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Abstract: The present study focused on the design of geothermal energy piles based on cone pen-
etration test (CPT) data, which was obtained from the Perniö test site in Finland. The geothermal
piles are heat-capacity systems that provide both a supply of energy and structural support to civil
engineering structures. In geotechnical engineering, it is necessary to provide an efficient, reliable,
and precise method for calculating the group capacity of the energy piles. In this research, the first
aim is to determine the most significant variables required to calculate the energy pile capacity, i.e.,
the pile length (L), pile diameter (D), average cone resistance (qc0), minimum cone resistance (qc1),
average of minimum cone resistance (qc2), cone resistance (qc), Young’s modulus (E), coefficient
of thermal expansion (αc), and temperature change (∆T). The values of qc0, qc1, qc2, qc, and E are
then employed as model inputs in soft computing algorithms, which includes random forest (RF),
the support vector machine (SVM), the gradient boosting machine (GBM), and extreme gradient
boosting (XGB) in order to predict the pile group capacity. The developed soft computing models
were then evaluated by using several statistical criteria, and the lowest system error with the best
performance was attained by the GBM technique. The performance parameters, such as the coefficient
of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean biased
error (MBE), median absolute deviation (MAD), weighted mean absolute percentage error (WMAPE),
expanded uncertainty (U95), global performance indicator (GPI), Theil’s inequality index (TIC), and
the index of agreement (IA) values of the testing data for the GBM models are 0.80, 0.10, 0.08, −0.01,
0.06, 0.21, 0.28, −0.00, 0.11, and 0.94, respectively, demonstrating the strength and capacity of this soft
computing algorithm in evaluating the pile’s group capacity for the energy pile. Rank analysis, error
matrix, Taylor’s diagram, and the reliability index have all been developed to compare the proposed
model’s accuracy. The results of this research also show that the GBM model developed is better at
estimating the group capacity of energy piles than the other soft computing models.

Keywords: thermal load; energy piles; machine learning algorithms; reliability analysis; model
comparison

1. Introduction

Geothermal energy, energy obtained from the interior of the Earth, has enormous
potential for heating and cooling production almost everywhere. It has been considered
as one of the most reliable and clean energy sources. Geothermal energy combined with
heat pumps may contribute significantly to the decarbonization of the heating and cooling
industries [1,2]. In recent times, ground-source heat pump (GSHP) systems have become a
feasible technology for both cooling and heating buildings, with a coefficient of performance
(COP) higher than one, specifically, from three to five. The GSHP is a system that transfers
heat from the earth into a building in the winter and heat out of the building in the
summer. Fluid is circulated between the heat pump and the ground. The earth temperature
beyond a depth of 1 m is mostly unaffected by the daily cycle of air temperature and
solar radiation and its yearly variability extends to a depth of 9–12 m [3,4]. The method
for heat transmission between a structure and the earth may be incorporated into the
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foundational components because concrete has a high thermal conductivity and thermal-
storage capacity. It is an ideal medium for the heat absorber in the ground and has
a wide range of applications as heat exchangers inside the earth [5]. A ground-heat
exchanger (GHE) consists of loops made of high-density polyethylene (HDPE) pipes with
a fluid flowing (usually water) which serves as a heat conductor. Although continuous
monitoring and control systems are used to avoid the freezing of the piles and stop thaw-
induced defects, they occur in any case [6]. Ground-heat exchangers can generally take
various shapes, such as horizontal trenches as well as vertical boreholes. It is known that
these systems may typically operate at a coefficient of performance (COP) of around four,
which signifies that they will produce 4 kW of heating or cooling energy for each 1 kW
of power used [7–9]. However, among the several direct geothermal energy uses, GSHP
systems are the most popular [10] and they have received a lot of attention over the past
10 years to better understand how they might be used and designed most appropriately
and effectively [11–15]. A GSHP system is used to minimize the capital cost of cooling and
heating geostructures. The GHE loops are embedded inside the pile foundations, and the
heating and cooling process is shown in Figure 1 [16–18].
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Figure 1. Representation of geothermal energy pile system.

