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Abstract: Aerial surveys using LiDAR systems can play a vital role in the quantitative assessment of
infrastructure damage caused by hurricanes, floods, and other natural disasters. GmAPD LiDAR
provides high-resolution 3D point-cloud data which enables the surveyor to take accurate measure-
ments of damages to roads, buildings, communication towers, power lines, etc. Due to the high point
cloud density, a very large volume of data is generated during an aerial survey. The data collected
during the airborne imaging is post-processed with calibration, geo-registration, and segmentation.
Albeit very accurate, extracting useful information from this data is a slow and laborious process.
For disaster response, methods of automating this process have spurred the development of simple,
fast algorithms that can be used to recognize physical structures from the point-cloud data that
can later be assessed for structural damage. In this paper, we describe an efficient algorithm to
extract roadways from a massive Lidar data-set to assist the Federal Emergency Management Agency
(FEMA) in assessing road conditions as a step toward helping surveyors expedite a quantitative
assessment of road damages for providing and distributing public assistance for disaster relief.

Keywords: lidar; airborne imagery; road marking; point cloud; road detection; disaster response

1. Introduction

With the increasing frequency and cost associated with disasters such as tornadoes,
flooding, and hurricanes, there is a critical need to develop capabilities that are optimized
to support the processing, exploitation, and dissemination (PED) needs of an incident or
disaster response [1]. Capability development is needed to support civilians and public
safety before the disaster, during the immediate response, and over the long-term recov-
ery. Remote sensing technologies, such as traditional two-dimensional optical imagery
collected by the Civil Air Patrol (CAP) or three-dimensional light detection and ranging
(LiDAR) point clouds are enabling technologies to develop the applications that public
safety needs. In particular, LiDAR is a sensing modality that uses photon light reflections
to produce three-dimensional point clouds. Due to recent advances in sensing techniques
and commercial technology transition, LiDAR is being more integrated into incident and
disaster response [2].

Examples of this integration are the deployment of an airborne Geiger-mode Avalanche
Photo-diode (Gm-APD) LiDAR to comprehensively map Puerto Rico to support the post-
Hurricane Maria recovery efforts in summer 2018 and targeted collections of North and
South Carolina to support the Hurricane Florence response efforts in fall 2018. In conjunc-
tion with ground-based local field surveys, satellite imagery, and open-source datasets, a
highly automated workflow was developed to expedite a post-disaster damage assessment.
This paper provides an overview of the development and application of an algorithm to
assist in processing LiDAR data to enable remote roadway assessments.
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1.1. Literature Review and Prior Art

The Federal Emergency Management Agency (FEMA)required a simple and fast
method for extracting actionable information from large sets of LiDAR point cloud data.
Accordingly, we prototyped an algorithm to distinguish roads and buildings from the
other physical structures of the terrain. Identifying features of interest would reduce the
time required to complete remote roadway assessment, as users could focus on precise
measurements and minimize often difficult and hazardous measurements at the physical
site. The prototyped algorithm, as part of a highly automated workflow, could then improve
the quality of measurements and enable FEMA to efficiently expedite the transition from
response to recovery. The developed algorithm was built upon many concepts established
in the literature.

In [3], Bokyo, Funkhouser overlaid OpenStreetMaps (OSM) data on LiDAR data to
locate roads and curb edges. For Puerto Rico, the OSM data was often found to be sparse
or inaccurate, rendering this method to be of limited use. Other 2D data from satellite and
airborne sensors may also be used as cueing tools, but the resolution and accuracy were
inadequate and the imagery often out-of-date. Clode, Rottensteiner have extracted and
vectorized roads from LiDAR data using attributes such as intensity and local point density
of point clouds near the digital terrain model (DTM) [4,5]. Li, Hu, have described a road
extraction method using multiple features and using hierarchical primitive groupings to
connect road segments for form networks [6]. Liu, Zhang applied the generalized Hough
Transform for road detection [7]. Owens [8] explored the use of LiDAR data to uncover
roads and trails hidden under a canopy. White, Dietterick [9] used LiDAR-based DEMs to
reveal roads covered by a dense forest canopy.

