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Abstract: This study identified high-risk locations (hotspots) using geographic information systems
(GIS) and spatial analysis. Five years of accident data (2013–2017) for the Lokoja-Abuja-Kaduna
highway in Nigeria were used. The accident concentration analysis was conducted using the mean
center analysis and Kernel density estimation method. These locations were further verified using
Moran’s I statistics (spatial autocorrelation) to determine their clustering with statistical significance.
Fishnet polygon and network spatial weight matrix approaches of the Getis–Ord Gi* statistic were
used in the hotspot analysis. Hotspots exist for 2013, 2014, and 2017 with a significance level between
95–99%. However, hotspots for 2015 and 2016 have a low significance level and the pattern is random.
The spatial autocorrelation analysis of the overall accident locations and the Moran’s I statistic showed
that the distribution of the accidents on the study route is random. Thus, preventive measures for
hotspot locations should be based on a yearly hotspot analysis. The average daily traffic values of
31,270 and 16,303 were obtained for the northbound and southbound directions of the Abaji–Abuja
section. The results show that hotspot locations with high confidence levels are at points where there
are geometric features.

Keywords: accidents; geographic information system; highway; hotspots; identification

1. Introduction

Globally, the transportation challenges faced by various nations have significantly
increased. This increase has necessitated a search for methods that ensure efficient, safe,
feasible, and faster means of transportation [1]. Transportation is vital to economic success
and the quality of life in urban and rural areas. However, the growth of city populations,
transportation infrastructure, and the corresponding distance travelled have generated ad-
verse effects, such as congestion, air pollution, noise pollution, and motor vehicle collisions.
An accident is unpalatable damage that occurs suddenly without knowing. Road accidents
are a menace to the safety of families and they are associated with many problems that
need to be treated individually as road, human, vehicle, and environmental factors play
roles before, during, and after an incident [2]. Road traffic accidents happen when a vehicle
collides with another vehicle, pedestrian, animal, road debris, or stationary objects, such as
a tree or a utility pole [3].

A hotspot refers to a location along the road that is considered high-risk for vehicle
collisions. Elvik [4] presented a conceptual meaning of a hotspot road section as any
section with more expected accidents than other corresponding sections due to peculiar
hazard factors prevalent in the section. He further outlined seven criteria of a modern
hotspot identification method as: (a) identification of hazardous road locations from the
population of sites, (b) avoidance of the sliding window method in hazardous road location
identification, (c) use of the empirical Bayes (EB) method of hazardous road location
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identification based on the expected number of accidents at a particular site, (d) in a
population of sites, hazardous road locations should be identified as the upper limit of
the EB distribution estimation, (e) a short period (3–5 years) of data is appropriate for the
identification of hazardous locations and the development of an accident prediction model,
(f) on the condition that the EB estimates of the expected number of accidents by severity
for a particular site can be determined, accident severity can be taken into account when
determining hazardous road locations, and (g) particular types of accidents can be looked
into when determining hazardous road locations, on the condition that EB estimates of
the expected number of accidents of the specific type can be acquired for the particular
site. Hotspot programs are planned to reduce the collision risk in areas by improving the
physical conditions or management [5]. According to [6], the hotspot is the number of
personal injury accidents occurring within a 100 m grid square or 100 m length in three
years in a particular road class. Therefore, the area is deemed a high-risk site if 20 accidents
are recorded over three years on a 100 m length of road.

Overgaard Madsen [7] gave four criteria that a definition of hotspot location must
satisfy: (a) random fluctuations in the number of accidents should be controlled, (b) factors
responsible for having an impact on road safety should be considered, (c) sites with an
overestimation of fatal and severe injury accidents should be identified, and (d) locations
at which the local hazard factor associated with road design and traffic control made a
considerable contribution to accident occurrences should be determined. These highway
network spots are targeted at an all-inclusive safety program by traffic officials. The most
prevalent challenges traffic officials face surround where and how to enforce preventive
measures and provisions to maximize traffic safety [8].

The geographic information system (GIS) is a comprehensive management tool for
traffic safety. The system has several benefits: (a) it allows managers to retain a large
amount of data that can be easily stored, shared, and managed, (b) it enables a platform
for data analysis and visualization to examine affinity between data, and (c) it can provide
graphical and non-graphical results. Due to the spatially distributed nature of accidents,
the use of GIS provides the capability to store, update, retrieve, compare, and spatially
display data [9]. GIS allows hotspot maps to be electronically generated from a well-
designed accident database and produce high accident rankings based on the total accidents
occurring or accident rates. The advances in GIS and remote sensing can be effective for
accident analysis. In addition to promoting the linkage between various types of data and
maps, GIS can visually display the results of analyses, thus enabling sophisticated analysis
and quick decision-making. Also, these tools would make the analysis less time-consuming
and less tedious. Thus, GIS offers a platform to maintain and update the accident record
database, which can be used for further analysis [10]. Hence, there is a need to apply these
tools for the analysis of the hotspots along the Lokoja−Abuja−Kaduna highway.

All efforts to reduce the effects of traffic collisions are critical. Amidst these, identifying
hotspots and considering likely causes have been studied extensively. Hotspot identification
is usually the first step in a safety improvement program. In many safety improvement
programs, sites are ranked according to their conditions and a subset of sites are then
selected as the highest accident risk sites. Since budgets are limited, priority is given to
these high-risk locations to implement preventive measures [11].

Road rehabilitation funds are often misappropriated as a site requiring adequate
maintenance is sometimes neglected. Hence, there is a need to identify high-risk locations
that require urgent maintenance works, thus allowing for the proper application of road
maintenance funds. In this study, spatial analysis was selected based on its ability to
detect sections having a higher number of accidents compared to other similar locations.
Furthermore, it allows for the spatial dependence of collisions and helps identify segments
with a significant spatial correlation that requires further analysis and safety [12]. This is
more beneficial compared to the generalized linear models, which can only provide the
relation between covariates and response in a linear additive manner.
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The Lokoja−Abuja−Kaduna highway is a major federal highway that connects the
northwest and north central zone to the southwest zone of Nigeria. Especially in the festive
periods, the number of vehicles driving the route is dramatically increased compared to
other periods. Hence, traffic accidents have become more common. Thus, it becomes
necessary to reduce these accidents by conducting a comprehensive analysis and taking
precautions. This study uses GIS to identify the hotspots along the Lokoja–Abuja–Kaduna
highway in Nigeria. The study involved producing hotspot maps, classifying them based
on density and confidence level, and examining their roadway geometric features to
determine how, what, and where accident countermeasures can be applied.

