoroughly analyzed each article’s

individual contributions and limitations.

4. Machine Learning for IRI Prediction

Studies have demonstrated the ML algorithms’ effectiveness in predicting pavement
performances [9,30,52–67]. Likewise, commonly used algorithms include ANN, SVM and
support vector regression (SVR) [40], adaptive boosting (AdaBoost) [68], random forest
(RF) [69], gradient boosting decision trees (GBDT) [70], categorical boost (CatBoost) [71],
and ensemble models [50].

Over the years, several applications using ANN architectures have been introduced to
predict IRI. Hossain et al. [54] used ANN to predict the IRI. Further, Abdelaziz et al. [30]
developed an IRI prediction model for flexible pavements using ANN and MLR analysis.
Moreover, Zeiada et al. [55] support that ANN was the most accurate in predicting pave-
ment performance in warm climate regions compared to conventional regression methods.

Likewise, Gharieb et al. [58] developed two ANN models for double bituminous
surface treatment (DBST) and asphalt concrete (AC) pavement sections within the Na-
tional Road Network (NRN), using the Laos PMS database to predict IRI by analyzing
only pavement age and traffic load, surpassing traditional MLR methods. Furthermore,
Abdulaziz et al. [30] developed ANN models that accurately predict the IRI by analyzing
the effects of pavement distress across two climate regions in North America.

Applications of the RF algorithm for predicting the performance of pavements have
demonstrated promising results. Gong et al. [52] suggested using RF to predict IRI
values and found it more accurate and precise than linear regression. Additionally,
Marcelino et al. [59] raised a systematic approach to develop prediction models in PMS by
evaluating different versions of the RF algorithm and prioritizing the generalization perfor-
mance. Later, Naseri et al. [60] advanced by synergizing RF and the whale optimization
algorithm (WOA), achieving enhanced accuracy in predicting the IRI and realizing more
efficient, cost-effective pavement maintenance optimization than traditional models.

Some authors compared different models for pavement performance prediction.
Sharma et al. [66] compared five models, including GBDT, ANN, extremely random trees
(XRT) [72], generalized linear model (GLM) [73], and RF. Their findings indicated that
GBDT outperformed the other models. The study emphasized the crucial role of weather
factors in predicting pavement performance. Further, Zeiada et al. [55] studied asphalt
pavement in warm climates, pinpointing seven key design factors. They compared ML tech-
niques, including DT, SVM, ensembles boosted trees (EBT), GPR, and ANN to traditional
regression. ANN was the most accurate, with different environmental factors influencing
performance in warm versus cold regions.

Likewise, Luo et al. [61] compared four models—GBDT, XGBoost, SVM, and MLR—to
determine the best PPM, finding that GBDT was superior. Sandamal et al. [63] employed
five ML models—k-Nearest Neighbor (kNN) [74], SVM, DT, RF, and XGBoost—to predict
the IRI of pavements on Sri Lankan arterial roads. Focusing on pavement age and cumu-
lative traffic volume as the only predictors, they found that these models outperformed
traditional techniques.

Notably, RF emerged as the most effective. The study also integrated Shapley Additive
exPlanations (SHAP) [75] to explain the feature importance. Naseri et al. [65] examined
four algorithms—DT, SVM, RF, and ANN—for IRI prediction. The study also introduced a
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hybrid feature-selection technique using arithmetic optimization algorithm and stochastic
gradient descent regression (AOA-SGDR) to streamline the initial set of 58 variables.

Marcelino et al. [9] proposed a transfer learning approach using the AdaBoost algo-
rithm (TrAdaBoost) [76] to enhance the accuracy of pavement performance prediction
models in scenarios with limited data. Likewise, Wang et al. [53] used the AdaBoost to
outperform the mechanistic-empirical pavement design guide model (MEPDG) linear ap-
proach in predicting road roughness. Subsequently, Guo et al. [57] proposed an ensemble
learning model utilizing LightGBM to predict IRI and Rut Depth (RD). Their findings
illustrated that LightGBM was more effective than ANN and RF.

In a related study, Zhang et al. [67] employed GBDT to predict IRI, rutting, fatigue
cracking, transverse cracking, and longitudinal cracking, while also identifying critical
factors for overlay performance, with pre-overlay rutting and transverse cracking emerging
as key determinants of overlay durability. Damirchilo et al. [56] explored predicting IRI
for asphalt pavements through ML techniques and determined that eXtreme Gradient
Boosting (XGBoost) [77] was the best-performing model.