Zhao and You [10] used flatness and convexity properties of the point clouds to
discriminate roads from buildings and trees. Zuo, Quackenbush [11] presented a raster
road classification and vectorization method using the Radon Transform. Weinmann [12]
described a multi-variate geometrical feature-based classifier that could be used for foliage
detection. Blomley, Weinman, et al. [13] analyzed common geometric covariance features
and suggested improvements based upon shape distributions of known objects. Niemeyer,
Rottensteiner, [14] presented a probabilistic approach for contextual classification of point
clouds in urban areas. These methods utilize the geometrical information embedded in
LiDAR data.

Clode, Zelniker, et al. [15] used height and intensity attributes of points followed by
convolution with a phase-coded disk to estimate the width and centerline of roads.

Péchaud [16] described a method of extracting tubular structures by computing
geodesic curves in 4D space to include local orientation and scale. Cesar, Jelinek [17]
applied Morlet Wavelets to identify blood vessels of the fundus, which is an interesting
approach. These methods have been applied to 2D images.

Many researchers have applied Artificial Intelligence to this problem. Hall [18] postu-
lated that feature selection for supervised classification tasks can be accomplished based
on correlation between features. Sarker [19] applied Convolutional Neural Networks for
classifications using spatio-contextual information for flood mapping. However, a lack of
sufficient training data and the time computation resources needed for the massive dataset
are often limiting factors for the practical use of such methods.

1.2. Goal of This Paper

In this paper, we present an approach to identify roads from a combination of LiDAR
metadata and embedded signal attributes along with point cloud distributions and geo-
metrical attributes. A key design consideration was speed and computational efficiency to
enhance an existing public assistance workflow. This method may be extended to identify
other physical structures such as buildings, trees, vehicles, etc. In the future, it will enable
the generation of sufficiently large training sets for the use of AI for improved performance
in the recognition of physical structures that may then be assessed for damage. The novelty
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of the method is to construct a filter of weighted attributes of points in massive point cloud
data to extract structures of interest for quantitative analysis.

1.3. Organization of the Paper

This paper has been organized as follows:
In Section 2, we present a historical background of the development of Lidar sensors

at Lincoln Laboratory and recent hurricane events where FEMA played important roles
in disaster relief. In Section 2.2 we described FEMA’s need for rapid identification for
roadways in massive Lidar datasets. Section 2.3 outlines the algorithm designed for
this purpose.

In Section 3 we discuss the application of this algorithm to Lidar sensor data collected
in Puerto Rico. Results from three specific cases are presented to show performance and
how some of the practical issues were addressed.

In Section 4 we discuss the results and conclusions and potential for future work.

2. Materials and Methods

Hurricane Maria made landfall on the island of Puerto Rico on the 20 September 2017
as a strong Category 4 storm, resulting in 2975 deaths and $ 90B in damage. Power and cell
phone services were lost to over 90% of the island, and half of the residents had no running
water. The Federal Emergency Management Agency (FEMA) set up a Joint Recovery Office
(JRO) in Guaynabo, south of the capital San Juan, to handle recovery efforts with a focus
on infrastructure repairs to roadways and buildings, as well as debris removal. In May
of 2018, FEMA contracted MIT Lincoln Laboratory to map the entire island as well as
the outer islands of Vieques and Culebra with an airborne LiDAR sensor to reduce the
time required to assess the damage. A similar effort was conducted to support the North
and South Carolina response to Hurricane Florence in the latter half of 2018. Figure 1
shows some of the locations on a map where the airborne LiDAR sensor collected data after
major hurricanes.

Figure 1. This Map shows some of the locations where the Airborne Optical Systems Testbed (AOST)
collected Lidar data after major hurricanes.

This section discusses the LiDAR sensor, overviews what a roadway assessment
should include, and describes the algorithmic development to assist in automating a
roadway assessment.
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2.1. Airborne Optical Systems Testbed

LiDAR systems-based Gm-APD technology has been under continuous development
since the late 1990s at the MIT Lincoln Laboratory [20,21]. Our work is based on earlier
field deployments with iterations of the MIT Lincoln Laboratory Airborne Optical Sys-
tems Testbed (AOSTB) and Airborne LiDAR Imaging Research Testbed (ALIRT) systems
(Figure 2). The AOSTB is significantly more capable than any commercial system avail-
able and can collect wide-area, high-resolution, three-dimensional data sets very rapidly.
A key capability of the LiDAR is foliage penetration (FOPEN), which allows sensing
through dense canopy layers as single photons reflect off the ground as they pass through
the canopy.