The main contribution of this study is to demonstrate the viability of the fishnet
polygon and spatial weight matrix in identifying accident locations and conceptualizing
the spatial relationship among the locations on a highway network. The aim is to identify
high-risk locations that require urgent maintenance work. For example, this approach uses
the distance between features within the network, not the ordinary Euclidean distances
used in the literature. Also, the generated network spatial weight matrix is fed into the
Getis–Ord Gi* (GOG) statistic instead of the bandwidth implemented in previous studies.

The remaining sections of the paper are organized as follows: Section 2 presents a
review of the spatial analysis methods of accident hotspots; Section 3 describes the data
collection and GIS analysis; Sections 4 and 5 present the results and discussion, respectively;
The conclusions are presented in Section 6.

2. Review of Spatial Analysis Methods

Spatial data and analysis are some of the most essential information for traffic accident
analysis. GIS-aided spatial data and spatial analysis provide factual information to analysts
about dangerous locations, hotspots, and warm spots. With GIS, the analyst can combine
accident and highway data, geocode the accident data and locations, calculate the frequency
and rate of accidents, and select a variable for stratification to calculate the mean and
standard deviation of accident rates [13]. Identification of defective safety locations with
GIS-aided spatial analysis will help to reduce traffic accidents. However, the success of
these analyses relies solely on the precision, reliability, and all-inclusiveness of the traffic
accident data. Countries are not in agreement on items that should be included in the traffic
accident reports [14]. Aderinlewo and Afolayan [15] developed road accident prediction
models for the Akure−Owo highway, Ondo State, Nigeria, based on field surveys and the
Nigerian Federal Road Safety Commission (FRSC) accident reports. They found that the
FRSC report forms were not detailed enough about accident occurrences at the locations
along the study route. In addition, there were discrepancies amid the accident data of
different years regarding the parameters included in the report.

Since 1990, various researchers have studied GIS technologies and their applications
in the spatial pattern of accident analysis. These cut across spatial accident analysis models,
spatial query, pattern analysis, proximity analysis, and segment and intersection analysis.
The effects of various factors on safety performance are examined through traffic safety stud-
ies. These include the influence of geometric features of road design, environmental factors
(e.g., weather conditions), and geographic conditions on accident occurrences [8,16–18].

Easa and Chan [19] presented various GIS applications for urban planning and de-
velopment, including transportation, public utilities, remote sensing, trends in spatial
databases, linear referencing systems, demographic forecasting, stormwater and waste
management, and environmental assessment of air quality. Aguero-Valverde and Jo-
vanis [12] investigated the effect of spatial correlation in models of road accident fre-
quency at the segment level. The study revealed that spatial correlation models better fit
the data than the Poisson-lognormal model consisting of different or diverse elements.
Owusu et al. [20] analyzed a road traffic accident pattern in the Cape Coast Metropolis of
Southern Ghana using GIS. Sandhu et al. [21] identified highway hotspots using the Kernel
density estimation (KDE) method, where GIS was used to map, visualize, and examine
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accident data. The hotspots were verified using the Getis–Ord Gi* and Global Moran’s I
statistics to measure the spatial autocorrelation.

Moran [22] discussed the tests of significance for the random distribution of some qual-
ity or phenomenon in a country or state to ascertain whether the factors causing the events
can be taken as statistically independent in different countries or not. A standardized distri-
bution was shown to tend to normality for the events. In a pilot study, Ref. [11] determined
traffic accident hotspots on the Turkish highway road network by comparing the tradi-
tional hotspot detection methods with the spatial statistical methods. The spatial methods
were susceptible to accidents that occurred involving multiple vehicles. In a further study,
Ref. [23] used GIS as a management system for accident analysis and statistical analysis to
determine accident hotspots in the Afyonkarahisar administrative border in Turkey. They
inferred that traffic agencies could retrieve, analyze, and display accident data in a correctly
set up GIS system. Olusina and Ajanaku [24] also mapped accident hotspots from primary
and secondary data sources. The accident spot severity and venerability were determined
based on the weighted severity index using KDE methods. Verma and Khan [25] also
identified the most vulnerable accident hotspots along Sagar–Shahgarh districts using a
weighted severity index. The cluster analysis was conducted using spatial autocorrelation
to ascertain the level of distribution of the hotspots. It was concluded that the research
could be a vital tool for stakeholders in the road transportation sector. Getis [26] shows that
spatial interaction models are a unique case of a common model of spatial autocorrelation.
In the study, several conventional standards of spatial autocorrelation were indicated to
possess a cross-product form. This was achieved by developing a spatial autocorrelation
statistic that also doubles as a measure of spatial interaction. Sabel et al. [27] used KDE
cluster analysis to identify road accident hotspots in Christchurch, New Zealand. Bello [28]
also examined a stratified accident analysis in the city of Richardson using kernel densities.
In Honolulu, Hawaii, spatial patterns of pedestrian accidents were analyzed by Kim and
Yamashita [29] and Levine et al. [30] using the k-means clustering method. Sajed et al. [31]
combined accident data, traffic, and geometric characteristics to identify hotspots.

