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Abstract: The maintenance of the ballast substructure is an important cost-driver for railway systems.
The problem is that today’s condition monitoring methods are insufficient to collect detailed data on
the compaction and stress allocation inside the ballast bed. That makes it challenging to improve
the maintenance technology and organization. This study aimed to investigate the applicability of
the ultrasound method for analyzing the state of stress of sand-soil and the relation between the
residual stress and wave propagation velocity. The experiments on the sand in a box with different
allocations of the ultrasonic receivers and pressure measurement cells were produced under different
external loading. In addition, the vertical and horizontal stress distributions were measured. The
results showed a correlation between the test load, the state of stress, and the ultrasound propagation
velocity. Moreover, the residual stresses after the loading cycles were analyzed.
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1. Introduction

The railroad system is often discussed in society, politics, and expert groups since it is
considered essential for future mobility concepts and climate protection. It increases the
motivation to improve the systems’ technical and economic efficiency.

This study focuses on the track substructure. It can be classified into two general
designs: ballasted [1–4] and un-ballasted (ballastless) tracks [5–7]. Although the ballasted
track is the conventional solution, it still has some advantages compared to modern un-
ballasted systems. Ballasted tracks have a lower initial cost and lower noise emission, and
the position and height of the track are easily corrected. Nevertheless, ballasted tracks
have high maintenance costs, which is a significant disadvantage. Since the ballast bed
is a flexible construction on which the track panel is floating, settlements can occur. The
inhomogeneous share then causes deviations in the position and level of tracks, and if the
corresponding limit values are reached, operational restrictions are necessary to ensure
safety. The intensity of track settlement is affected by a variety of parameters, e.g., the
appearing static and dynamic axle load, the type of sleeper that is used, inhomogeneous
grain distribution, occurring excitation frequencies, moisture, ballast particle shape, the
ballast grading curve, ballast material, and the pollution of the track bed [8]. Track geometry
failures and deterioration of the ballast layer also have influence on the infrastructure
operation costs due to traction energy loss [9].

The track geometry deterioration can be detected by using a measuring car or smaller
trolleys [10]. Calculating the settlement and collecting information about the track bed
geometry is possible. (However, it must be mentioned, the so-called DIC—Digital Image
Correlation—method could be also available for this railway track geometry measurement
procedure [11–14]). There are also some indicators leading to information about track bed
pollution. Available technologies are, e.g., arrow height measurement, camera systems, and
ground penetration radar. The track geometry correction is realized by regular tamping
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operations about every 4–5 years and less frequently, by cleaning or complete renewal of
the track [8,15].

It can be stated that ballast maintenance, especially the often-performed tamping
process, is a cost driver and factor for the economic efficiency of railway systems. Thus, the
research of the factors influencing the deterioration process has an optimization potential
for maintenance improvement [16]. The following paragraphs provide a literature review
of the state of the science.

The detection of deterioration can be improved by using modern, non-destructive, and
automatable measuring methods. In [17], different non-destructive options were compared.
The high potential was ascribed to ground penetrating radar, falling weight deflectometer,
and the impulse response principle.

The maintenance process itself is the object of investigation by many publications.
DEM (discrete element method) is a standard method to investigate optimization potential:
the study [18] showed that the efficiency of tamping varies for different sleeper types and
tamping pick positions. The study [19] showed that the different pick-tamping phases have
optimal frequencies and penetrations speeds, and [20] confirmed, among other findings,
that the most effective vibration frequency for ballast is 35 Hz. Application of numeric simu-
lation methods like DEM and FEM [2–4,21,22] could potentially improve the understanding
of the mechanical processes in railway tracks. In [21], experiments showed that the pollu-
tion degree impacts the pick-tamping’s effectiveness. In [22], different tamping methods
were compared, and the effectiveness of side tamping was analyzed in an experimental
setup using FEM (finite element method) and photogrammetry.

The present study focuses on detecting deterioration since this is mandatory to collect
more data on the track condition, compare the efficiency of maintenance technologies, and
improve the maintenance cycle. It was decided to investigate the ultrasound method in
an experimental setup since it is one of the most common non-destructive methods in
other disciplines like medicine or materials science. Furthermore, in [23] a disk transducer
for measuring elastic waves on coarse-grained material as a geotechnical application was
developed.

The relation of stress in granular media to elastic wave propagation is considered
in the following papers. The influence of the stress history on wave velocities is studied
in [24,25] using DEM simulations. The results show that P- and S-wave velocities increase
under oedometric compression with confining pressure following a power law; the wave
velocities vary slightly with the input frequency.

The papers [26,27] present experimental studies of elastic wave velocities in soil
samples with different void ratios and stresses. The results showed that the increment of
the normal stress component significantly influences compression wave velocity compared
to shear wave velocity. The relation to the confinement stress is linear.