Figure 2. In Haiti 2010, Airborne LiDAR Imaging Research Testbed’s (ALIRT’s) direct and precise
measurement of height and slope helped inform which type of vehicles may navigate obstructions.
This depicts a section across the Rue de la Reunion in which the peak debris height is 2 m above the
street surface.

Data collection was performed at an operating ground speed of 50–99 m/s and GPS
altitude of 2070–2470 m above ground level (AGL), which produces point clouds with a
25 cm post-spacing. Depending on the cloud ceiling, the AOSTB may operate as low as
1000–1220 m AGL. As of December 2018, the reference LiDAR consisted of a 1 Watt, Q-
switched, Nd: YAG laser at a wavelength of 1064 nm with a pulse width of approximately
500 ps. A more powerful 3-Watt laser was integrated in the summer of 2019. The electro-
optical receiver was a state-of-the-art 256 × 64 pixel, 50-micron-pitch, Gm-APD array
optimized for operation at the 1064 nm laser transmitter wavelength. A Kontron CP605
with Intel 4M controlled the scan mirror and an Applanix POS AV V6 was used for direct
georeferencing. The LiDAR had a theoretical hourly area collection rate of 1000 km2/h. A
COTS Coherent laser source was used with an electro-optical receiver fabricated at MIT/LL.
The electronic subsystems read out the Gm-APD data and record the raw data along with
sensor and platform state data onto physical disks. The onboard operator interfaces were
provided to control and monitor the sensor state, laser operations, and data acquisition
and recording.

The AOSTB had a single Gm-APD sensor which produced raw data at a rate of
0.25–0.5 GB/s but other systems employ four Gm-APD sensors, outputting at 1–2 GB/s.
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The initial transformation from raw data to a noisy point cloud required a similar data
rate. Next, point filtering and registration algorithms produced a scan-based point cloud
outputting at 0.05–0.15 GB/s for the AOSTB. Additional AOSTB processing results in
another order of magnitude reduction. When the data was processed, the point cloud cross
resolution could improve from 5 m to 0.25 m. Given the current Gm-APD capabilities and
processing algorithms, near real-time end-to-end processing required tens of teraflops of
computational power.

The high-resolution LiDAR data covering the entire island of Puerto Rico consisted
of over 50 TB of data. The point cloud consisted of over 300 billion points. The data was
organized into tiles each covering an area of 500 m × 500 m on the ground. Roughly
40,000 tiles were needed to cover the island of Puerto Rico. Each tile consisted of roughly
4–8 million geo-located points, each with various additional metadata [22–24]. Processing
hundreds of hours of LiDAR data required days to weeks, depending on the desired
product, on an interactive supercomputer. With today’s AOSTB collection and automated
processing workflow, collecting and processing a 250 square mile area can be accomplished
in under 36 h from aircraft take-off to usable 3D data products. The manual extraction of
actionable information from these data products could have taken weeks or months.

2.2. Road Assessments

FEMA needed a capability to assess the damage to roadways infrastructure of the
island. For major disasters such as Hurricane Maria or Florence, rapid assessments of
thousands of damage-sites of roadways were required. The survey teams were dispatched
by a joint field office where communications were often difficult due to downed commu-
nications towers and power lines. The surveyors performed damage by taking physical
measurements of dimensions of damaged infrastructure. This was time-consuming, less
accurate, and sometimes hazardous.

In these circumstances, performance in speed preceded accuracy. A sufficiently good,
working solution delivered quickly was more valued compared to a “perfect” solution
delivered late. Many of the roads were inaccessible due to physical barriers such as
landslides, fallen trees, etc. Several common types of roadway damages include landslides,
washouts of the shoulder, damages of road-beds and bridges, failures of pipes/culverts,
damaged guard-rails, etc. The damage assessments were used for generating engineering
reports to provide scopes of repair work, cost estimates, and disbursements of funds.
Specifically, roadway assessments primarily consisted of various measurements of the
damage feature and surrounding area:

• Length, depth, width, and material of pavement damage
• Length, depth, width, and material of roadbed damage
• Length, depth, and width of shoulder damage
• Length, diameter/width and height, thickness, and material of damaged pipes/culverts
• Length of damaged guard rail

A roadway damage assessment report may contain some or all these features. The
assessment may also contain non-measurable information such as affected signage, nearby
utilities, roadway route type and name, and information for a local contact. This information
was often accompanied by a few sketches, with Figure 3 as an example.