2.1. Comparison of Various Methods of Hotspot Analysis

Considerable advances have been made in hotspot identification on the roads through-
out the last few years. This was made possible by GIS and global positioning system
(GPS) applications in transportation research. Various hotspot identification methods
have been used in the literature, including global indices such as GOG, Geary’s C, and
Global Moran’s I (spatial autocorrelation). Also used in the literature are local indices,
such as Kriging, Local Anselin Moran’s I, KDE, spatial analysis along network (SANET),
KDE+, and spatial traffic accident analysis (STAA). Except for Kriging and KDE, these
methods test the statistical significance of accident clusters [32]. The number of events over
a unit area at a specified location (i.e., first-order properties) is addressed using KDE in
a spatial hotspot analysis of point (point pattern analysis). In contrast, the second-order
properties are addressed by Geary’s C, GOG, and Moran’s I, which deal with the spatial
dependence and statistically evaluate the interaction between several events in pairs in
a specified area [33]. Kriging is an improved spatial analysis approach primarily used in
various research fields [34,35]. The SANET toolbox is used to overcome the shortcomings
of planar spatial analysis for point events that are restricted to linear networks [36]. This
toolbox is a spatial network analysis that evaluates the intensities of points on a network
and outlines the network sections with high intensities. Compared to the planar spatial
analysis method, it is highly efficient for a network with Euclidean distances which are
prone to error [32,36,37]. The STAA method is a hazard-based approach that considers
accident severity, frequency, and socioeconomic influences to analyze historical accident
data [38]. STAA is a network-defined method comparable to SANET−KDE and KDE+.
However, unlike SANET–KDE, STAA demands that the accident points overlap with the
road centerline. By so doing, the initial coordinates of the accident points are maintained.
This method is appropriate for analyzing single roads and networks of roads [32].
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The methods used in the cluster analyses of road traffic accidents are the K-function,
nearest-neighbor, KDE, dangerousness index (DI), hierarchical clustering (HC), and climb-
ing. The K-function and nearest-neighbor methods provide evidence about the tendency
of clustering on a road section but cannot specify the specific part of the section it oc-
curred. Therefore, these methods do not contribute to the clusters’ localization within the
section [39]. The KDE and DI methods can identify the actual cluster position within a
section or a network. The HC method has no mechanism for determining the statistical
significance of clusters. It could only recognize the clusters of traffic accidents. The DI
method is a particular case of KDE and relies on the ‘points of measurement.’ The climbing
method can determine the cluster positions but it is highly susceptible, implying that a
small change in the location of road traffic accidents outside of a cluster can substantially
influence the cluster’s importance.

As stated by Erdogan et al. [23], Sabel et al. [27], Anderson [40], and Plug et al. [41],
the KDE, cluster analysis, and GOG are among the most effective and frequently used
methods for the identification of the actual cluster location (hotspot) within a network
or section. The KDE approach’s principal merit is that the kernel’s bandwidth is used to
express the uncertainty about the actual accident location. This implies that KDE allows
for the spreading of the risk of an accident [40]. As [41] indicated, KDE is more suitable
for visualization than identifying hotspots. Presently, an inclusive examination of the
statistical significance of KDE is lacking in the literature. Network KDE is more efficient for
analyzing accidents on a 1D linear space (e.g., a road) [42–44]. An extended KDE approach
evaluates the probability density function of the event points using the kernel function
KDE+. The + signifies the criticality in the selection of significant clusters [45]. However,
the approach is limited in that it is very effective for event points along the segments
between the intersections since many accidents at intersections can surpass the occurrence
of hazardous locations at the road segments between the intersections [39,46].

Several studies have used planar spatial analysis methods, such as KDE, Kriging, Local
Anselin Moran’s I, and GOG for hotspot analysis with global indices, including Global
Moran’s I and Geary’s C. However, only a few studies compared the different approaches
to hotspot identification. Thus, this paper used the two approaches (fishnet polygon and
network spatial weight matrix) to identify hotspot locations in the study area.

In these approaches, the distances between the network features were measured as
adopted in the literature and these were not the ordinary Euclidean distances. Also, the gener-
ated network spatial weight matrix was fed into the GOG statistic instead of the bandwidth.

2.2. Theoretical Analysis

Various studies on GIS applications, such as Erdogan et al. [23], Deepthi and Ganeshku-
mar, 2010 [10] have comprehensively covered the GIS and spatial analysis of accident
hotspots. Thus, this paper only describes equations that explain the key parameters and
their significance.

2.2.1. Mean Center Analysis

This method involved measuring the possible geographic mean of the accident loca-
tions along the highway network, taking the frequency of accidents at sites as a weight. The
weighted mean center algorithm pulls the geographic center value or frequency toward
accident locations with higher frequency attributes. The output of this computation can
give the analyst an idea of where more accidents are concentrated in the study area. The
mean center and weighted mean center are given by

.
X =

∑n
i=1 xi

n
,
−
Y =

∑n
i=1 yi
n

(1)

.
Xw =

∑n
i=1 wixi

∑n
i=1 wi

,
−
Yw =

∑n
i=1 wiyi

∑n
i=1 wi

(2)
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where xi and yi are the coordinates of feature i, n is the total number of features, and wi is
the weight of feature i.

2.2.2. Kernel Density Estimation

The kernel density estimation was performed on the data to generate a subjective heat
surface of the variation in the values of traffic accidents from high to low. This measure
estimates the proportion of the total accidents that can be expected to occur at any given
map location. It provides an estimate of the proportion of the total accidents that can be
expected to occur in any given map location. The kernel density estimation is given by
Equation (3) [10].

f(x, y) =
1

nh2 ∑
i=1

K
(

di
h

)
(3)

where f is the density estimate at location (x, y), h is the search radius (bandwidth or kernel
size), n is number of observations (total number of accidents), K is the kernel function, and di
is the distance between the location (event point) (x, y) and the location of the ith observation.

The search radius, R, is given by

R = 0.9 min

(
SD,

√
1

In(2)
Dm

)
∗ n−0.2 (4)

where SD is the standard distance, Dm is the median distance, and n is the number of points
(if no population field is used) or the sum of the population field values (if a population
field is supplied).