Song et al. [62] proposed an ensemble learning model based on Thunder Gradient
Boosting Machines (ThunderGBM) [78] to predict the IRI of flexible pavements. They
improved feature interpretation by using the SHAP method. The findings indicated that
their proposed model outperformed the MEPDG, ANN, and RF models. To summarize the
studies, the content of the analyzed articles is presented in Table 3.

Table 3. Summary of studies on IRI prediction using machine learning.

Author Title Contributions

Gong et al. [52] Use of random forests regression for
predicting IRI of asphalt pavements.

Recommends using RF to predict IRI values and shows its
accuracy with high R2 and low RMSE scores compared to

LR. Highlights the initial IRI as the critical factor.

Marcelino et al. [9] Transfer learning for pavement
performance prediction.

Proposes a transfer learning method with the AdaBoost
algorithm for pavement performance prediction with

scarce data.

Wang et al. [53]

Adaboost algorithm in artificial
intelligence for optimizing the IRI

prediction accuracy of asphalt
concrete pavement

Developed an AdaBoost model to improve IRI predictions,
surpassing the MEPDG’s linear regression approach.

Hossain et al. [54]
International roughness index prediction

of flexible pavements using
neural networks.

Introduces an ANN model for IRI prediction using climate
and traffic data. Results demonstrate low RMSE and
accurate prediction in various United States climates.

Abdelaziz et al. [30] International roughness index prediction
model for flexible pavements.

Introduces an improved IRI prediction model for flexible
pavements using regression analysis and neural networks.

Zeiada et al. [55]
Machine learning for pavement
performance modelling in warm

climate regions.

The study demonstrates ANN modeling’s superior accuracy
over other ML methods and traditional regression,

emphasizing distinct environmental impacts between warm
and cold regions.

Damirchilo et al. [56]
Machine learning approach to predict
international roughness index using

long-term pavement performance data.

An XGBoost based approach is introduced to predict IRI
and its performance was superior compared to SVR and RF.
The study used LTPP data and found key factors affecting

predictions, such as No.-200-passing, hydraulic
conductivity, and KESAL.

Zhang et al. [67]
Analysis of critical factors to asphalt
overlay performance using gradient

boosted models

The research identified the critical variables for the
evolution of overlay performance using GBDT.

Guo et al. [57]
An ensemble learning model for asphalt
pavement performance prediction based

on gradient boosting decision tree.

The study introduces an ensemble learning model using
LightGBM to predict two functional indices, IRI and RD.

This model performs better than ANN and RF.
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Table 3. Cont.

Author Title Contributions

Gharieb et al. [58]
Modeling of pavement roughness
utilizing artificial neural network

approach for Laos national road network.

Presents two ANN models that accurately forecast the IRI
for DBST and AC pavements.

Marcelino et al. [59] Machine learning approach for pavement
performance prediction.

Presents a ML method for pavement performance
prediction, focusing on making the model applicable in
different situations. It includes a case study using RF to

predict 5–10 years of IRI using data from the LTPP.

Naseri et al. [60]

A newly developed hybrid method on
pavement maintenance and rehabilitation

optimization applying whale
optimization algorithm and random

forest regression.

This study presents a novel hybrid method for optimizing
pavement maintenance using RF, WOA, and GA,

significantly outperforming traditional models in accuracy
and cost-efficiency.

Luo et al. [61] Prediction of IRI based on stacking
fusion model.

The study suggests a stacking fusion model improves
pavement performance prediction. The model combines

GBDT and XGBoost with bagging as meta-learners.

Song et al. [62]

An efficient and explainable ensemble
learning model for asphalt pavement

condition prediction based on
LTPP dataset.

The paper introduces a model to predict the IRI of asphalt
pavements. It uses ThunderGBM and SHAP to achieve

higher accuracy and better feature interpretation.

Sandamal et al. [63]

Pavement roughness prediction using
explainable and supervised machine

learning technique for
long-term performance

RF offered the most accurate predictions compared to kNN,
SVM, DT and XGBoost. Furthermore, these authors

introduced SHAP to explain the importance of the resource.

Abdualaziz et al. [30]
Application of artificial neural network
technique for prediction of pavement
roughness as a performance indicator.

Developed ANN models to predict IRI by analyzing
pavement distress effects across two climate regions (wet

freeze and wet freeze) in North America.

Naseri et al. [65] Novel soft-computing approach to better
predict flexible pavement roughness.