In comparison, Figure 3 shows a damaged section of a road extracted from the LiDAR
point cloud that was used to get the desired measurements of the damaged section of the
PR-770 near Barranquitas, PR. Here, approximately 100 feet of roadway was washed out in
the area passing over Rio Canabon. Roadway assessments primarily consisted of various
measurements of the damaged features and the support structures as shown in Figure 4.
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Figure 3. Notional sketch of the important features of a roadway assessment. These sketches are
often hand-drawn by field survey teams. Specifically, this sketch is of a roadway wash-out of PR-770
near Barranquitas, Puerto Rico.

Figure 4. Example of LiDAR-based cross-section with measurements of the PR-770 washout near
Barranquitas, Puerto Rico.

Each red point represents an individual LiDAR measurement. All the features were
measured digitally, without the need for a human survey team to hazardously maneuver
through the washout.

2.3. Algorithm Design

The approach described here leverages the past work and applies a combination of
LiDAR metadata and embedded signal attributes along with point cloud distributions and
geometrical attributes. The programming complexity and the computational load of many
earlier methods were unfavorable for fast implementation.

To meet FEMA’s requirements, simple, fast algorithms with low computational load
were needed. The developed approach was designed to integrate into the existing FEMA
public assistance workflow, particularly those established for the Hurricane Maria recovery
and Hurricane Florence response. The algorithm’s purpose was to inform and support
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public assistance workers and assessors. This necessitated a design that effectively utilized
the LiDAR signal attributes and metadata.

Furthermore, a key challenge across most incident and disaster research is that while
targets of interest, such as roads, are entities that can be discretely annotated, there is an
operational need to the quantify damage that is less discrete and lacks clear boundaries.
There is a dearth of precise baseline infrastructure measurements that can enable change-
detection techniques for damage assessment. This is particularly true for LiDAR-based
datasets and hinders any classical machine learning approaches in using change detection
as an effective tool for damage assessment. While often after disasters, crowd-sourcing
mapping efforts such as the Humanitarian OpenStreetMaps team and Tomnod rely on
volunteers to annotate maps, these efforts are often for satellite or optical imagery and not
LiDAR. While recognizing this challenge and capability gap, we did not have the resources
available to develop an annotated LiDAR dataset. Instead, we adapted an algorithm design
methodology that employed basic signal processing approaches.

In response, we prototyped an algorithm designed to leverage the LiDAR metadata
and embedded signal attributes including intensity, Height Above Ground (HAG), Signal
to Noise Ratio (SNR), and reflectance. The approach was based upon the basic observation
that each point of a point cloud by itself provided little useful information about the
structure to which it belonged, but when combined with its neighboring points and their
attributes, partial features of objects began to emerge. The algorithm divided the data
into small sets and used their collective properties to classify them into the corresponding
physical structures.

The algorithm leveraged many signal attributes. The intensity, i.e., the recorded
amplitude of the reflected pulse captured as a return by the LiDAR receiver (see Appendix A
for definitions). LiDAR intensity values can be affected by many factors such as the angle
of incidence, target reflectance, and the environment. As a result, they cannot be used as
absolute measurements, but their relative magnitude can be used for the classification of
points in the LiDAR data set. Target reflectance is the portion of the transmitted energy
reflected back by the object to be captured by the LiDAR receiver pertinent. Each object has
a unique spectral signature that absorbs, transmits, and reflects the transmitted energy. As
a result, they too cannot be used as absolute measurements, but their relative magnitude
can be used for the classification of points. SNR is another signal attribute that may be
used for classification. To accurately determine the position of each point in object space,
the weak optical return signal needs to be detected and its timing measured accurately to
within a few nanoseconds. The detection circuit of the GM-APD LiDAR needs to have a
high gain, high bandwidth amplifier. This implies a high noise competing with a weak
incoming signal. SNR was also used as a distinguishing characteristic to identify features
of interest.