The studies [28,29] present numeric investigations of factors influencing wave prop-
agation in dry granular materials with the help of DEM modeling. The elastic moduli
and Poisson’s ratio of each packing were obtained by compression using pressure and
shear wave velocities. A linear relationship has been identified between the coordina-
tion number normalized by contact force and the elastic moduli normalized by confining
pressure. Furthermore, it was obtained that an increase in the aspect ratio of particles
leads to a notable increase in the elastic shear and pressure wave velocity. In contrast, for
non-spherical particles with a given aspect ratio, an increased particle blockage causes a
moderate reduction in wave velocity.

DEM modeling to simulate triaxial compression experiments was used in the study [30].
The spherical particles with four samples isotopically confined were applied at various
initial packing densities and then sheared monotonically up to the critical state. The results
showed that the major principal stress influences pressure wave, whereas the geometric
mean stress and the mean coordination number influence the shear wave velocity more.

A shear-wave velocity-based constitutive model with critical state soil mechanics
is presented in [31] to predict the undrained triaxial behavior of fine-grained sediments.
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The laboratory tests were done for sediment samples ranging from silt-predominant to
clay-predominant sediments. A power function was supposed to describe the relationship
between mean effective stress and shear-wave velocity. Most of the presented studies are
based on DEM modeling, which is characterized by an intensive calculation process that
limits its application to relatively small samples.

Other approaches to numerical wave propagation studying the whole superstructure
are described in [32–34]. The presented studies on wave propagation relation in granular
media showed the homogenous stress distribution. The railway ballast is subjected to the
locally inhomogeneous stresses that cause the corresponding wave propagation effects.

Application of elastic under sleeper pads (USP) or unde-ballast mats UBM mats [35–39]
could potentially have a high impact on stress distribution and, first of all, on accumulation
of the residual stresses in the ballast layer. The study [40] presents an estimation and
explanation of the mechanism of the residual stress accumulation in the ballast layer after
the cyclic loading.

The presented literature review demonstrates some approaches for ultrasound testing
of granular soils. However, the approaches are different measurement and excitation
systems that on one side, cannot be exactly replicated in further studies and, on the other
side, are not suitable for the present engineering application. Thus, the development
of the ultrasonic measurement system for railway ballast testing is necessary. Another
shortcoming of the previous studies on wave propagation’s relation to soil stresses is that
the studies usually consider the homogenous stress distribution. However, the railway
ballast is subjected to locally inhomogeneous stresses.

The present research aims to study the relation of the wave propagation velocity in
the sand to the stressed state distribution in the medium using the developed ultrasonic
measurement system and stress measurement one. In addition, the aspects of the local
inhomogeneity of the wave propagation and stress distribution are considered. The sand
material was used to test the system and the fundamental relations before the future
application to the real ballast material.

2. Laboratory Measurements

The measurement setup consisted of three systems: the externally controlled loading
device, the ultrasound measurement system, and the stress measurement system.

As a pressure hull, a wooden box (inside dimensions: 35 × 35 × 40 cm) with a stamp
was constructed and mounted in a ZWICK HB 160 servo-hydraulic press, in which the
external loading cycle was performed. The box was filled with sand and contained the
ultrasonic transmitter, ultrasonic receivers, and pressure measurement cells. To allow the
transmitter to work independently of the test load, it was installed in a cavity in the stamp
supported by a spring. The compression way and the adjusted test load were recorded.

The sand-soil material consists of angular quartz particles with size 0.5–1.5 mm with
the bulk density 1650 kg/m3 and the friction angle 32◦. The material was considered in the
dry state.

It was decided to use a NBL45402H-A transducer (h: 53.5 mm, Ø45 mm) with a
maximum allowable power of 50 W and a weight of 240 g because it is a robust system
that allows for generating high impulse amplitudes. Usually, transducers of this type are
used as cleaning equipment. Ultrasonic receivers of type A-14P20 (h: 6 mm, Ø14 mm)
were located in five positions inside the box: in the sidewalls and on the bottom. For this
measurement, only three of the five sensors were used. The sensor type was selected for
the measurement due to its small size, low purchase price, and adequate performance in
prior experiments.

The electronic transmitting unit was used to create ultrasonic impulses and consisted
of an Arduino Uno microcontroller and an amplification system to power the transmitter
with impulse voltage 0 . . . 500 V. The impulses had a 13 µs length and were emitted every
50 ms. The signal was transported to the transmitter using a shielded cable. The ultrasound
sensors received the ultrasound signal, transferred to the receiving unit by a shielded cable,
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amplified, and then recorded with an L-CARD E-502 DAC-system connected to a computer.
The sampling rate was set to 500 kHz and the sampling time to 0.6 s. Two channels were
used simultaneously: one was connected to the transmitting unit to record the transmitting
signal, and the other was used to sample one ultrasound sensor. Although it would have
technically been possible to record multiple signals in one measurement, it was decided to
sample them sequentially to reduce problems with electromagnetic interferences. Figure 1
shows a schema and a drawing of the components of the measuring system. Figure 2 shows
photos of the transmitting and receiving unit.
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Figure 2. (a) Receiving unit with LCARD E-502 system, (b) Transmitting unit with microcontroller
and booster unit.