Piles are structural foundation components that are relatively long and usually slender
and transport loads from superstructures to deep layers of soil. These days, a wide variety
of piles are being made, and the building sector uses them widely; however, depending on
the kind of soil and the site conditions, different pile systems will have different functions.
The majority of piles are designed to fulfill end-bearing-capacity requirements [19]. In this
paper, we will try to fulfill the energy requirements of the building by using renewable
ground energy. For the design of an energy pile, first the load-carrying capacity of the pile
is determined based on cone penetration test (CPT) data by the use of IS code [20]. As
with other in situ testing, the CPT eliminates laboratory test uncertainties, such as sample
disruption, sample preparation, and the reapplication of the in situ test conditions, as well
as the potential errors associated with carrying out laboratory tests [21]. Cone tip resistance
(qc) and side skin friction ( fs), two soil strength parameters evaluated by the CPT, are very
comparable to the factors affecting the pile capacity [22].
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Due to the enormous amounts of energy used for different purposes nowadays, the
significance of energy conservation is being emphasized more and more. The building
industry consumes a significant portion of energy (more than 30%) globally [23]. Many
engineers created various predictive and evaluative tools to provide the best approximate
building energy consumption. There have been many past attempts to simulate the build-
ing’s energy [24,25]. In general, there are two common methodologies for evaluating the
energy performance of buildings (EPBs): forward modeling and inverse modeling [26]. The
drawbacks associated with using this strategy necessitate a lot of time and accuracy owing
to the numerous parameters involved. Additionally, using various simulation programs
might result in varied accuracy [27]. Numerous scholars have urged the use of machine
learning techniques in response to the disadvantages of these simulations [28]. The main
advantage of using machine learning techniques is how simple they are to use and how
powerful they are computationally. Furthermore, the best machine-learning-based ap-
proach can handle the development of the variables (in this case, changes to the building
design parameters), which is valuable work for architects and designers. The next para-
graph of the paper provides a thorough overview of earlier studies that examined the
viability of various machine learning approaches in the design of geothermal energy piles
and geotechnical engineering problems.

Recently, machine learning (ML) methods, such as support vector machines (SVM),
multiple linear regression (MLR), and artificial neural networks (ANN), have been applied
to several geotechnical engineering designs and were shown to be significant and success-
ful [29–34]. An increasingly popular artificial intelligence method for solving geotechnical
problems is the support vector machine (SVM), which has produced good results [35–39].
The SVM’s attempt to identify the functions governing a phenomenon with only a set of
data is a key component. As a result, unlike many traditional approaches, no assumptions
are required to be made in order to simplify the problem. Pal and Deswal [40] proposed the
SVM model to predict the pile capacity based on stress wave data, and determine the static
axial capacity of high-strength-concrete spun pipe piles. Z. Zhao et al. [41] explained how
to use the soft computing techniques of multivariate adaptive regression splines (MARSs)
and random forest (RF) to assess the drivability of a pile in estimating the maximum
compressive stresses. Z. Zhao et al. [42] aimed to develop a CPT-based fully probabilistic
framework that combines the advantage of the XGB algorithm and Bayesian theorem to
predict the probability of liquefaction. The direct measurement of parameters is difficult
and expensive to achieve on-site. The gradient boosting tree (GBT) model was presented as
a new, effective way for estimating the pile capacity in actual projects [43].

As it is seen, in the design of geothermal energy piles and geotechnical engineering
problems, machine learning techniques are used effectively. Nevertheless, there are still
large knowledge gaps in this field. To be clear, previous research has demonstrated the
applicability of soft computing modes, but few researchers have examined models that are
not often employed. Furthermore, to the authors’ knowledge, no prior study has offered
a thorough examination of machine learning techniques for this topic. Consequently, the
novel aspects of this study can be summed up as follows: (i) evaluating a number of new
machine learning algorithms that have never been applied in the field before, (ii) offering
an extensive comparison of several prediction techniques, and (iii) implementing feature
selection to provide the ideal input combination for the design of energy piles.