These signal attributes were represented as distributions for a given set of three-
dimensional positions. There are many ways to represent position using LiDAR measure-
ments and the prototyped algorithm was based on height above ground (HAG) positions.
This is the set of last returns (lowest points in the terrain) detected by the receiver. These
points were used to generate the bare earth surface. The relative height of each point in the
point cloud was measured from this reference surface.

In general, roadways have a HAG with low mean and variance, low SNR, low intensity,
and low reflectance. These properties are due to the roadways generally having a uniform,
flat surface and are usually at a lower height compared to neighboring structures such as
vegetation, buildings, etc. The uniformity of the road surface is represented in the HAG
projection. Additionally, the materials of the road surface have low reflectance which
provides a low intensity of the return signal from the LiDAR. The diffuse surface also
produces a low SNR. In addition, the points on roads will lie in narrow, long contiguous
groups of silos except when they are under foliage. These physical attributes were used to
identify the road surface using a simple filtering procedure.

The algorithm consisted of the following steps:
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1. Divide the area of each tile into a grid of small rectangular silos (Figure 5). Each silo
will consist of a small base area (e.g., 0.25 m × 0.25 m) and with a maximum height
being the highest point in the silo. Assign each point in the silo to one of these silos
based upon its geo-location.

2. Create a filter based on a moving window of say, a block of 5 × 5 adjacent silos that
will pass over the entire tile covering a lawn-mower pattern.

3. Create a set of the points in the cloud that fall within this moving window.
4. Generate a histogram of each of the attributes of the points in this set (e.g., HAG,

Intensity, etc.) Use the properties of the distribution of points and their attributes in
each silo to classify them into physical structures (e.g., roads, trees, buildings, etc.).

Figure 5. Height Above Ground (HAG) Data in Silos.

3. Results

In this section, we present results and discuss the following cases where this algorithm
was applied. We have selected 3 example cases that represent the results and some of the
advantages and challenges in using the algorithm.

Case 1: Identifying Roads
First, we show how this algorithm was used to identify roads. The attributes of road

surfaces described above were exploited to rapidly identify points on roads from dense
point clouds containing a variety of physical structures and features.

Case 2: Discriminating Waterways
A practical issue confronted while applying this filter was in distinguishing between

roads and waterways since both have very similar physical characteristics as recorded in
the LiDAR data. Here we discuss how this problem was addressed by applying a filter for
removing the waterways.

Case 3. Identifying Road Under Foliage
Another problem was to extract points in the cloud that are on the road but covered

under foliage. During the airborne collection, the LiDAR transmits rays from many direc-
tions as it passes over the terrain. As a result, even in the presence of dense foliage, some of
the transmitted rays manage to pass through gaps in the foliage and provide a return signal.
This sparse set of ‘last returns’ was recovered during post-processing in the HAG data and
used to find parts of the roads under foliage to form a continuum with the open, exposed
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parts of the road. It is possible to recover portions of the road that lie under foliage. In this
example, we present a method of finding the road surfaces that are hidden under foliage.

3.1. Case 1 Identifying Roads

Figure 6 shows a view from Google Earth of an area in Utuado, PR. In the Google
Earth image in Figure 6a, the red bounding box shows a 500 m × 500 m area on the ground.
Figure 6b shows the corresponding LiDAR image. This area was selected as an example
use-case because it includes various types of terrain encompassing a network of roads.
This includes urban/settled areas in the southeast part and dense, wooded areas in the
northwest. It also has a water canal that flows in the center in the north-south direction.
In 2D imagery such as with an EOIR camera, it is easy to spot some of the roads that can
be distinguished by their color, shape, and relative size. However, many road segments
are difficult to identify because they have colors and shapes that may be confused with
other features, or they are hidden under foliage. The LiDAR 3D data gathered during the
Puerto Rico campaign made it possible to distinguish roads from similar features by using
filters that utilized a combination of meta-data and geometric information encoded therein.
On the other hand, the high-density data presented challenges in terms of computation
load. Any algorithm developed for finding roads had to be scalable for processing the
large volume of data in a reasonable time frame (minutes instead of hours or days). This
was driven by FEMA’s need for rapid processing and analysis of the LiDAR data to assist
and expedite the disaster relief efforts. The algorithm described above was applied to the
LiDAR data. The unfiltered HAG data is shown in Figure 7a and the filtered data after
applying the algorithm described above is shown in Figure 7b.

