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Abstract: With the aging of bridges, the efficiency of periodic inspections has become a problem. As
issues with the continuing close visual inspection of bridges are surfacing, remote imaging systems
are expected to become a new inspection method that replaces close visual inspection. The objective
of the study is to develop a classification model of countermeasure categories using the results of
past periodic inspections of bridges conducted by skilled inspectors. Focusing on concrete slabs, a
model was constructed to classify the countermeasure categories based on the characteristics of the
damage maps by random forest classification. As a result, it was possible to classify two classes of
countermeasure categories with a macro-average precision rate of about 88%. It became clear that
the degree of crack development and the number of cracks are the most important factors in the
classification of judgment categories.

Keywords: bridge inspection; soundness; damage map; diagnostic model; concrete slab

1. Introduction

In Japan, there are about 730,000 bridges with a length of 2 m or longer [1], and many
of these were built during a period of high economic growth. The ratio of aged bridges
(50 years or older) was about 25% in March 2018. This is expected to rapidly increase to
about 66% in 2033 [2]. To take preventive countermeasures, bridges must be inspected
and diagnosed routinely, and the soundness of bridges must be well understood. In 2014,
the close visual inspection of all bridges was required every five years. By performing
routine inspections, the most up-to-date status should be understood, and the information
required to determine needed measures is acquired, thus making preventive maintenance
management possible.

However, among local public organizations, there are some that have insufficient
manpower relative to the number of bridges they must manage, as well as insufficient
funding for maintenance. Thus, these organizations are unable to perform routine close
visual inspections. In a questionnaire on mandating local public organizations to perform
close visual inspections every five years [3], insufficient funding and manpower were noted
as problems with inspection tasks. In particular, in small municipalities (cities, wards,
towns, and villages), there are not many civil engineers involved with bridge maintenance
work, and the inspection costs that can be spent on each bridge are much lower compared
to large-scale municipalities such as prefectures. Therefore, municipalities such as cities,
towns, and villages have difficulty conducting continuous preventive maintenance owing
to insufficient funding and manpower.

As issues with the continuing close visual inspection of bridges are surfacing, remote
imaging systems are expected to become a new inspection method that replaces close
visual inspection. Figure 1 shows the flow of the proposed remote inspection of bridges.
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At the inspection site, the inspection point is photographed. After that, the AI (Artificial
Intelligence) will automatically detect damage and diagnose soundness to help the inspector
make a final decision.
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Various research about automatic damage detection was conducted to automate the
inspection of bridges. Christian Koch et al. [4] summarized studies on the deterioration
of infrastructures using methods such as deep learning, neuro-fuzzy theory, and support
vector machines. Young-Jin Cha et al. [5] proposed a method to automatically classify the
degree of damage using deep learning. However, the method gave only laboratory results,
and the deterioration of concrete used outdoors could not be accurately classified owing to
the impact of shadows, dirt, etc. A series of studies by Sunil K. Sinha et al. [6,7] showed the
possibility and concept of automatically detecting damage such as cracks using images,
and actually attempted to detect cracks in target samples using AI. The results showed that
cracks can be detected, but to detect various types of cracks, model parameters must be
stabilized using more photographs of cracks. Lee, S. et al. [8], Yeum and C. M. et al. [9]
attempted to automatically detect cracks using image recognition. The results showed
that cracks on concrete bridges and bolts on steel bridges can be identified. Yamane and
Chun [10] applied Semantic Segmentation, a deep learning method that associates labels
to all pixels in an image, to cracks to automatically detect cracks on a pixel-by-pixel basis.
They also proposed a method for removing concrete formwork marks, which can cause
false positives. However, to accurately identify cracks and bolts, many photographs that
are independent of angles are necessary. Takahiro M. et al. [11] examined the improvement
of crack detection accuracy by using Averaged Shifted Histograms (ASH) theory.