This study uses a variety of machine learning algorithms, including RF, SVM, GBM,
and XGB to develop a highly precise and computationally efficient machine-learning
(ML)-based model for designing geothermal energy piles by using CPT data and thermal
conditions. A significant variation in the static behavior of an energy pile is shown due to
the practical application of a thermal load. In this paper, first we have to explain how the
pile group capacity of an energy pile is determined on the basis of the thermal load and CPT
profile data. Then, the modeling approach and application of the soft computing model
employed are discussed. We built the dataset for training and validating the model for this
purpose, using 200 random CPT distributions from the aimed site in Finland. The predicted
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model is then validated by comparing the reported results from the tests that took into
account various CPTs, isolated and group piles, model shapes, and material characteristics.
Finally, the evaluation of the performance of the proposed model is also discussed.

2. Data Analysis
2.1. Database and Soil Characteristics

A dataset of the Perniö test site conducted by Tampere University has been used for
several research studies. The test site is situated in Finland along the southwestern coast,
which is 140 km from the city of Helsinki. The deposit’s lithostratigraphic state contains an
8–10 m thick layer of soft clay with high plasticity under a 1–1.5 m thick dry crust. All tests
have been carried out in line with ISO standards (ISO/TS 17892-4:2004 [44] for laboratory
testing and ISO 22476-1:2002 [45] for piezocone testing). The soil categorization test, index
properties test, and CRS consolidation test are all part of the laboratory testing program. Di
Buo [46] states that all the tests have been carried out in the soil laboratory. Specifically, wL
and St are assessed using the fall cone (FC) test for Atterberg’s limits evaluation, while wP
is determined using the rolling test. The clay fraction is determined using the hydrometer
analysis. Figure 2 depicts the geotechnical engineering features of the investigated site [46].

Figure 3a depicts the CPT results from the test site, which is obtained from the piezo-
cone sounding test. The soil stratum shows a homogeneous soft clay layer from 2 to 10 m
in depth, characterized by qc increasing from 114 to 566 kPa. The sensor resolution (which
is 2 kPa) causes the value to lack precision, as illustrated in Figure 3b [46].

2.2. Energy Pile Characteristics

A bored or cast onsite concrete pile (length 8 m and diameter 700 mm) was used in
our study with the L/D ratio of 11.5 (i.e., less than 15), which is suitable for a short pile to
avoid buckling failure [47]. A GSHP system was used for heating or cooling operations.
Table 1 displays the geometry and physical properties of the pile and the GSHPs, where the
distance between the adjacent energy piles was adequate (s = 965 mm) to avoid the thermal
overlapping effects among the piles. The high-density poly-ethylene/poly-propylene
(HDPE/HDPP) plastic pipes with a U shape that carry the heat carrier fluid (HCF) within
the geothermal energy pile (GEP) are utilized in the energy pile design, which have been
called the energy loops or absorber pipes, and have a diameter of 40 mm. The soil type was
stated to be of a clayey nature and the heat carrier fluid (HCF) in the tubes was stated to
be pure water [48] or water mixed with an antifreeze- or biocide (ethylene or propylene
glycol)-based solution [17]. The freezing point is decreased by ethylene glycol, whereas
its viscosity increases, which results in higher input energy for pumping [49]. Inside the
U-tubes, there are two distinct fluid-flow regimes: steady-state, with a hydrodynamic
and thermal profile, and transient zone, with velocities fluctuating and a thermal profile
throughout the length of the pile [50]. Due to the prominence of the steady-state zone in
the U-tubes and the fact that it can only be reached within a short distance of the tube inlets,
a laminar flow was considered in this study. The HDPE U-tubes which have been used in
the piling shaft were chosen for their material based on Gashti et al. [50], and the software’s
material library was used to acquire the thermal values of the materials used in the model,
as indicated in Table 2.
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Figure 2. Variation of geotechnical properties; (a) soil profile with depth (m); (b) moisture content
w (%) with depth (m); (c) liquid limit (%) with depth (m); (d) plasticity index (%) with depth (m);
(e) sensitivity (kPa) with depth (m); (f) clay fraction (%) with depth (m) [46].
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Figure 3. CPT test result: (a) Cone resistance, qc; (b) Sleeve friction, fs [46].