Figure 6. (a) Google Earth image of an area in Utuado PR with LiDAR data tile outlined in red and
(b) the corresponding LiDAR data.

As shown in Figure 7b, most of the roadways were identified quite easily. However,
because the roads have similar attributes to parking lots, runways, helipads, etc., these
were also included in the filtered data. These other structures are usually easy to identify
by their physical shapes and can be removed by post-processing. The processing results
are summarized in Table 1. About 8.3% of all the points in the cloud were found to be on
roads. The ratio of the means of the points on the roads vs all the points in the cloud was
0.005 and the ratio of the standard deviations was 0.034.
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Figure 7. (a) LiDAR HAG data after filtering and (b) Roads identified.

Table 1. Case 1 Results Summary.

TILE ID X329_Y096

Total No of points 4,589,032

Total No of Silos 991 × 1024

No of Silos on Roads 221,886

Avg Pts per Silo 3.9467

Stdev No of All Pts per Silo 0.933

No of Points on Road 383,391

Mean HAG of points on Roads 0.0105

Stdev of HAG of points on Roads 0.1115

Mean HAG of all points 1.7969

Std HAG of all points 3.2337

3.2. Case 2 Discriminating Waterways

In this use case, we demonstrate a refinement to the algorithm to distinguish roadways
from waterways. Like roads, waterways are flat, have low Reflectance and Intensity. The
original algorithm was not able to distinguish between roads and waterways. The solution
to this problem was found by utilizing traditional civil engineering best practices [1]. In
general, the road levels are designed to be above the water levels. To apply this principle
the first minima of the histogram of the Z-data of each tile (Figure 8b) was used to separate
the low-level and the high-level Z-data points. The low-level data points were removed
from the set before the road-finder algorithm was employed. This proved to be an effective
method for separating waterways from roadways (Figure 9).

Table 2 is a summary of the results for this use case. There were roughly 4.7 million
points in the point cloud representing this tile of which roughly 8.3% were found to be on
roads and about 9.8% were on water bodies.
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Figure 8. (a) Google Earth image of Rio Vivi in Utuado PR. (b) Histogram of Z-values. Data below
the 1st local minimum removes waterways. Waterways have lower z-values than roads.

Figure 9. (a) Unfiltered LiDAR data showing Rio Vivi. (b) Filtered data after removing waterways.

Table 2. Case 2 Results Summary.

TILE ID X328-096

Total No of points 4,669,733

Total No of Silos 992 × 1000

No of Silos on Roads 195,894

No of Points on Road 391,400

No. of Points on Waterbodies 428,585

3.3. Case 3 Identifying Roads under Foliage

The next problem was to extract points in the cloud that are on the road but covered
under foliage (Figure 10). In this example, we show how the problem of finding roads
hidden under foliage was addressed.

As mentioned earlier, an advantage of the airborne LiDAR over optical cameras is that
it includes points on surfaces that are covered by foliage. To extract the segments of roads
under foliage, a moving filter consisting of the same block of silos was used to determine
whether they were on a road. For this, a small block of neighboring silos was combined
to form a larger set. The Mahalanobis distance of the points within this set is used as a
criterion first to find points that are aligned to the general direction of the road. Once these
points are identified, a second filter consisting of attributes such as HAG, intensity, and
reflectance (Table 3) was applied to determine points that were likely to lie on the road.
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The newly discovered points are added to the existing set of road points. This filter was
propagated sequentially along horizontal and vertical stripes to fill out the gaps in roads
formed by overhead foliage.

Figure 10. (a) Segment of Road under foliage (b) Zoomed-in image. (c) Foliage covering a section of
the road.

Table 3. Typical Threshold Values for Filter 2.