2.2.3. Cluster Analysis

The spatial autocorrelation (Moran’s I) algorithm simultaneously measures both
features’ locations and values and returns the pattern expressed by the data regarding
whether they are clustered, dispersed, or random. Moran’s I is an inferential statistical
method, which means the analysis results are interpreted within the null hypothesis. This
analysis was done for the individual years to observe whether there are changes in cluster
intensity. Accident locations with a very low or very high Z-score fall outside the normal
distribution and indicate a statistically significant area for analysis. The Moran’s I statistic,
I, is given by

I =
n ∑n

i=1 ∑n
j=1 wi,jzizj

So ∑n
i=1 z2

i
(5)

where zi is the deviation of an attribute for feature i from its mean (xi − X), w(i, j) is the
spatial weight between feature I and j, n is equal to the total number of features. Therefore,
the aggregate of all the spatial weights is given by

So =

n

∑
i=1

n

∑
j=1

wi,j (6)

The Z-score for the statistic is given by

Z =
I− E[I]√

V[I]
(7)

where
E[I] = − 1

n− 1
(8)

V[I] = E[I2]− E[I]2 (9)
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2.2.4. Hotspot Analysis

This analysis was conducted in two ways: fishnet polygon analysis and network
spatial weight matrix analysis. The fishnet polygon analysis aggregated accident locations
into a fishnet grid. Each grid contained several accident locations that represent the weight
of the grid. The GOG statistic is given by

G∗i =
∑n

j=1 wi,jxj −
.
X ∑n

j=1 wi,j

S

√
[n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

(10)

where
.
X =

∑n
j=1 xj

n
(11)

S =

√
∑n

j=1 x2
j

n
−
( .

X
)2

(12)

where xj is the attribute value for feature j, wi, j is the spatial weight between feature i and
j, and n is equal to the total number of features.

3. Data Collection and Analysis
3.1. Study Route

The study route is the Lokoja−Abuja−Kaduna highway. It lies between latitudes
07◦47′ N, 09◦05′ N, and 10◦30′ N and longitudes 06◦45′ E, 07◦32′ E, and 07◦21′ E, respec-
tively. There are three state capitals connected to the route. Lokoja is located in the north
central zone of Nigeria, the capital of Kogi state. Abuja is located in the north central of
Nigeria and it is the capital of Nigeria. In contrast, Kaduna is located in the northwest
of Nigeria and it is the capital of Kaduna State. The Lokoja to Kaduna highway is a dual
carriageway. The section in Lokoja starts at the Lokoja central market intersection and ends
at the Abuja intersection for the section in Kaduna. The total length of the study section is
385 km. The accident data for 2013–2017 were obtained from the FRSC.

A preliminary analysis determined the number of accident occurrences at locations
along the route in the year under consideration. This step was conducted through the GIS
map, where the names of places were indicated along the route. Figure 1 shows the GIS
map for the study area.

The map shows spatial autocorrelation as most neighboring locations along the route
display similar configurations. This spatial relationship is further analyzed through appro-
priate tests in the next section.
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Figure 1. GIS map of the study route.

3.2. Data Collection

A desk study was conducted for the accident data acquired from the FRSC Abuja office.
The locations along the study area where accidents had occurred from 2013 to 2017 were
extracted and tabulated for further analysis. A reconnaissance survey was conducted on
the study highway. The FRSC unit command along Lokoja-Abuja-Kaduna highway Nigeria
and accident emergency response (ZEBRA) along the route were contacted for information
regarding accident occurrence. Data were acquired from both primary and secondary
sources. The primary data source included geometric (coordinates) and attribute data of
the accident spots. The field data were collected using Garmin-handled GPS, where the
GPS survey was conducted for all the locations of the accident points. The secondary data
source included Google Earth imagery, accident data from the FRSC headquarters Abuja,
Nigeria, and records of online accident reports. These data aided in identifying accident
locations quickly and gathering information promptly. The Google Earth interface covering
the study area was imported into the ArcGIS 10.2.1 environment using the Arc2Earth
extension tool. Features such as the study route, intersection, U-turns, and intersecting
roads were digitized using the Editor.

A traffic counter was installed at the study area to obtain the traffic volumes for the
sections with hotspot locations. In addition, a 24-h count for seven days was conducted
and the average daily traffic (ADT) was obtained for the sections. These data were needed
to determine the relationship between the number of accidents and the traffic volume.
In addition, the data helped to determine the significance of traffic exposure on accident
occurrence at the hotspot locations.
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3.3. GIS-Based Analysis

The causes of accidents from the record of the FRSC were summarized on maps, charts,
and tables. To validate the accident records from the FRSC and identify hotspots along the
study route, four different types of analysis executed in ArcGIS were conducted: mean
center analysis, KDE, cluster analysis, and hotspot analysis.

Mean Center Analysis: This method measured the possible geographic mean of the
accident locations along the highway network, taking the accident’s frequency as a weight.
The weighted mean center algorithm pulls the geographic center value or frequency toward
accident locations with higher frequency attributes. The output of this computation can give
the analyst an idea of where more accidents are concentrated in the study area. Specifically,
the calculation was done for each year and displayed in a single window to show any
noticeable shift in the mean center.

Kernel Density Estimation: The kernel density estimation was performed on the data to
generate a subjective heat surface of the variation in the values of traffic accidents from high
to low. This measure estimates the proportion of the total accidents that can be expected to
occur at any given map location and intersection.

Cluster Analysis: the spatial autocorrelation (Moran’s I) algorithm simultaneously
measures both features’ locations and values. It returns the pattern expressed by the data
regarding whether they are clustered, dispersed, or random. Moran’s I is an inferential
statistical method, which means the analysis results are interpreted within the null hypothesis.
The null hypothesis assumes complete spatial randomization. That is, values are randomly
distributed among features, reflecting a random spatial process at work. This method
was intended to reveal whether the clusters with high or low traffic accident values are
statistically significant. Moran’s I was referred to as the high or low cluster (Getis Ord.
General G) because the values associated with the accident points are not reasonably evenly
distributed (as examined using KDE) across the study area. General G statistics are more
appropriate for achieving such a distribution, where the local spikes in the values are picked
as clusters of high values. Moran’s I, however, is suitable to look at clusters in the dataset
because it correlates the feature values globally with a fixed distance band or the average
nearest neighbor and returns the features as clustered, dispersed, or randomly distributed.