Table 1. Physical properties and geometry of pile and GSHPs.

L (m) D (mm) Flow Rate of Water
(m3/h)

Heat Carrier Fluid
Inlet Velocity (m/s)

Collector Type
(mm)

8 700 0.325 0.182 U-tube 40

Table 2. Thermal characteristics of isotropic materials (Obtained from Gashti et al. [51]).

Materials Density
(kg/m3

)

Thermal Conductivity
(W/m K)

Heat Capacity
(J/kg K)

HDPE 950 0.42 2250
Clay 1812 1.1 1845
Steel 7850 44.5 475

Concrete 2400 1.8 880

2.3. Thermal Characteristics

Kukkonen [52] states that the surface temperatures in the Finland area range from
around +5 ◦C in the south to about +2 ◦C in the north on a yearly basis. Based on the
studies of many researchers in the Finland area, we can say that the average annual ground
temperature rises slightly with the depth. A concrete pile of length 8 m has been used in
our study for simulation for this purpose, and we have to make an assumption that the
average annual ground temperature is about 13 ◦C.

As per the recent literary works, the temperature changes brought on by the energy pile
operation have no negative consequences on the geotechnical soil qualities [53]. Therefore,
changes in the soil properties that might have a significant influence on the geotechnical
failure in the energy piles have not been considered. Due to the symmetry of the research
object and the avoidance of the thermal overlap effects from nearby piles, the vertical
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ground surfaces were considered to be adiabatic, while the bottom surface of the soil domain
was chosen to be a constant temperature [51]. Table 3 displays the mechanical characteristics
of the materials utilized in the model (concrete properties from Laloui et al. [18] and clay
properties from Gashti et al. [51]).

Table 3. The mechanical and thermal characteristics of homogeneous isotropic materials (Obtained
from Gashti et al. [51]).

Clay Steel Concrete

Young’s modulus (MPa) E 15 200 × 103 32 × 103

Shear modulus (MPa) G 5.62 75 × 103 12 × 103

Coefficient of thermal expansion (◦C−1) αc 0.5 × 10−5 1.23 × 10−5 1 × 10−5

Poisson ratio ν 0.33 0.33 0.33

3. Methodology

This section offers a comprehensive overview of the energy pile design concepts,
nomenclature, and formulas. Following the acquisition of the various CPT profile data at
various depths for specific locations, an IS code method was used to calculate the group
capacity of the pile, which is followed by the application of suitable machine learning (ML)
algorithms and the evaluation of the performance of the pile capacity.

3.1. Pile-Load-Capacity Determination

The axial capacity of the pile determination is difficult even under ideal conditions. The
engineering profession has created several techniques to address uncertainty in the design
and analysis of piles. However, the methodologies produce qualitative conclusions rather
than precise quantitative values that may be used to build piles because of simplifying
assumptions about soil stratum, the distribution of shaft resistance along the pile, and the
interaction of the soil with piles. In recent years, the cone penetration test (CPT) has become
the in situ test of preference for pile design and analysis because the CPT offers continuous
data with depth that can be evaluated using both analytical and empirical approaches, and
also because it is simple, quick, affordable, and easy to use.

Indian Standard (Code of Practice for Design and Construction Pile Foundations), Part 1:
Concrete Piles, Section 1: Driven Cast In-Situ Concrete Piles [20]

For cohesive soils, the ultimate load capacity (Qu) is determined by:

Qu = qu × Ab + fs × As (1)

where qu is the ultimate end-bearing resistance (kPa), fs is the skin friction resistance of the
pile (kPa), Ab is the cross-sectional area of the pile tip (m2), and As is the surface area of the
pile shaft (m2).