On the other hand, there are few studies that focus on methods for diagnosing damage
based on information such as the location and shape of the damaged part in order to classify
and assess the soundness of each part. In periodic inspections, damage is detected and
diagnosed once every five years. However, the results of the diagnosis are inconsistent
due to the fact that the diagnostician differs each time. There are cases in which soundness
has been restored even though no repairs have been made, and this is a major problem
in the planning of maintenance management. Considering that the number of skilled
engineers will decrease in the future, the diagnosis of soundness should be automated.
Aoshima et al. [12] used deep learning for image classification to detect concrete damage
and classify the degree of damage. Image classification models have been developed that
use deep learning to estimate the degree of damage and the factors causing the damage
based on images. However, considering the need for accountability of diagnosis results, it
is desirable to have a model that can explain the features used in the diagnosis.

The objective of the study is to develop a classification model of countermeasure
categories using the results of past periodic inspections of bridges conducted by skilled
inspectors and analyze the relationship between damage records and the diagnosis results
of countermeasure categories. Focusing on concrete slabs, a model was constructed to
classify the countermeasure categories based on the characteristics of the damage maps by
random forest classification (Figure 2). The novelty of this study is to develop classification
model of countermeasure categories by extracting characteristics such as the scale, shape,
and position of the crack from damage maps. A classification model of countermeasure
categories is constructed using the inspection results conducted by skilled engineers in
the past, it will enable us to clarify the factors that affect the diagnosis results, which
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are the tacit knowledge of skilled engineers. By constructing a classification model of
countermeasure categories, it will be possible to support the diagnosis of young inspectors.
And the importance of the factors influencing the diagnosis of the countermeasure category
was clarified by random forest classification. It will help to determine the damage and
features that do not affect the diagnosis when automatically detecting damage using images.
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2. Bridge Inspection Data

The data used in this study are the results of periodic inspections of government-managed
bridges conducted in I Prefecture from 2014 to 2019. RC slabs were selected as the target
among the concrete components, so bridges that do not consist of RC slabs were excluded
from the analysis. Among the results of periodic inspections of bridges, we used the diagnosis
results determined by bridge diagnosticians and damage maps that record the damage status.
In this study, we used the inspection results of 49 bridges (198 RC floor slabs).

2.1. Diagnosis Results

During the periodic inspection, the location and degree of damage are identified
by close visual inspection, and the location and degree of damage are recorded as a
damage map. Based on the damage map and the location of the bridge and so on, the
countermeasure category is diagnosed. There are nine classes of countermeasures (Table 1)
as defined by the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) in
Japan. In the periodic inspection, the need for some kind of countermeasure, such as repair,
emergency response, maintenance work, or detailed investigation, is determined for each
damaged part of the bridge.

In this study, a classification model for the countermeasure category of concrete slab
cracks was developed using the information on the external damage obtained from the
damage map. The data set (damage map and diagnosis results) used in this study consists
of 198 RC floor slabs, and the classes of countermeasure categories is as follows: Category B:
188 samples, Category C1: 6 samples, Category S1: 2 samples, and Category S2: 2 samples.
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Table 1. The classes of countermeasure.

The Classes of
Countermeasures Judgment State

A No damage.

B Repair should be carried out according to the situation.

C1 For preventive maintenance, it is necessary to carry out
repairs as soon as possible.

C2 For the safety of the bridge structure, it is necessary to repair
the bridge as soon as possible.

E1 For the safety of the bridge structure, an urgent response
is necessary.

E2 Other urgent actions are required.

M It is necessary to be addressed through maintenance work.

S1 A detailed investigation is needed.

S2 A follow-up investigation is needed.

Judgment Category B is a state in which, although there is damage and repair is neces-
sary, the cause and scale of the damage are clear, and there is no urgency to immediately
repair it. Judgment Category C1 is a state in which the damage has progressed, and it is
necessary to carry out repairs at least before the next periodic inspection for preventive
maintenance. Judgment category S1 is a state in which there is damage, and it is judged
that a detailed investigation is necessary to determine the cause of the damage in order
to judge the necessity of repair. Judgment category S2 is a state in which a follow-up
investigation is judged to be necessary, although a detailed investigation is not necessary.
In this study, we developed a two-class classification model to classify “Judgment Category
B” and “Judgment Category C1, Judgment Category S1, and Judgment Category S2”.