For this analysis, a network spatial weight matrix that chooses the eight nearest neigh-
bors and a distance on a network of 7 km was generated. The scale of the analysis indicates
this is a road stretching 385 km and shows the separation between accident locations. A
smaller neighborhood selection would result in many of the features not having neighbors in
the analysis, resulting in outputs that are not representative of the phenomena in the study
route. This is consistent with the recommendations of [36] regarding bandwidth to cell width.
Chainey [47] also inferred that the selection of widths should be as effective as possible to
guarantee that visual appeals and spatial patterns do not jeopardize the precision of output
results. This analysis was done for the individual years to observe whether there are changes
in cluster intensity. The Z-scores for each year were plotted against the corresponding year to
create a line chart. The Z-score is a standard deviation measure for each of the 88 locations.
Accident locations with a very low or very high Z-score fall outside the normal distribution
and indicate a statistically significant area for analysis.

Hotspot analysis: This analysis was conducted using fishnet polygon analysis and
network spatial weight matrix analysis. The fishnet polygon analysis aggregated accident
locations into a fishnet grid. Each grid contained several accident locations that represent
the weight of the grid. An optimized cell size of 4.239 km was used as the fishnet polygon
mesh size for aggregating incidents. This was considered adequate because each grid
contained at least one accident point for the chosen cell size. There were 48 weighted
polygons with a weighted mean of 1.8333, a minimum of 1.00, and a maximum of 7.00. An
optimized average distance to the 3 nearest neighbors for each fishnet polygon was used
for the analysis.

The network spatial weight matrix was used to conceptualize the spatial relationship
among the accident locations on the highway network. This was the input instead of
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the bandwidth into the GOG statistic for the algorithm to respect the peculiar network
distance between the highway features. This is similar to conducting the SANET tool used
by Zahran et al. [32]. The matrix was generated on a network dataset comprising highway
features and intersections for this analysis. Therefore, the distances between the features
were measured within the network and these were not the ordinary Euclidean distances.
The matrix created for this analysis had a 9.1% spatial connectivity and used the 8 nearest
neighbors within the network for the GOG. The output of both approaches was interpreted
based on the null hypothesis, whether the data were clustered, dispersed, or random.

4. Analysis and Results
4.1. Accident Severity, Contributory Causes, and Locations

The data obtained from the FRSC were analyzed to identify the fatal and injury-only
accidents along the study highway. The results are shown in Table 1. As noted, 4656 accidents
occurred within the study period (2013–2017). The majority of accidents occurred in 2013
when the number of accidents was 1285. This decreased to 861 accidents in 2014, 815 in 2015,
704 in 2016, and 991 in 2017. In 2013, the fatal accidents represented 40.5% of all fatal accidents
recorded during the study period. However, 2015 and 2016 experienced a remarkable decrease
in accident fatalities and injuries with 9.5 and 6.8% of fatal accidents, respectively. A sudden
increase in the number of accidents/fatalities was experienced in 2017.

Table 1. Accident severity along Lokoja−Abuja-Kaduna highway.

Fatalities Injuries

Year No. of Accidents Frequency (F) % Frequency (F) %

2013 1285 1154 40.46 996 25.50
2014 861 818 28.68 767 19.64
2015 815 271 9.50 737 18.87
2016 704 195 6.84 621 15.90
2017 991 414 14.52 785 20.10
Total 4656 2852 100 3906 100

The obtained data were analyzed to identify the significant indicators for the specific
safety problems at the locations. As noted in Table 2, speed violations (SPV) and loss of
control (LOC) were the most common accident-contributing factors, comprising approxi-
mately 27% and 21% of all accidents, respectively. The two leading causes are interwoven,
where drivers are liable to lose control of the steering at a high speed, resulting in an
accident. The third leading cause of accidents is sign light violation (SLV), accounting
for 16% of all accidents, followed by tyre bursts (TBT), which were approximately 11%
of all accidents. Other factors that have not been reported account for less than 10% of
the total accidents along the study route, which agreed with the annual report [48] and
other published work [49]. This underreporting of accidents might be due to a lack of
modern equipment for accident reports, poor reporting standards by officials, and a lack of
adequate security. Moreso, accidents that happened late in the night (10:00–11:59 p.m.) or
in the early hours (12:00–6:00 a.m.) of the day may not be reported as officials cannot be at
all locations simultaneously.
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Table 2. Contributory causes of road traffic accidents along the Lokoja−Abuja−Kaduna highway
(2013–2017).

2013 2014 2015 2016 2017 Total

No. Contributory Cause F % F % F % F % F % F %

1 Speed Violation 286 21.95 279 26.27 309 30.21 288 29.24 416 29.44 1578 27.27
2 Loss of Control 370 28.40 274 25.80 231 22.58 133 13.50 224 15.85 1232 21.29
3 Sign Light Violation 63 4.83 102 9.60 122 11.93 254 25.79 386 27.32 927 16.02
4 Tyre Burst 142 10.90 137 12.90 133 13.00 97 9.85 125 8.85 634 10.97
5 Wrongful Overtaking 184 14.12 62 5.84 44 4.30 25 2.54 45 3.18 360 6.22
6 Dangerous Driving 103 7.90 60 5.65 67 6.55 54 5.48 45 3.18 329 5.69
7 Route Violation 47 3.61 50 4.71 51 4.99 55 5.58 53 3.75 256 4.42
8 Dangerous Overtaking 27 2.07 19 1.79 08 0.78 07 0.71 23 1.63 84 1.45
9 Mechanically Deficient Vehicle 17 1.35 12 1.13 06 0.59 15 1.52 31 2.19 81 1.40
10 Brake Failure 08 0.61 22 2.07 16 1.56 10 1.02 15 1.06 71 1.23
11 Others 19 1.45 13 1.22 12 1.27 08 0.81 12 0.85 65 1.12
12 Road Obstruction Violation 10 0.76 14 1.32 12 1.17 13 1.32 13 0.92 62 1.07
13 Fatigue 09 0.69 04 0.38 03 0.29 18 1.83 16 1.13 50 0.86