Attribute Threshold

HAG 0.4 m

Normalized Intensity 0.1068

Reflectance 0.03

The results of this process are presented here. Here as the road surface was being
developed by the algorithm, 3 separate snapshots at the beginning, middle, and end of the
process have been shown in Figure 11. In this example, a roughly 8.5 m length of the road
hidden under foliage was recovered using this process.
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Figure 11. (a–c) Three instances captured in-process where Mahalanobis Distance was used to identify
points on road under foliage.

4. Discussion

We have described a simple, fast method of data reduction and extraction of informa-
tion from massive LiDAR data sets. Since the GM-APD LiDAR data is dense and covers
large areas with very high resolutions, it is difficult to validate the statistics of this method
such as geo-accuracy, probability of correct and false identifications, etc., on a sufficiently
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large scale. High-resolution imagery with EOIR sensors is available from airborne and
satellite platforms, but these can provide only 2D image data. Their accuracy depends on
many factors. For visible sensors, the precision is affected by factors such as the location of
the illuminating source such as the sun, the BRDF, and relative contrasts of materials on
and in the neighborhood of roads, as well as environmental conditions such as humidity,
the wetness of surfaces, etc. For IR cameras, the limitation of 2D imagery also applies along
with lower resolution. Satellite-based imagery is mostly intended for use in navigation
purposes, which high accuracy and resolutions comparable to GM-APD LiDAR data are
not needed nor available. For true validation, large-scale surveys on the ground of the road
surfaces imaged by the Airborne LiDAR are needed. On a very small scale, a validation
of this measurement method was described in Section 2 above. In this case, FEMA has
contracted an independent surveyor to take measurements of the breach on the road which
had previously been measured using LiDAR data. The surveyor had used a precision
ranging device aboard a drone flying at close range to the ground to take high-accuracy
measurements. When the dimensions of the remote-sensed breach measurements with
LiDAR were compared with the close-range measurements, the different dimensions were
found to be less than 1%. For true validation, a large-scale exercise of measuring samples
of dimensions of the road on the ground is needed. This validation effort was outside the
scope of this project but may be undertaken in the future.

Future Work

The approach applied in the algorithm to find roads can be extended beyond roads
to find other types of structures including buildings, foliage, bridges, towers, power lines,
and parking lots with cars. In Figure 12, we show examples of point clouds of roads, trees,
landscaped shrubs, and a parking lot with vehicles.

Figure 12. (a) Roads, (b) trees, (c) shrubs, and (d) cars in a parking lot identified in LiDAR data.

We briefly experimented using the algorithm tuned for roadway assessment to identify
buildings (Figure 13). The algorithm was modified to account for those buildings with
heights of at least 10 feet and that the point density of points on rooftops will generally be
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higher with small variations. Figure 13 illustrates the algorithmic output after adjusting the
thresholds when processing the HAG positions. Similar to roadways, once the buildings
are identified, their dimensions such as height, the gradient of roof slopes, and precise 3D
dimensions of damaged sections could be measured.

Figure 13. Satellite imagery (a) and buildings extracted from LiDAR HAG (b) near PR-523 in Utuado,
Puerto Rico.

Future use of this algorithm will be in developing sufficient quantities of data-sets
for training neural networks to perform the automated road-finding task. Although the
approach described in this paper is effective for a few tiles, the threshold values selected in
the filter needed to be adjusted just ever so slightly depending upon the environmental
conditions, the materials used for constructing the physical structures, and other factors. In
situations where adequate time and computing resources are available, the application of
AI with sufficiently large training sets may provide a robust approach for fast, automated
recognition of physical structures of interest.

Additionally, the algorithm was designed to only leverage homogenous LiDAR infor-
mation, yet LiDAR alone is insufficient to meet the public assistance needs. While a LiDAR
point cloud will enable FEMA to characterize the erosion of a mountainside road, LiDAR
will not identify which road is damaged. Fusing LiDAR with open-source geospatial
information is a necessity.

Weather forecasts and data are another important consideration since the AOSTB 1064
nm laser doesn’t penetrate clouds. Note however that not all LiDAR systems are as severely
impacted by cloud cover. Atmospheric particulate and moisture are also important. Notably
Saharan dust from Africa will influence the atmospheric conditions over the Caribbean
but more research is required to determine how it affects LiDAR-derived PED products.
Research is required to determine if satellite imagery could be used to identify or explain
potentially degraded LiDAR returns. Another supercomputing application would be the
production of a metric from previous flights that indicates the probability of poor cloud or
dust conditions by area to guide the prioritization of future surveillance targets.