2.2. Damage Map

In the periodic inspection of bridges, damage detected by close visual inspection is
recorded as a damage map. When diagnosing the countermeasure category of damage, it is
important to have a damage map that shows not only the presence or absence of damage,
but also the position of the damage in the inspected component, the degree of progress of
the damage since the past inspection, and new damage. Especially in the case of concrete
cracks, the shape of the cracks is important information for investigating the cause of the
cracks, and the damage map is an important source of information. In the case of concrete
slab cracks, the degree of damage varies depending on the width and spacing of the cracks
and whether or not the cracks are connected to other damage.

In addition to the damage detected during the periodic inspection, the damage de-
tected during the past periodic inspection is also recorded separately in the damage map.
For cracks in floor slabs, the width as well as the shape of the crack are recorded. The
position and degree of damage for “exposed reinforcement”, “free lime”, and “floating”
are sketched on the damage map.

2.3. Damage Map Raster Data

The damage maps were created by CAD and recorded and stored as PDF data. There-
fore, damage raster data containing only useful information for diagnosis was created from
the damage maps using the following procedure.

(a) The image editing tool was used to extract only the rectangular area of the RC slab
from the damage map.

(b) Overlay an image with high transmittance on the damage map of the rectangular area
of the RC slab, and trace over the cracks with a 1 pixel freehand pen tool. The color
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of the tracing was changed for every 0.1 mm of the crack width so that the cracks
could be distinguished. The color of the traces was changed to distinguish the degree
of damage for “exposed reinforcement”, “free lime”, and “floating”. For damage
other than cracks in the floor slab, the fill function was used instead of the pen tool.
The color of the tracing was changed to distinguish between damage detected in
past inspections and damage newly detected or developed in the inspection of the
corresponding year.

(c) The damage map was deleted and the image in which only the damage was traced
(damage map raster data) was obtained.

Figure 3 shows the above creation procedure and an example of the created damage
map raster data. The number of pixels in each damage map raster data differs depending
on the scale of the slab.
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3. Feature Extraction from Damage Map Raster Data

The analysis focused on five features that may be taken into account when diagnosing
the degree of damage and the cause of occurrence of cracks in floor slabs: the scale of the
crack, the shape of the crack, the position of the crack, the scale of other damage, and the
bridge characteristics and environmental conditions. Each feature was extracted from the
damage map data. The following sections describe the extraction method of each feature
from the damage map raster data.

3.1. Scale of Cracks

The crack scale is an indicator of how many cracks are contained in the entire concrete
slab, which is the target member. The number of pixels tracing the cracks was divided by
the total number of pixels in the damage raster data and multiplied by 100 to obtain the
crack scale. In this study, three features, “The percentage of total cracks”, “The percentage
of cracks larger than 0.2 mm in width”, and “The percentage of new cracks”, were used
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as indicators of crack size. The percentage of total cracks is a feature that indicates the
current state of the crack scale. The percentage of cracks larger than 0.2 mm is a feature that
indicates the current crack size considering the width of the cracks. The percentage of new
cracks is a feature that indicates the progress of the crack from past periodic inspection.

3.2. Shape of Cracks

The shape of the cracks is an important feature in examining the factors that cause
cracks. The directionality of cracks is also an important factor to be considered in deter-
mining the damage classification of floor slab cracks. In this study, the following features
were used to describe the shape of cracks: the total number of crack intersections, the total
number of crack junctions, and the total number of crack end points.