14 Driving under the Influence of
Alcohol/Drugs 09 0.69 05 0.47 05 0.49 03 0.30 03 0.21 25 0.43

15 Overloading 02 0.15 02 0.19 0 0 02 0.20 03 0.21 09 0.16
16 Sleeping at the Wheel 01 0.07 04 0.38 03 0.29 0 0 0 0 08 0.14
17 Bad Road 01 0.07 02 0.19 0 0 02 0.20 01 0.07 06 0.10
18 Use of Phone While Driving 02 0.15 01 0.09 0 0 01 0.10 01 0.07 05 0.09
19 Poor Weather 03 0.23 0 0 0 0 0 0 01 0.07 04 0.07

Total 1303 100 1062 100 1022 100 985 100 1413 100 5786 100

Based on the accident locations, the study area was divided into four sections: Section
I (Lokoja–Kotonkarifi), Section II (Kotonkarifi–Abaji), Section III (Abaji–Abuja), and Section
IV (Abuja–Kaduna). Each section has routes and each route contains specific locations. In
the northbound direction, 47 out of the 90 locations had accidents ten times or more, as
shown in Table 3. The southbound direction consisted of 93 accident locations, of which 38
locations had accidents ten times or more, as shown in Table 4. These locations had more
significant accidents between 2013 and 2017, emphasizing the need for further detailed
analyses of these locations.

Table 3. Northbound locations with number of accidents of 10 or more (2013–2017).

No. Accident Location Total Number of
Accidents No. Accident Location Total Number of

Accidents

1 Gadabiyu town 86 25 Doka 16
2 Awawa 53 26 Idu Bridge 15
3 Manderegi 52 27 Giri Inter. 15
4 Banda 48 28 Rijana 15
5 Ahoko Village 40 29 Bako Village 14
6 Kara 39 30 FGC Kwali 14
7 Gwako Village 33 31 Anagada U-turn 14
8 General Hospital Inter. Kw 28 32 Azara Town 14
9 Okpaka 26 33 Kwaita 13
10 GSS Yangoji 26 34 Zuma Rock 13
11 NATACO Junct. 24 35 Gidan Busa 13
12 Small Sheda 24 36 Kwali Mrkt. U-turn 12
13 Gaba Hill 22 37 Opp. Coll. Of Edu. Zuba 12
14 SLAN F/ST 21 38 Madalla Inter. 12
15 OZI Village 20 39 KM14 DM Kurfi 12
16 KM85 Katari 19 40 Bishini Inter. 12
17 Ahoko bridge 17 41 Toll gate SBW 11
18 Aseni Village 17 42 Ohono 10
19 SDP Junct 17 43 Chikara Village 10
20 T/Maje U-turn 17 44 Fire Serv. Coll. Kwali 10
21 Akilibu 17 45 Zuba U-turn 10
22 Adabo Village 16 46 Polewire 10
23 Big Sheda U-turn 16 47 Maro 10
24 KM11 Murada 16
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Table 4. Southbound locations with number of accidents of 10 or more (2013–2017).

No. Accident Location Total Number
of Accidents No. Accident Location Total Number

of Accidents

1 Chikara Village 110 20 Big Sheda U-turn 17
2 Kwaita 108 21 Giri Inter. 17
3 Piri 94 22 Rijana 17
4 Banda 48 23 Doka 17
5 T/Maje U-turn 44 24 M/M Bridge 17
6 Akilibu 36 25 GSS Yangoji 16
7 Omoko 35 26 Jamata Curve 15
8 Gadabiyu town 34 27 Awawa 14
9 Bako Village 30 28 Zuba U-turn 14
10 Anagada U-turn 28 29 Akpogu Village 13
11 Opp. Marist Coll. 25 30 Small Sheda by NASC 13
12 SLAN F/ST 25 31 Gwako Village 13
13 Aseni Village 22 32 Sabon Gari Gadabiyu 12
14 Gidan Busa 22 33 Okpaka 12
15 Bulletin 21 34 Zuba Inter. 12
16 Naharati 21 35 Dankogi 11
17 KM 85 Karari 21 36 Gen. Hospt. Inter. Kwali 10
18 Kotonkarifi 18 37 NNPC F/ST. 10
19 Opp. Coll. Of Edu. Zuba 18 38 KM 8 SBW 10

Inter. = Intersection.

4.2. Spatial Distribution of Accidents

A field survey was conducted to identify the spatial distribution of accidents along
the highway. The GPS coordinates of the affected locations were obtained. The GIS tools
were used to show the accident locations on a digital map and analyze traffic accidents’
hotspots. Weighted mean center, KDE, Moran’s I Statistic, fishnet polygon, and network
spatial weight matrix were used to show the spatial nature of the accident locations. All
the accident data (2013–2017) were used for the mean center and density analysis. For the
cluster analysis (Moran’s I statistic), both the total and the yearly accident data were used.
To allow for the comparison of results of the hotspot analysis, the whole accident data were
used for the fishnet polygon analysis, while the spatial weight matrix used the whole and
yearly accident data.

4.2.1. Mean Center Analysis

Figure 2a illustrates the geographic mean center for the cumulative accident frequency
(2013–2017) and the individual years. It can be observed that there was a shift in the concen-
tration of road traffic accidents along the highway from Gadabiu town near the Dangara
intersection in 2013 toward Yangoji town in 2014. A backward shift of the geographic
mean center of accident frequency toward Fukafu town was observed for 2015. In 2016, the
mean center shifted forward again. This time it was found in Sabon Gida town and 2017
recorded the maximum shift in the mean center of accident locations toward Rafin Pa near
the airport intersection of the FCT road. The overall mean center is located somewhere
midway between Sabon Gida and Yangoji on a highway curve. This suggests that highway
intersections and curves somewhat influence accident occurrence.
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4.2.2. Density Analysis

Figure 2b represents the KDE surface for the cumulative accident frequency across the
study route. The density surface readily depicts the spatial variation in accident frequency
from high to low. However, this is a subjective map, as it reveals nothing about the statistical
significance of the high or low accident frequencies at locations across the study route. In
other words, these variations could result from a random process and are not necessarily
tied to a cause. Nevertheless, the density surface concerning the road network indicates that
overall high frequency accident locations are associated with road intersections (e.g., Madalla
and Dangara intersections) and the road curve near Banda town south of the study route.