Essentially, the cone penetration test data (CPT) is a small version of a pile load test.
Therefore, the parameters required for the design of piles under vertical load may be
derived from the results of this test [54]. It is recommended by Schmertmann [55,56] that a
single method be used for calculating the point-bearing capacity of piles in all types of soil.
The method utilized here entails calculating a representative cone point penetration value
(qu), which is 2D below the pile’s tip level and 8D above the pile’s tip.

The ultimate end bearing resistance qu (kPa) of the pile is

qu =
qc0+qc1

2 + qc2

2
(2)

where qc0 is the average value of the static cone resistance up to a depth of 2D below the
pile tip (kPa), qc1 is the minimum static cone resistance value up to the same 2D depth
below the pile tip (kPa), qc2 is the average value of the envelope of minimum cone resistance
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values up to a length of the pile of 8D above the pile tip (kPa), and D is the diameter of the
pile (m).

Table 4 shows the ultimate skin friction resistance approximately calculated as local
side friction ( fs) obtained from the static cone resistance (qc).

Table 4. Skin friction for various types of soil.

Soil Type fs (kPa)

Clays and peat
qc
30 < fs <

qc
10

Clays qc
25 < fs <

2qc
25

Silty clays and silty sands
qc

100 < fs <
qc
25

Sands
qc

100 < fs <
qc
50

Coarse sands and gravels fs <
qc

150

The area of the cross-sectional of the pile tip (Ab) and the pile shaft surface area As
can be calculated as:

Ab =
π

4
× D2 (3)

As = π D L (4)

3.2. Thermal Load Determination

When a pile is heated without a head load, it will expand. A free-standing column
will expand and the corresponding thermal properties are determined by the Equation [5]

εT−Free = αc∆T (5)

where εT−Free corresponds to the unconstrained free axial thermal strain, αc gives the
coefficient of thermal expansion or contraction of concrete, and ∆T is the overall change in
the temperature of the pile.

Due to the mobilization of side restraints of the pile–soil interface and each end-
restraint at the pile head or toe, a pile that is buried in the earth will not be able to spread
freely. The observed strain change as a result of the temperature change (εT−obs) will thus
be lower than that predicted by Equation (6).

εT−obs ≤ εT−Free (6)

The restrained axial strain εT−Rstr can be estimated as

εT−Rstr = εT−Free − εT−obs (7)

In structural design, the thermal stress caused by the restrained strain εT−Rstr should
be taken into account. For estimating the thermally induced axial load for a specific
increment of strain due to a change in the temperature, the equation below can be used

pT = −EAεT−Rstr

= −EA(αc∆T − εT−Obs) (8)

where E is the pile materials Young’s modulus (kPa) and A is the area of the cross-section
of the pile (m2). The negative sign in Equation (8) suggests that the pile–soil-interaction-
induced restrained strain acts as a counterforce to restrain the pile deformation.

3.3. Group Capacity of Pile

Piles combined in groups or clusters are the most effective. The combination of the
pile into a group makes the analysis more difficult, since the interactions between the other
group’s piles make the features of a single pile invalid. When a single pile is combined
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with other piles to form a cluster or group, the allowable load of that pile will be different
and the pile group acts as a block.

The pile group functions as a block, hence the block’s total capacity is calculated by
adding the base resistance and shaft resistance. The behavior of the pile group operating
as a block frequently limits the capacity of the block with closely spaced piles (spacing
between the piles in a block is always less than equal to three times the width of the block,
i.e., s ≤ 3B). The block’s group capacity is determined by

Qug = qu × Ag + α× c× Pg × L (9)

where qu is the unit point resistance (kPa), Ag is the cross-sectional area of the block (m2), c
is the undrained cohesion (kPa), α is the adhesion factor (α = 1.0 for soft clays), Pg is the
perimeter of the block (m), and L is the length of the pile embedded (m).