Figure 4 shows an example of the number of cracked intersections, junctions, and
end points, and the judgment method. Pattern matching was used to determine the
intersection, junction, and end points of the cracks. In pattern matching, pixels are checked
systematically by moving a rectangular area of 7 pixel× 7 pixel against the damage diagram
raster data. For the edge, the detection was based on the condition that the pixel of interest
was traced by a crack and that there was only one line segment that reached the periphery.
For intersections and junction points of the cracks, the number of pixels of the line segments
where the pixel of interest is traced by the crack and exists in the periphery was used as a
condition for detection.
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In this study, the direction of the crack is also considered as a feature that represents
the shape of the crack. The calculation method for the crack direction is shown in Figure 5.
As shown in the left side of Figure 5, all cracks in the damage diagram raster data are
divided into contiguous individual crack regions (yellow rectangular regions in Figure 5).
Extract the end points of the cracks (red pixels in the right side of Figure 5) from the divided
individual crack regions by pattern matching. Only for the crack area with two extracted
end points is the angle calculation process performed for the two points. The x-axis is the
direction of the bridge axis, and the y-axis is the direction perpendicular to the bridge axis,
and the coordinates of the two end points are (x1, y1) and (x2, y2). If the x-coordinates
of the two points are the same, i.e., x1 = x2, the crack is perpendicular (90 degrees) to the
bridge axis direction. If the y-coordinates of the two points are the same, i.e., y1 = y2,
the crack is horizontal (0 degree) to the bridge axis direction and is considered to be a
crack in the bridge axis direction. Otherwise, the tangent is obtained from the difference of
x-coordinate (x1 − x2) and y-coordinate (y1 − y2) (tan(θ= |y1 − y2|⁄|x1 − x2|), and the
angle is obtained. If the absolute value of the angle is less than 30, the cracks are counted
in the direction of the bridge axis; if the absolute value is more than 60, the cracks are
counted in the direction perpendicular to the bridge axis; otherwise, the cracks are counted
as diagonal cracks. The number of cracks in the perpendicular direction, the number of
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cracks in the axial direction, and the number of diagonal cracks were calculated for each RC
slab by judging all the cracked areas as perpendicular cracks, cracks in the axial direction,
and diagonal cracks, and totaling the entire damage diagram raster data. In this study,
three features, “the number of cracks perpendicular to the bridge axis”, “the number of
cracks in the bridge axis direction” and “the number of diagonal cracks” were used as
indicators of the crack direction.
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3.3. Position of Cracks

The position of cracks can be a factor affecting diagnosis. In this study, in order to
take into account the characteristic value that represents the position of crack occurrence,
the damage map raster data was divided into 16 parts as shown in Figure 6, and only
the number of pixels of cracks that exist in the 8 meshes in the center of the fulcrum was
counted. This value was divided the total number of pixels in the damage map raster data
and multiplied by 100 to obtain “the percentage of cracks in the center of the span”.
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3.4. Scale of Other Damages

For other types of damage, “exposed reinforcement”, “free lime” and “floating” that
occurred on the same surface as the cracks were considered. Exposed reinforcement, free
lime, and floating are recorded in the damage classification. The number of pixels for each
damage in the damage map raster data was counted, divided by the total number of pixels
in the damage map raster data, and multiplied by 100 to obtain the feature value.
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3.5. Bridge Specifications and Environmental Conditions

When a bridge inspector diagnoses a countermeasure category, he considers not only
the current state of damage, but also the bridge’s characteristics and the environmental
conditions in which the bridge is located. In this study, the “service life”, which is the
period from the year of construction to the year of inspection, was used as an indicator
of “bridge characteristics and environmental conditions”. In addition, three variables
were used: “traffic volume”, “heavy vehicle traffic volume” and “Service life” which were
obtained from the 12-h daytime data of the Road Traffic Census.

4. Development of a Classification Model for Countermeasure Categories

In this study, 17 features obtained from the damage map data and three indicators
of bridge characteristics and environmental conditions are used as explanatory variables
as shown in Figure 7, and the classification of floor plate cracks diagnosed by close visual
inspection is used as the objective variable. In addition, the importance of explanatory
variables is clarified, and the explanatory variables that affect the classification of measures
are discussed.

Infrastructures 2022, 7, x FOR PEER REVIEW 11 of 12 
 

 

Figure 7. The result of importance evaluation for the classification models. 