The stress measurement system was realized by eleven pressure measurement cells
based on strain gauge technology installed inside the box. A DAQ system QuantumX was
used to calibrate and read the pressure cells. Figure 3 shows the stress measurement system.
In the drawing on the right side, it becomes apparent that the pressure has been measured
at six positions, in most cases in both the horizontal and the vertical direction.
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(c) QuantumX DAQ system.

Figure 4 shows the experimental setup during the test procedure. On the left side the
servo-hydraulic press with its stamp and under it the box is pictured as well as the operator
station with the computer and the electronic equipment. On the right side, the inside of the
box is shown with the pressure and the ultrasound sensors. The central pair of pressure
sensors were held in place using a mesh wire.
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Figure 4. (a) Measuring station at the ZWICK HB 160 testing machine, (b) Interior view of the test box.

The test program started with a consolidation phase in which the sand was shacked at
frequencies between one and 20 Hz. After that, the two main test cycles were performed
with variations of the test load between zero and 2.5 kN, as shown in Figure 5.
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Figure 5. External loading steps for the sand test cycles with loadings up to 2500 N.

The recorded ultrasound data were preprocessed and analyzed using MATLAB [41].
By smoothing the signal, calculating its first derivative, and identifying the instant of time
of the impulse and its receiving signal, it was possible to calculate the wave propagation
time. Figure 6 shows a typical recording of piezo receivers under two different loadings.
First, the starting impulse leaves a short electromagnetic impact visible on the chart’s left
side. Then, the signal is received after a break corresponding to the propagation time.
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Figure 6. Examples for ultrasound measurement records with (a) 2000 N and (b) 2500 N loading.

3. Analysis and Interpretation
3.1. Local Pressure

Figure 7 compares the vertical and horizontal tensions that were measured for each
step of the test program using diagrams. All the vertical tensions showed a substantial
increase in response to an amplification of the test load, while the horizontal tensions
on the bottom remained almost constant. On the first level (h1 = 0.2 m) the horizontal
tensions acted as inversely proportional to the test load. This effect can be highlighted by
calculating the mean vertical and horizontal tensions and plotting them over the test load,
like in Figure 8. Figure 9 visualizes the tension distribution in 3D, which helps understand
local dynamic variations of tension. On the bottom, the highest tension was measured in
the vertical direction in the center. At this position, the highest values without loading
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appeared, but the increase due to the load was the smallest among the vertical tensions.
At the front and the rear position on the bottom, the vertical and the horizontal tensions
remained low. On the first level, the opposite situation arose. The highest tensions were
measured on the rear and the front.
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The 2D representation of the relative stresses in sand during the first load cycle for
both vertical and horizontal stresses in the cross-section of the box is presented in Figure 10.
The color intensity of lines corresponds to the stress intensity (with the darkest shade
corresponding to the 2500 N level). Figure 10a shows that the vertical stresses increase
together with the increment of the external loading, and stay relatively homogenous in
the middle measurement plane. However, the inhomogeneity of three local vertical stress
distribution appear at the bottom measurement plane. Thereby, the horizontal stresses
distribution (Figure 10b) on the middle plane has a similar inhomogeneity as the vertical
stresses, but almost no relation to the vertical loading.
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Figure 11 shows the path measurement from the servo-hydraulic press as a function
of the test load. The figure contains all loading and unloading steps. Since no hysteresis or
trends are visible, it indicates a linear relation between test load and compaction.
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Some more information can be gained by analyzing the residual stress distribution.
Since pressure has been measured with zero loading at different steps of the test cycle,
these steps can be compared. Of interest is how much the residual tensions increased due
to the shaking (σ4-σ3), after the first cycle (σ14-σ4) and after the second cycle (σ24-σ14). The
results are displayed in Figure 12. Again, high values were calculated for the bottom plate’s
center and front and rear walls on the first level. It is interesting to note that the remaining
horizontal tensions were dominant on the sidewalls. It can be assumed that a settlement
appeared in the center, which would explain the high residual tension in this spot and that
it reacted less dynamically compared to the other vertical tensions. The remaining high
tension on the first level’s sidewalls supports the assumption that the sidewalls absorbed
much mechanical energy through friction.
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These observations lead to some conclusions regarding mechanical processes inside
the box:

• The energy from the stamp was converted into a vertical, elastically movement of sand
soil, as shown in Figure 11.