4.2.3. Cluster Analysis

The results of the spatial autocorrelation (Moran’s I) statistic of accident data for the
five years are graphically illustrated in Figure 3a. The graph plots the Z-scores for each
year against the other years. From the curve, it can be deduced that only in 2013, there was
a significant cluster of high values of accident locations given by a Z-score of 3.10538 with
a less than 1% likelihood that the cluster could result from a random process; hence, the
null hypothesis is rejected. The Z-scores 1.7286 and 1.9496 for 2014 and 2017, respectively,
indicate a lesser intensity of clustering with a 90% confidence interval and a 10% likelihood
that the clusters could result from a random process. The Z-scores for 2015 (−0.459572) and
2016 (0.182324) indicate that the pattern of accidents for the two years does not appear to
be significantly different from random. However, Figure 3b, which represents the Moran’s
I result for the cumulative accidents, shows no overall accident clustering for the five years;
the pattern is otherwise random.
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4.2.4. Hotspot Analysis

Figure 4 represents the map output of the hotspot analysis using a fishnet polygon. The
map demonstrates a statistically significant clustering of fishnet cells with a higher number
of aggregated accident locations around the center of the study route closely associated
with the Madalla and Airport intersections. It is noteworthy that the estimated hotspot
is localized in a part of the study route where there is a relatively abrupt change in land
elevation per unit distance on the highway. This may contribute to accident frequency in
this hotspot-marked route.

The outputs of the hotspot analysis using a network spatial weight matrix for each
year from 2013 to 2017 are represented in Figure 5A–E, respectively. There appears to be a
shift in the hotspot location from the highway’s south end in 2013 (at the road curve near
the market intersection and Banda town) to the center of the study route in 2014 (near
Dangara and Abaji intersections) and the north end of the highway in 2017 (near Gidan
Bahagu intersection). There are, however, no hotspot locations for accidents recorded
in 2015 and 2016. Also, the cumulative accident record for the five years expresses
no hotspot locations, as shown in Figure 6. As shown in Figure 5A,B,E, the hotspot
locations with high confidence levels are at points with geometric characteristics, such
as intersections, curves, bridges, U-turns, interchanges, grades, hilly terrain, roadside
obstacles, and median barriers.
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In 2013, based on the accident frequency at each of the 88 locations, the standard
deviation measurements showed 17 locations with a Z-score above 2.0 standard deviations.
Five of these 17 locations include the top 10 highest motor vehicle accident locations
found to have a Z-score above 2.0 as determined by the hotspot analysis. In 2014, based
on the accident frequency, the standard deviation measurements showed five locations
with a Z-score above 2.0 standard deviations. Two of these five locations include values
significantly higher than the other three within the neighborhood. Finally, in 2017, the
standard deviation measurement found seven locations with a Z-score above 2.0 standard
deviations. One of these seven locations stands out as a spot with less than a 1% likelihood
that the clustering of road accidents results from a random process.

Therefore, if the decision were to be made based on these results, it would be better
to look at the statistically significant clusters of high accident frequency for each year.
Perhaps the shift in accident hotspots over the years is attributable to pavement failure (a
common feature of Nigerian roads) and other factors, such as reckless driving, absence of
or inadequate traffic signs, and vehicle worthiness.
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4.3. Traffic Exposure

Traffic counts were conducted to determine the effect of traffic volume at the hotspot
locations on accident occurrence. Table 5 shows the traffic data for the sections where
hotspots were identified. The locations within Abaji–Abuja have the highest ADT of 31,270
for the northbound direction and 16,303 for the southbound direction. Other sections have
ADTS that are less than 10,000. As expected, the sections with larger traffic volumes have
more accidents than those with lesser traffic volumes.
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Table 5. Traffic data at hotspots.

No. Section Direction a Hotspot Locations ADT

1 Lokoja–Kontokarifi NB Banda, Market Intersection, Karara 4903
SB 3836

2 Kontokarifi–Abaji NB Sabon Gida, Agena, Pukafu, Dangara
Intersection 5600

SB 4960

3 Abaji–Abuja NB Abaji Bridge, Gen. Hospt.
Intersection Abaji, Abaji U-turn 31,270

SB 16,303
a NB = Northbound direction, SB = Southbound zdirection.

4.4. Geometric Characteristics of Hotspots

Accident occurrences along the study route are not evenly distributed at the hotspot, as
some occurred at locations with geometric features. From Table 6, most accidents occurred
at horizontal curve locations, U-turns for villages and small cities, bridges, t-intersections,
and roadside objects. Other accidents occurred at locations with a settlement, vertical curves,
roadside parking, and eroded shoulders (Figure 7). These results agree with [50,51], who
inferred that highway geometric features, roadside characteristics, and road design, among
other factors, were the significant causes of road accidents in developed and developing
countries. According to the FRSC report, high speeds at some hotspots are the primary cause
of accidents at the locations. Driving at high speeds on sharp horizontal curves tends to
result in accidents as the vehicle may swerve away from the road surface. Figure 8 shows the
frequency of accidents at the hotspots identified for 2013, 2014, and 2017.

Table 6. Geometric characteristics of the hotspots identified for different years.

Year a Location Geometric
Characteristics b Major Accident Causes c C.L. (%) Suggested Improvement

2013
Market Inter. HC, Built-up area, eroded

shoulder High speed 99 Pedestrian bridge/parking lot

Banda HC, roadside obstacle (hill) High speed 99 Speed limit

2014

Fukafu HC, built-up area, Sign violation 99 Proper signpost
Dangara

Inter.
Built-up area, U-turn,

T-intersection LOC 95 Proper signpost

Agena HC High speed on sharp curve 95 Reconstruction
Abaji Bridge HC Wrongful overtaking 95 Speed limit & signpost

Gen. Hospt. Abaji T-intersection, High speed 90 Speed limit & signpost
Abaji U-turn U-turn Fatigue 99 Reconstruction

NAHARATI Abaji U-turn, bridge, built-up
area, vertical curve LOC/pavement failure 90 Reconstruction

Sabon Gida
HC, truck parking on

shoulder & deceler. lane,
U-turn

LOC 99 Proper road marking and
signpost

2017

Achi Vertical curve LOC 95 Proper road marking and speed
limit

Gidan Bahagu U-turn Fatigue 95 Reconstruction

Akilibu Horizontal curve,
T-intersection Road obstruction 99 Intersection signalization

Karara Bridge, horizontal curve High speed 90 Signpost required

a No hotspots for 2015 and 2016, b HC = horizontal curve, c LOC = loss of control, C.L. = confidence level.
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Figure 8. Accident frequency at the hotspots (2013, 2014, and 2017).