5. Summary and Future Challenges 

A classification model for RC slabs was developed using a damage map. As a result, 

it was possible to classify two classes of countermeasure categories, Category B and Cat-

egories C1, S1 and S2, with a macro-average precision rate of about 88%. In addition, it 

was clear that the important features for classifying the countermeasure classifications 

were the “percentage of new cracks” and the “total number of end points of cracks”. The 

degree of crack development and the number of cracks (end points) were important crite-

ria for the classification of judgment classifications B and C1, S1, and S2. The method pro-

posed in this study clarifies the features of exterior damage that affect diagnosis. There-

fore, it is an analytical method that can be used in research on the automatic detection of 

damage using images to examine the damage and features that should be focused on, and 

the damage and features that should be avoided or missed. 

In this study, we were able to clarify the factors that affect the determination of the 

countermeasure category for floor slab cracks, but we did not analyze the causal relation-

ship. It is necessary to clarify the comparison and the causal relationship between the re-

sults of this study and the perception of actual inspectors by conducting interviews with 

inspectors and analyzing the remarks in the inspection reports. 

The data used in this study are the results of bridge inspections conducted by the 

national government, which has a relatively well-developed method of recording damage 

diagrams. Only RC decks, which are managed by the national government and have rel-

atively good countermeasure classification, were used as valid samples. It is necessary to 

analyze and compare the results of bridges managed by municipalities, especially those 

with financial and human resource shortages. Since the amount of information recorded 

on damage maps may differ among road managers and inspectors, it is necessary to con-

sider the process of matching the amount of information on damage maps when compar-

ing damage maps with different recording methods. In addition, the dataset was not large 

enough, so the generalization accuracy was not sufficient for the amount of data. In par-

ticular, because there were only a small number of samples with bad judgments in the 

countermeasure category, the classification accuracy of the judgment category C1 and the 

judgment categories S1 and S2 could not be obtained. Therefore, it is necessary to consider 

the efficient acquisition and recording method of the data set as a future issue. Based on 

those analyses, bridge inspection may be able to predict deterioration and improve the 

efficiency of inspection points using AI based on damage diagrams. 

Importance

The percentage of new cracks 0.18

The percentage of total cracks 0.09

The percentage of cracks larger than 0.2 mm 0.05

The total number of crack intersections 0.09

The total number of crack junctions 0.10

The total number of crack end points 0.17

The number of cracks perpendicular to the bridge axis 0.04

The number of cracks in the bridge axis direction 0.00

The number of diagonal cracks 0.02

Position of Cracks The percentage of cracks in the center of the span. 0.05

The percentage of exposed reinforcement c 0.00

The percentage of exposed reinforcement d 0.01

The percentage of exposed reinforcement e 0.00

The percentage of free lime c 0.00

The percentage of free lime d 0.02

The percentage of free lime e 0.00

The percentage of floating e 0.04

Traffic volume 0.06

Heavy vehicle traffic volume 0.03

Service life 0.06

Features obtained from the damage map

Scale of Cracks

Shape of Cracks

Scale of Other Damages

Bridge Specifications and

Environmental Conditions

Figure 7. The result of importance evaluation for the classification models.

4.1. Analysis Method

Random forest classification is a machine learning algorithm; it is an ensemble learning
method that combines multiple weak learners to build a strong learner. Random forest
classification employs bagging for ensemble learning, and the learner is a decision tree
model. Bagging is a method that uses boosted sampling to create multiple independent
training subsets by sampling the training data with some overlap, creates a weak learner in
each training subset, and outputs the final prediction result by taking a majority vote of the
prediction results of each weak learner. The decision tree model bifurcates the values of
explanatory variables based on some criteria and builds a model for discrimination and
prediction. The advantage of this method is that the process of branching can be illustrated
in a tree structure and easily expressed by production rules such as IF–THEN, so that it can
be easily understood by humans. In addition, when graphing hierarchically, the variables
are divided from top to bottom in the order of their influence, making it possible to grasp
the degree of influence of explanatory variables on the target variable. The decision tree
model can be used for analysis even when numerical data and text data are mixed. In this
study, CART (Classification and Regression Tree by R) is used to create a decision tree by
repeating the process of splitting the data into two nodes so that the information gain is
maximized. In CART, Gini impurity (GI: Gini index) is used as the branching criterion. The
Gini index is an index of diversity, and it takes a large value when the target variable is
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equally present in the nodes and a small value when the target variable is close to having
only one value. A branch is created so that this evaluation function is reduced the most.
In the case of classifications such as the classification model of countermeasure categories,
impurity is defined as in Equation (1). In the equation, t is an arbitrary node in the decision
tree, c is the number of classes, and p(i|t) is the ratio of data belonging to a certain class to
the total number of nodes.