5. Conclusions

The use of LiDAR imagery has fundamentally changed the methods and approaches
used by field surveyors and damage assessors. While visiting sites for inspection, the
site assessor no longer needs to take detailed measurements of all the physical features
required for quantitative estimates. Instead, the site assessor can focus on taking accurate
measurements of a few strategically selected features of physical structures at or near the
site. Back in the office, these measurements can be used as references for validation of
the location, orientation, and relative scaling of features in the LiDAR image data. The
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availability of richly detailed 3-dimensional information embedded in LiDAR data offers
the possibility of improving the efficiency of damage assessment by FEMA and other
agencies. At the same time, the high volume and density of data make it challenging to
expeditiously extract actionable information that could be used for recovery from natural
disasters on a large scale. Leveraging the work done in the past, we have developed a
simple, fast silos-based algorithm for finding roads using combinations of signal attributes
and geometrical features embedded in LiDAR data for finding roads that are extendable
to finding other physical structures. By adapting different parameters of the Silos filter,
structures such as communication towers, water towers, etc., can also be identified in the
LiDAR data. Statistical measures such as Hellinger, Matusita, or Bhattacharya distances
may be used for the classification and extraction of other types of features and physical
structures. Once roads and other physical structures are identified, the process of a highly
accurate quantitative assessment of site damages may be performed.

Additionally, LiDAR alone PED is insufficient to justify public assistance scoping
and cost estimates. Scoping and costing require applicant-specific information, decisions
on methods of repair, knowledge of labor costs, material costs, and policy. There is an
operational need to concurrently use and fuse other sensing modalities with the GM-APD
LiDAR. As an example, since LiDAR measurements contain no color information, other
sensing modalities can assist its material classification.
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Abbreviations

ALIRT Airborne LiDAR Imaging Research Testbed
AOSTB Airborne Optical Systems Testbed
DTM Digital Terrain Model
FEMA Federal Emergency Management Agency
FOPEN Foliage penetration
Gm APD Geiger Mode Avalanche Photodiode
HAG Height Above Ground
JRO Joint Recovery Office
LiDAR Light Detection and Ranging
MIT/LL Massachusetts Institute of Technology Lincoln Laboratory
OSM OpenStreetMaps
SNR Signal to Noise Ratio

Appendix A. Definitions

The following are Definitions of some of the LiDAR terms used in this manuscript
Point Cloud: A LiDAR dataset comprising of geo-referenced X, Y and Z coordinates

of the first, intermediate and last returns from each laser pulse.
Intensity: The recorded amplitude of the reflected pulse captured as a return by the

LiDAR receiver. When the GM-APD (Geiger-Mode Avalanche Photo-Diode Detector) is
operated in Linear Mode, the avalanche multiplication can be controlled such that the
output signal is on average proportional to the energy of the incoming optical flux.
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Height Above Ground (HAG): The set of last returns (lowest points in the terrain)
detected by the receiver. These points are used to generate the bare earth surface. The
relative height of each point in the point-cloud measured from this reference surface is
called HAG.

Height Z: Each point in the LiDAR point cloud is pre-processed to transfer its frame-
of-reference fixed to the aircraft platform to the georeferenced frame. The Z height is
measured from a reference such as Mean Sea Level.

Signal-to–Noise Ratio (SNR): Ratio of the optical return signal to the noise of the
high gain, high-bandwidth GM-APD LiDAR detector.

LiDAR Point Cloud Density: Point density is defined as the number of points per
unit volume. Here, the number of points per silo may be used as a measure of point
density. Water bodies are generally characterized by low point-cloud densities due to high
absorption (of the transmitted spectral band) by water. High point-cloud densities may be
used to find surfaces such as building roof-tops, metal structures, etc.

Reflectance: The portion of the transmitted energy reflected back by the object to be
captured by the LiDAR receiver. Each object has a unique spectral signature that absorbs,
transmits and reflects the transmitted energy. The reflected energy is given by

Er = Ei − Ea − Et

Ei = Incident energy

Ea = Absorbed energy

Et = Transmitted energy
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