The group capacity, considering the piles as an individual pile, is given by

Qug = n×Qu (10)

where n is the number of piles in the group and Qu is the single pile load capacity (kN).
Since the ultimate group pile capacity is not necessarily equal to the total of the

individual pile load capacities within the group, the group efficiency is necessary. The
group efficiency of the piles is given by

η =
Qug

n Qu
(11)

3.4. Allowable Load on Piles

The allowable load is obtained from the ultimate load given by Equation (12):

Qall =
Qug

F
(12)

where F represents the factor of safety.

3.5. Reliability Analysis

The reliability index (β) is a simple way of expressing the probability of failure in terms
of capacity and demand [57]. In this study, capacity is defined as the load-carrying capacity
(C) of energy piles and the demand is defined as the sum of mechanical and thermal load
(D). The performance function can be defined as

Z = g (C, D) = C− D


> 0, sa f e state
= 0, Limit state
< 0, f ailure state

(13)

The reliability index is given by Figure 4

β =
µC − µD√

σ2
C + σ2

D

(14)

where µC is the mean of capacity, µD is the mean of demand, σC is the standard deviation
of capacity, and σD is the standard deviation of demand.
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3.6. Soft Computing Algorithms

In this study, four soft computing models, namely, the RF, SVM, GBM, and XGB,
have been developed to predict the group capacity of an energy pile. The provided soft
computing models have impressive capabilities for learning and they are able to accurately
estimate the pile group capacity even when subjected to a wide range of influencing factors,
such as the size of the datasets and the number of features. The detailed descriptions of
these models are introduced as follows.

3.6.1. Random Forest (RF) Algorithms

RF refers to a group of machine learning (ML) techniques, such as the Breiman Forest
algorithm, which [58] first introduced and that is frequently cited in the literature as a
benchmark model, are used to generate a collection of decision trees. The bagging and
random feature selection techniques of “randomization” are applied in this algorithm.
Therefore, the learning stage creates a collection of decision trees that are driven by a
‘bootstrap’ subgroup from the initial learning dataset, i.e., utilizing the bagging principle
and the random tree induction approach. The classification and regression trees (CART)
algorithm serves as the basis for such an induction algorithm [59] and modifies the way
the tree’s nodes are divided so that the feature used as the criterion for dividing is chosen
in a partially random manner.

3.6.2. Support Vector Machine (SVM) Algorithms

Vapnik [60] introduced an alternative ε-insensitive loss function to develop the ε-
support vector regression (SVR). This loss function permits the usage of margins for
regression problems, where a margin is defined as the sum of the distances between the
nearest points of the two classes and the hyperplane, as seen in Figure 5 [38]. The objective
of the SVR is to develop a function that deviates from the actual target vectors by no more
than ε for all training data and is as flat as is feasible [61]. Vapnik [60] presented the kernel
function technique for nonlinear support vector regression.

Based on Vapnik’s statistical learning theory, the SVM was introduced in the 1990s [62,63].
The structural risk minimization (SRM) principle is used to reduce model errors, whereas
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other approaches, such as ANNs, use empirical risk minimization (ERM) [31,64]. The
simultaneous maximization of the model’s generalizability and minimization of empirical
risk is the main objective of the SRM. The SRM has therefore been discovered to be more
effective than the ERM principle [21,31].
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3.6.3. Gradient Boosting Machine (GBM) Algorithms

One of the most effective algorithms in the area of machine learning is the gradient
boosting technique, which is used in classification and regression tasks. The GBM is an
ensemble machine learning (ML) technique that uses weak learners to create a robust
prediction model. The GBM utilizes a boosting technique in which predictors are built
sequentially (i.e., step-by-step), but not independently [66]. As with supervised learning in
general, the GBM’s objective is to define and minimize a cost function.