Introduced an AOA-SGDR method for features selection
from 58 initial variables.

Sharma et al. [66] Predicting IRI using machine
learning techniques.

GBDT performs the best. The paper also highlights the
importance of weather factors.

Note: AC = Asphalt Concrete; AdaBoost = Adaptive Boosting; AOA-SGDR = Arithmetic Optimization Al-
gorithm and Stochastic Gradient Descent Regression; ANN = Artificial Neural Networks; DBST = Double
Bituminous Surface Treatment; GA = Genetic Algorithm; GBDT = Gradient Boosting Decision Tree; IRI = Inter-
national Roughness Index; KESAL = Cumulative Traffic Load; kNN = k-Nearest Neighbors; LightGBM = Light
Gradient-Boosting Machine; LR = Linear Regression; LTPP = Long-Term Pavement Performance Program;
MEPDG = Mechanistic-Empirical Pavement Design Guide; R2 = R-squared; RD = Rutting Depth; RF = Ran-
dom Forest; RMSE = Root Mean Square Error; SHAP = SHapley Additive exPlanations; SVR = Support Vector
Regression; WOA = Whale Optimization Algorithm; XGBoost = eXtreme Gradient Boosting.

In the reviewed studies, ANN models were found to use fewer training features com-
pared to other ML models. This is a significant aspect of ANN in pavement performance
prediction. Additionally, ANN are less interpretable; they function as ‘black boxes’, effec-
tively processing and learning from data for predictions or classifications. However, unlike
more transparent models like decision trees or ensemble methods, deciphering how ANN
use specific input characteristics to make predictions is more challenging.

Key findings in Table 3 include identifying crucial factors affecting IRI, such as traffic,
climate, pavement structure, and specific characteristics like hydraulic conductivity. Also,
some studies focus on particular contexts, like warm climates or different pavement types,
revealing the adaptability of ML models. Several studies employ ensemble learning and
ensemble methods, combining different models for enhanced prediction accuracy. Overall,
these studies highlight the evolving landscape of ML applications in pavement performance
prediction, showcasing advancements in accuracy, interpretability, and efficiency.

Table 4 summarizes the model’s formulation, including the models, data source, and
training features. This table categorizes four features: M&R history, traffic, structure,
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and climate. These features consolidate information about pavement, including records
of maintenance and rehabilitation activities, traffic conditions, structural capacity, and
exposure to various environmental conditions.

Table 4. Overview of machine learning models in the reviewed literature.

Author Year Models Data Source
Contributions

M&R Traffic Structure Climate

Gong et al. [52] 2018 RF LTPP X X X X
Marcelino et al. [9] 2019 AdaBoost LTPP X X X

Wang et al. [53] 2021 Adaboost LTPP X X X
Hossain et al. [54] 2019 ANN LTPP X X

Abdelaziz et al. [30] 2020 ANN LTPP X X
Zeiada et al. [55] 2020 DT, SVM, EBT, GPR, ANN LTPP X X X

Damirchilo et al. [56] 2020 XGBoost LTPP X X X X
Zhang et al. [67] 2020 GBDT LTPP X X X
Guo et al. [57] 2021 LightGBM LTPP X X X

Gharieb et al. [58] 2021 ANN NRN X
Marcelino et al. [59] 2021 RF LTPP X X X X

Naseri et al. [60] 2022 RF LTPP X X X X
Luo et al. [61] 2022 GBDT, XGBoost, SVM LTPP X X X
Song et al. [62] 2022 ThunderGBM LTPP X X X X

Sandamal et al. [63] 2023 kNN, SVM, DT, RF, XGBoost Proprietary 1 X
Abdualaziz et al. [64] 2023 ANN LTPP

Naseri et al. [65] 2023 DT, SVM, RF, ANN LTPP X X X
Sharma et al. [66] 2023 GBDT, ANN, XRT, GLM, RF LTPP X X X

Note: 1 Sri Lankan Arterial Roads; AdaBoost = Adaptive Boosting; ANN = Artificial Neural Networks;
DT = Decision Tree; EBT = Ensembles Boosted Trees; GBDT = Gradient Boosting Decision Tree; GLM = Gen-
eralized Linear Model; GPR = Gaussian Process Regression; kNN = k-Nearest Neighbors; LightGBM = Light
Gradient-Boosting Machine; LTPP = Long-Term Pavement Performance; RF = Random Forest; SVM = Support
Vector Machines; ThunderGBM = Thunder Gradient Boosting Machine; XGBoost = eXtreme Gradient Boosting;
XRT = Extremely Random Trees.