• On the sidewalls, the movement energy was mainly consumed by friction with the
wooden walls since high vertical dynamic in combination with pronounced horizontal
tensions appeared in these spots. In the center, the movement energy caused a high
material pressure which can be concluded from the reduction of the dynamic and the
rising static share in tension from top to bottom.

• The distribution of tension was inhomogeneous.

3.2. P-Wave Propagation Velocity

As shown in Figure 6, the transit time between the ultrasound impulse and the received
signal was measurable. The distance between the transmitter and sensor was calculated for
each step of the test program considering the known geometry of the box and the current
measured compression (Figure 11). From these two quantities, it was possible to calculate
the wave propagation velocity c and display it over the measured test load in Figure 13. A
correlation c(F) between the test load and the wave propagation velocity becomes visible.
The correlation coefficient between F and c depends on which receiver and which phase of
the test program is considered. The average value is 0.9478; the lowest is 0.8565, and the
highest is 0.9826. A hysteresis between loading and unloading is on hand. The hysteresis
can also be observed in Figure 8, which shows the mean vertical and horizontal tensions in
dependence of the test load. It indicates that a connection between the state of stress and
the p-wave velocity is likely to exist. However, it was not possible to find a quantifiable
correlation c(σ) between the state of stress of sand and the p-wave speed, because there
were not enough sensor positions to understand the complex stress allocation inside the box.
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Figure 13. P-wave velocity depending on the test load.

4. Discussion

Developing a non-destructive method for testing ballast compaction quality and thus
reducing the deterioration process using optimizing the maintenance technologies has
great potential for saving the maintenance costs of railroads.

The experiments showed a strong correlation between the applied load on the test
material and the ultrasound wave propagation speed inside the material, which corre-
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sponds to the studies [24,26–31]. However, unlike previous studies, the determined relation
of the vertical wave propagation to the stresses and loadings is not linear (Figure 13) in
the initial loading region. The relatively low external loading can explain the behavior
compared to the gravitational one that initially causes the growing vertical stress and wave
velocity distribution. After the external loading increases, the differences in vertical stress
distribution decrease. It causes a more linear relation to the vertical wave propagation
velocity. Another reason for the nonlinear behavior could be the inhomogeneous stress
distribution in the horizontal direction. The distributed stress measurements have shown a
high inhomogeneity of stresses at the bottom of the box despite the relatively homogenous
pressure application at the top surface of the sand layer. An additional research finding
concerns the loading cycles: residual stresses accumulate in the sand sample during the
loading cycles and wave propagation velocity increased in the unloaded state. The highest
stress accumulation was detected in the central part of the box bottom. The sand friction
interaction can explain the local stress inhomogeneity and the residual stress accumulation
to the vertical walls of the box, as well as the elastic reaction of the walls. Similar behavior
of the residual stress accumulation is noted in the other studies on ballast interlocking [40].

Considering this finding, it can be assumed that there is also a correlation between the
stress of the material and the measured wave propagation speed, which can be detected
by optimizing the experimental setup. This correlation will be the research objective of
further experiments with real railway ballast material. It could then be used to obtain
detailed information about the inner condition of ballast track beds without retrieving
samples. It is the requirement for developing a non-destructive method for ballast testing.
A long-term objective of these laboratory studies is to develop a method that can be used
directly on railroads and is in step with actual practices. Therefore, a tomography of the
railroad substructure is a medium-term goal based on the current methodical studies.

The research is intended to develop the methods for the coarse-grained railway ballast
layer in future studies. In further experiments, it is intended to obtain the σ(c) curve for
different materials by changing the experimental setup. Different approaches for technical
improvements, such as changing the box’s geometry and the pressure hull’s material, using
anti-friction coating, and collecting more data are applicable. The observations on the
residual tensions indicated that high friction values appeared. A more homogenous stress
distribution will be achieved if the friction is reduced. Additionally, a DEM-Simulation
could lead to further insights.

5. Conclusions

The following conclusions can be stated based on the results of the present paper:

• Internal pressure in the land layer influences the pressure wave propagation velocity.
Increase of the pressure from 2 to 23 kPa at the bottom of the box results in an increase
in the vertical wave velocity from 180 to 360 m/s. The relation between ballast pressure
and wave propagation velocity is nonlinear.

• The vertical stress distribution over the ballast box is subjected to high local inhomo-
geneity with up to two times the stress concentration in the central part of the box
bottom.

• The residual pressure appears at the bottom of the ballast box and accumulates after
the loading cycles. The residual stresses amount to up to 60% of the maximal ones.

• The residual pressure has an influence on the wave propagation velocity.
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