5. Discussion

The number of accidents per year at the network locations was identified based on sub-
jective analysis of accident data. This method provides a primary indicator for the possible
situation of particular safety problems at the locations. However, this unrealistic method
can lead to false identification of hotspots and prioritization of the section’s improvements.
Moreover, this method is not in alignment with the criteria outlined by Overgaard [7] for
hazardous road location identification.

The weighted mean center represented the concentration of road traffic accidents
along the highway. This shows the shift in the geographical mean of accident frequency
on the study route. The analysis indicated the overall mean center at the midway point
between Sabon Gida and Yangoji on curves on the study route, as shown in Figure 2a. This
justifies the findings by Paul [50], which inferred that geometric features, among other
factors, are responsible for accident occurrences.

Figure 2b shows the KDE, which is highly responsible for visual detection. The KDE
map shows the total frequency of accident locations related to road intersections such
as Madalla and Dangara and road curves in Banda town. However, it only addresses
the first-order properties in the hotspot spatial analysis of points without considering the
spatial dependence and statistical significance of the interaction among the number of
events in a given location [33].
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The second-order effects of the spatial process were examined using GOG, which
evaluates the extent to which a variable at a given location affects those of the neighboring
locations [11]. As noted in Figure 3a, in 2013 only, there was a significant cluster of high
accidents with a Z-score, p-value, and Moran’s I index shown on Table 7. Z-scores, p-values,
and Moran’s I index for 2014 and 2017 indicate a lesser clustering intensity. Also, the values
for 2015 and 2016, as indicated in Table 7, show that the accident pattern for the two years is
random. The cumulative accidents with Z-score = 0.0575, p-value = 0.9542, and a Moran’s I
index of−0.0089 indicate that there is no overall clustering and that the accident occurrence
for the five years does not appear to be significantly different from random.

Table 7. Z-scores for the years 2013–2017.

Year Z-Score p-Value Moran’s I Index

2013 3.1054 0.0019 0.1263
2014 1.7286 0.0839 0.0638
2015 −0.4596 0.6458 −0.0320
2016 0.1823 0.8553 −0.0032
2017 1.9496 0.0512 0.0799

The hotspot analysis involved two approaches to obtain the GOG statistic: the fishnet
polygon and network spatial weight matrix. The fishnet cells were statistically significant,
with many accident locations around the Madalla and airport intersection in the study
route. Land elevation per unit distance contributes to accident occurrences in the study
route, as the estimated hotspot is localized in some areas. The network spatial weight
matrix shown in Figure 5 indicates hotspot analyses for 2013 to 2017. There are shifts in
the hotspot locations from one year to another. The hotspots exist for 2013, 2014, and 2017
with a 95–99% significance level. This occurs at locations with geometric features such as
curves and intersections. The hotspots do not exist for 2015 and 2016 since the patterns are
random. Also, the cumulative accident record for the five years shows no hotspots exist
(Figure 6). Over the years, the shift in accident hotspots can be attributed to other causative
factors (e.g., human, vehicle, and environmental factors).

The influence of traffic exposure on the hotspot locations is very significant in the Abaji–
Abuja sections, which are comprised of the following hotspot locations: the Abaji bridge, the
general hospital intersection Abaji, and the Abaji U-turn. An ADT of 31,270 was obtained
for the NB direction and 16,303 for the SB direction. This high traffic exposure contributes
to accidents at the hotspots as the section is a built-up area with commercial centers along
the route. Other sections in the study route have a relatively low traffic volume, which
is insignificant and does not influence the hotspots. In addition, the underreporting of
accidents is envisaged to influence accident hotspot determination. The lack of adequate
data capturing equipment, inexperience of officials, and unavailability of officials at all
locations for 24 h a day and seven days a week might have resulted in some accidents not
being captured.

6. Conclusions

This study has identified high-risk locations (hotspots), representing the first step in a
safety improvement program. Accident locations from the primary and secondary data
sources were mapped. The accident concentrations at the locations were determined using
the weighted mean center and KDE methods. These locations were further verified using
two different approaches to the GOG statistic (fishnet polygon and network spatial weight
matrix). Based on this study, the following conclusions are made:

1. This study has contributed to the body of literature by showing the viability of the
fishnet polygon and spatial weight matrix for the aggregation of accident locations and
conceptualization of the spatial relationships among accident locations on a highway
network. This is similar to the use of the SANET tool. The distance between features
was measured within the network, rather than the ordinary Euclidean distances.



Infrastructures 2022, 7, 103 21 of 23

2. The concentration of road traffic accidents is midway between the Sabon-Gida and
Yangoji curves, as indicated by the weighted mean center analysis. In addition, based
on the visual detection conducted using KDE, the frequency of accident locations is
associated with road intersections (such as the Madalla and Dangara intersections)
and road curves in Banda town.

3. The hotspots exist with a significance level between 95–99% for 2013, 2014, and 2017.
However, the cumulative hotspot map indicates that the pattern of hotspots for 2015
and 2016 is random. Thus, preventive measures for the hotspot locations should
be based on a yearly hotspot analysis. Further, traffic exposure is significant at the
accident hotspots of the Abaji Bridge, Gen. hospt. Abaji, and Abaji U-turn. Thus,
precautionary measures should be put in place at these locations.

4. The spatial autocorrelation analysis of the overall accident locations with a
Z-score = 0.0575, p-value = 0.9542, and Moran’s I statistic = −0.0089 showed that the
distribution of accidents in the study route is random.

5. One limitation of the present study is that it did not include input variables such as
pavement condition, grade, and sight distance in the analysis. Future research must
examine such variables’ influence in the analysis. In addition, future work is needed
to check the consistency and reliability of highway geometric design features.
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