In the models analyzed, a majority utilize data on traffic, with 89% of the studies incor-
porating this variable, while climatic factors and pavement structures are considered in 78%.
This wide usage reflects a holistic approach to integrating diverse yet influential factors, un-
derscoring the collective recognition of their importance in accurately predicting pavement
conditions. Conversely, historical M&R data appear less frequently, integrated in only 33%
of the studies, suggesting its relatively lower prevalence in current research models.

Figure 5 displays a boxplot illustrating the R2 results of the models.
Correspondingly, some of the key points regarding Figure 5 are:

• It includes only test sample results;
• Each study considered may have different contexts and scopes;
• Models may have diverse training data;
• Only the best results are represented, as specifically cited in the studies;
• The sample of studies analyzed is relatively small (17 articles).

Due to the differences in training data and hyperparameters among models, creating
a direct and equitable comparison between them is challenging. Therefore, the represen-
tation aims to highlight current trends and provide insight into each model’s results in a
generalized manner. Also, in this article, only the results of models qualified as best by the
authors of the reviewed documents are analyzed; preliminary findings or variations are
not included.
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Likewise, Figure 6 presents the algorithms used in the literature reviewed by year.
Furthermore, models such as random forest, XGBoost, LightGBM, Adaboost, GBDT, EBT,
and ThunderGBM are grouped under ‘Ensemble and Boosted Trees’. Furthermore, models
appearing only once are grouped and labeled ‘Others’.
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The data indicates that the use of boosting tree models for pavement performance
prediction has become state-of-the-art (Figure 6). For instance, Damirchilo et al. [56]
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determined that boosting tree models are the most effective in predicting IRI for flexible
pavements, a conclusion also supported by [61,66].

Figure 5 also illustrates the observed trend, indicating that a plateau appears immi-
nent, with R2 results with the values getting stuck close to 0.95. Achieving such accuracy
implies that subsequent enhancements are likely to be incremental. Nonetheless, opportu-
nities remain for innovation, particularly in improving the usability and interpretability
of models.

According to Shwartz-Ziv and Armon [79], boosting tree models like XGBoost are
often recommended for prediction problems involving structured data, like tables, as they
effectively handle this type of data. Outperforming ANN in these instances.

Machine learning models have outperformed traditional models, such as MLR, in
pavement performance prediction. Bashar and Torres-Machi [24] found that ML models,
on average, captured 15.6% more variability than traditional methods. Although ANN has
been applied with excellent results for predicting pavement performance, studies suggest
that tree ensemble models are often better for structured data [71,77,79,80].

In addition, explainability is one of the major challenges in using neural networks.
The complex architecture of ANN makes it difficult to interpret their predictions and
understand how they arrived at a particular conclusion.

Authors like Song et al. [62], Yao et al. [10], and Sandamal et al. [63] have used the
SHAP method to improve their models’ interpretability and better understand the factors
driving their predictions. They could identify the most important features using SHAP and
understand how they contributed to the predictions. Meanwhile, simple models are often
better for prediction problems where explainability is essential.

Lastly, the outcomes showcased by the models highlight the significant potential of
utilizing machine learning techniques for accurately predicting the IRI of flexible pavements.

4.1. Challenges in IRI Prediction with Machine Learning

Despite the promising results of using ML to predict pavement performance through
IRI, several challenges must be addressed. This subchapter will discuss the challenges
associated with using ML for IRI prediction on flexible pavements.

A major challenge is obtaining high-quality data for model training. Pavement per-
formance data is often collected manually or semi-automated, leading to time-consuming,
costly, and inaccurate results [20–22]. Then, to create ML models that work well for a
broad range of situations, it is crucial to standardize the collection, handling, storage, and
accessibility of the data.

Another obstacle to accurate pavement performance prediction using ML is the vari-
ability that arises from external factors such as temperature, precipitation, and traffic
loads [23]. These factors significantly affect pavement performance, but they are chal-
lenging to quantify and include in ML models [24,25]. Moreover, the complexity of the
relationships between inputs and outputs make it challenging to create effective models in
various regions and contexts.

A further challenge lies in the interpretability of ML models. Understanding the
relationship between the input variables and pavement performance is hard. This point
reinforces the option of bypassing ANN. This interpretability is important for road agen-
cies because they need to understand the factors that impact pavement performance to
decide how they allocate their resources. Additionally, the lack of interpretability lim-
its the transparency of the ML models, making it difficult to assess their reliability and
validity [81–83].