GI(t) = 1−
c

∑
i=0

[p(i|t)]2 (1)

The information gain is the difference between the Gini impurity of the parent node
and the child node, as shown in Equation (2). where Di is the node of class i, Ni is the
sample size contained in the node, and when i = p, it indicates the parent node. When the
Gini impurity of the parent node is large and the Gini impurity of the child node is small,
the information gain is large. In other words, the information gain is highest when the
parent node contains samples of various classes, and these samples are correctly distributed
to the child nodes.

IG
(
Dp

)
= GI

(
Dp

)
−

c

∑
i=0

Ni

Np
GI(Di) (2)

By increasing the number of layers in the decision tree, the classification model is
overtrained for the training data, resulting in a model with poor generalization performance.
In order to prevent overtraining, it is necessary to prune and limit the number of layers in
the decision tree.

4.2. Development of a Classification Model for Countermeasure Categories and Evaluation
of Accuracy

In this study, RandomForestClassifier [13] was used from scikit-learn, a machine
learning library. In setting the hyperparameters, we considered the weight of the classifi-
cation class, the number of decision trees used for bagging, and the maximum depth of
the decision tree. The data used in this study was unbalanced because the sample size
of “countermeasure categories C1, S1, and S2” is smaller than that of “countermeasure
category B”. For this reason, we set the hyperparameter for the class weights so that the
weights of “countermeasure category C1, S1, and S2”, which have smaller sample sizes,
become larger. The number of decision trees used for bagging and the maximum depth of
decision trees were set to multiple patterns (the number of decision trees = 10, 20, 30, 40, 50,
60, 70, 80, 90, 100, 200, 300, 400, maximum depth = 2, 3, 4, 5, 6, 7, 8) and grid search was
conducted to determine the most accurate parameters. As a result, “the number of decision
trees” = 50 and “maximum depth” = 2 were adopted.

In this study, the accuracy of the classification model was verified by k-split cross-
validation. To account for the number of samples in each class, we set k = 3 and used
stratified k-partition cross-validation, which divides the model so that the ratio of classes
in each partition is the same.

Three indices were used as indicators of the accuracy of the multi-class classification
model: the macro-average precision rate, which is the average of the fit rates of each
class; the macro-average recall rate, which is the average of the recall rates of each class;
and the macro-average F-measure, which is the average of the F-values of each class.
Equations (3)–(5) show the formulas for calculating the precision, recall, and F-measure
of each class from the confusion matrix in Table 2. The precision rate is a measure of how
many of the numbers (NTP + NFP) classified by the classification model into the target
class are correctly classified (NTP). The recall rate is a measure of how many of the target
class data (NTP + NFN) are actually classified correctly by the classification model (NTP). In
general, the precision rate and the recall rate are in a trade-off relationship, so the F value is
the harmonic mean of the precision rate and the recall rate.

(Precision) =
NTP

NTP + NFP
× 100(%) (3)
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(Recall) =
NTP

NTP + NFN
× 100(%) (4)

(F−measure) =
2× Precision× Recall

Precision + Recall
(%) (5)

Table 2. Confusion matrix.