Furthermore, the computational cost of training and using ML models must be ad-
dressed. This is especially problematic for large datasets or for models that have a large
number of inputs and outputs. In addition, the large number of parameters that need to be
optimized often leads to overfitting, where the model becomes too complex and cannot
generalize well to new data.
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In addition, a leading demand in ML for pavement performance prediction is the need
for a standard dataset. This makes it difficult to benchmark different models, even using
the same data source, such as the LTPP database. This is because different studies use
different sections, years, and features, making it almost impossible to compare the models.

Replicability is a crucial aspect of scientific research, as confirmed by Zwaan et al. [84].
In line with this principle, independent verification of data, models, and methods is essen-
tial for scientific advancement [85]. Unfortunately, many analyzed articles need more infor-
mation on their methods, only mentioning the models and some key parameters. Moreover,
most do not provide simple access to their data, opting to state that it is “available upon
request”. Few make their models available, making replication of results, confirmation of
findings, and continuation of research extremely difficult.

In conclusion, while ML holds substantial promise for pavement performance pre-
diction, several challenges must be addressed to optimize its reliability and effectiveness,
ensuring the advancements effectively reach transportation agencies.

4.2. Future Research

Based on the literature review, the areas that hold the most promise for research into
employing ML for predicting pavement performance of flexible pavements, specifically
focusing on the IRI, include:

• High-quality and standardized datasets: One of the major challenges in using ML for
pavement performance prediction is the availability of high-quality data for benchmark
models. Future research should focus on developing an extensive, standardized, high-
quality database.

• Interpretable models: Research should focus on developing interpretable models that
provide insight into the relationships between the inputs and the outputs.

• Variability of pavement performance: The variability from diverse environmental
factors presents a significant challenge. Future research should focus on developing
models proficient at managing and adapting to the complexity and variability inherent
in pavement performance.

• Computational efficiency: Research should focus on developing computationally
efficient models that can handle large datasets and consume less resources.

• Complexity: Different stakeholders have shown interest in using AI. However, com-
plexity is a limiting factor. Future research should focus on simplifying the use of the
models and improving their explainability.

In conclusion, employing machine learning for pavement performance prediction
improves road infrastructure management. To fully realize the potential of this research
field, focused and coordinated efforts are essential for maximizing its impact.

5. Conclusions

This research evaluated the application of ML techniques for predicting road pave-
ment quality using the IRI for flexible pavements. The study found that the data most
frequently used to train ML models for IRI prediction includes M&R history, traffic, pave-
ment structure, and climatic conditions. Traffic data was prominent, used in 89% of the
studies, while pavement structure and climatic factors featured in 78%. In contrast, M&R
history was less commonly used, appearing in only 33% of the articles.

Recent progress in predicting IRI for flexible pavements highlights the effectiveness of
ML models, particularly ensemble and boosted tree models. These models gained promi-
nence due to their accuracy, being state-of-the-art in IRI prediction. Its popularity stems
from its ability to efficiently and accurately manage complex pavement performance data.

Addressing challenges in using ML for pavement performance prediction requires
focusing on developing high-quality, standardized datasets. The LTPP database is the
most utilized source in the reviewed studies. However, the absence of specific benchmarks
within this database highlights the need for refined and standardized data frameworks
to enhance model evaluation and evolution. Establishing benchmarks, akin to those in
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computer vision, could drive progress in pavement management, allowing for adequate
model comparisons. An annual benchmark using data from the LTPP program could serve
as a standard for evaluating and developing models.

The importance of replication for scientific advancement is undeniable, but pave-
ment performance prediction faces obstacles due to restricted data sharing and a lack
of transparency in methodologies. The limited availability of public data and models
poses significant challenges for replicating studies. Embracing open science principles can
significantly bolster cumulative research efforts, thereby reducing the need for each new
researcher to start from scratch.

ML provides a transformative approach for IRI prediction, significantly enhancing the
management of road infrastructure. Looking ahead, research should focus on developing
high-quality, standardized datasets, and interpretable models. Addressing the variability
in pavement performance caused by environmental factors, enhancing computational
efficiency, and simplifying model complexity will make these tools more accessible and
useful across a broader range of applications.

In conclusion, using ML effectively in predicting pavement performance can signifi-
cantly improve road infrastructure management. Focused and coordinated efforts are vital
to maximize the impact of this research field.
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