Predicted Positive Predicted Negative

Actually Positive TP FN

Actually Negative FP TN

The generalization performance of the classification models for the countermeasure
category of floor slab cracks in RC slabs is shown in Table 3. Based on the features of
the external damage, it is possible to classify category B and categories C1, S1, and S2
with a macro-average precision rate of about 79% and 64% macro-average recall rate.
Table 3 also shows the generalization performance of the countermeasure classification
models when three indicators (service life, traffic volume, and heavy vehicle traffic volume)
were added as explanatory variables. The generalization performance of the two-class
classification model is greatly improved, with the macro-average precision rate improving
by about 9 points, the macro-average recall rate by about 10 points, and the macro-average
F-value, improving by about 10 points. In other words, it become clear that the information
on the service life, traffic volume, and heavy vehicle traffic volume is also taken into
account in classifying “countermeasure categories B” and “C1, S1, and S2”. By taking into
account not only the external damage but also the bridge characteristics and environmental
conditions, we were able to construct a classification model that can classify the two classes
of countermeasures with an accuracy of about 88% macro-average precision rate and 74%
macro-average recall rate.

Table 3. The evaluation of the classification models.

Explanatory Variables Macro-Average
Precision

Macro-Average
Recall

Macro-Average
F-Value

The external damage 79% 64% 68%

The external damage
+

Bridge characteristics
Environmental conditions

88% 74% 78%

Next, we evaluate the importance of each feature. The importance is a measure of
how much the partitioning by each explanatory variable contributes to the classification
of the target variable. The importance of each explanatory variable is calculated by the
Gini impurity, and the amount of decrease in Gini impurity is the importance of each
explanatory variable. Figure 7 shows the results of the importance evaluation by random
forest classification for the classification models. The results of the importance evaluation
by the two-class classification model show that “the percentage of new cracks” and “the
total number of end points of cracks” are particularly important in classifying the coun-
termeasure category. These results make clear the statistical analysis using the damage
diagram, and it is necessary to verify the consistency with the actual inspection results.
In other words, the degree of crack development and the number of cracks (end points)
are more important factors in the classification of judgment categories B and C1, S1, and
S2 than in the previous inspection. The method proposed in this study was found to be
capable of revealing the features of exterior damage that affect the diagnosis. Therefore, it
is possible to study the features that should be focused on when automatically detecting
damage from images.
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5. Summary and Future Challenges

A classification model for RC slabs was developed using a damage map. As a result,
it was possible to classify two classes of countermeasure categories, Category B and Cate-
gories C1, S1 and S2, with a macro-average precision rate of about 88%. In addition, it was
clear that the important features for classifying the countermeasure classifications were the
“percentage of new cracks” and the “total number of end points of cracks”. The degree of
crack development and the number of cracks (end points) were important criteria for the
classification of judgment classifications B and C1, S1, and S2. The method proposed in
this study clarifies the features of exterior damage that affect diagnosis. Therefore, it is an
analytical method that can be used in research on the automatic detection of damage using
images to examine the damage and features that should be focused on, and the damage
and features that should be avoided or missed.

In this study, we were able to clarify the factors that affect the determination of
the countermeasure category for floor slab cracks, but we did not analyze the causal
relationship. It is necessary to clarify the comparison and the causal relationship between
the results of this study and the perception of actual inspectors by conducting interviews
with inspectors and analyzing the remarks in the inspection reports.

The data used in this study are the results of bridge inspections conducted by the
national government, which has a relatively well-developed method of recording damage
diagrams. Only RC decks, which are managed by the national government and have
relatively good countermeasure classification, were used as valid samples. It is necessary
to analyze and compare the results of bridges managed by municipalities, especially those
with financial and human resource shortages. Since the amount of information recorded on
damage maps may differ among road managers and inspectors, it is necessary to consider
the process of matching the amount of information on damage maps when comparing
damage maps with different recording methods. In addition, the dataset was not large
enough, so the generalization accuracy was not sufficient for the amount of data. In
particular, because there were only a small number of samples with bad judgments in the
countermeasure category, the classification accuracy of the judgment category C1 and the
judgment categories S1 and S2 could not be obtained. Therefore, it is necessary to consider
the efficient acquisition and recording method of the data set as a future issue. Based on
those analyses, bridge inspection may be able to predict deterioration and improve the
efficiency of inspection points using AI based on damage diagrams.
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