3.6.4. Extreme Gradient Boosting (XGB) Algorithms

Due to its benefits of high effectiveness and sufficient flexibility, XGB, an improved
and supervised approach by Chen and Guestrin [67] under the Gradient Boosting Machine
(GBM) framework, has received a lot of interest in Kaggle machine learning contests.
It is also a gradient-boosted decision tree implementation. However, the XGB uses a
more regularized model formalization to control over-fitting; hence, over-fitting results in
improved performance [68]. As shown below, the objective function (f ) for XGB consists of
a cost function and a term of regularization.

f (x) = C(x) + Ω (x) (15)

where x is the indicator of parameters, C is the cost function, and Ω is the term of regulariza-
tion. Commonly, the mean squared error (MSE) is selected as the cost function. The Ω helps
to prevent over fitting by regulating the model’s complexity with a bias-variance trade-off
to maintain it as simple and predictive. It penalizes the development of a complicated
tree with many leaf nodes in order to restrict the hypothesis space of the base functions
throughout each iteration. At the same cost, the model favors a simple function over a
complicated function at every iteration [69].

3.7. Performance Assessment

To evaluate and compare expected and observed values, ten important statistical
indices are introduced: the coefficient of determination (R2), root mean square error
(RMSE), mean absolute error (MAE) [70], mean biased error (MBE), median absolute
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deviation (MAD), weighted mean absolute percentage error (WMAPE), expanded uncer-
tainty (U95) [71], global performance indicator (GPI) [72], Theil’s inequality index (TIC),
and the index of agreement (IA) [73]. These parameters can be mathematically written as

R2 =

n
∑

i=1
(di − dmean)

2 −
n
∑

i=1
(di − yi)

2

n
∑

i=1
(di − dmean)

2
(16)

RMSE =

√√√√√ n
∑

i=1
(di − yi)

2

N
(17)

MAE =

n
∑

i=1
|(yi − di)|

N
(18)

MBE =

n
∑

i=1
(yi − di)

N
(19)

MAD = median(|y1 − d1|, |y2 − d2|, . . . . . . . . ., |yn − dn|, ) (20)

WMAPE =

n
∑

i=1

∣∣∣ di−yi
di

∣∣∣× di

n
∑

i=1
di

(21)

U95 = 1.96
(

RMSE2 + SD2
)1/2

(22)

GPI = RMSE×MBE×U95 × tstat ×
(

1− R2
)

(23)

T I C =

√
∑n

i=1(yi−di)
2

N√
∑n

i=1 y2
i

N +

√
∑n

i=1 d2
i

N

(24)

I A = 1− ∑n
i=1(yi − di)

2

∑n
i=1(|di − dmean|+ |yi − dmean|)2 (25)

where di is the actual value of the ith sample points, yi is the predicted value of the ith

sample points, dmean is the mean of the actual value, and N is the number of the data
sample. Calculating U95, the difference between the predicted value and the actual value is
assessed term-by-term, and the short-term effectiveness of the formula is examined. The
U95 (Equation (22)) indicates uncertainty up to a 95% confidence level, where 1.96 is the
confidence level coverage factor, and SD is the standard deviation of the difference between
the predicted and actual data. GPI is the mathematical relation between the five statistical
factors, as shown in Equation (23). The GPI value determines how accurate a model is; a
higher GPI value yields a more accurate model, whereas a lower GPI value yields a less
accurate model. TIC (Equation (24)) is a measurement of how well an estimated model
value compares to a corresponding model of actual value. The TIC value is 0 (total equality)
and 1 (total inequality). The lower the value of the index, the less unequal the distribution.
The ratio of the mean square error to the potential error is the index of agreement (IA), as
shown in Equation (25). There is complete agreement if the value is 1, and no error if it is 0.

4. Data Preparation and Statistics

A dataset of the Perniö test site conducted by Tampere University has been used
for several research studies [46]. The records presented have five inputs and one output.
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Contributions were regarded as the qc0,qc1,qc2,qc, and E of an energy pile. Similarly, using
the previously mentioned inputs, one parameter of the pile group capacity (Qug) of the
proposed energy pile was aimed to be forecasted.

The obtained dataset is plotted statistically in detail in the following sections.

Statistical Plotting of the Variables

To comprehend the problem more clearly, it is necessary to have an appropriate
statistical report of the data. Usually, to achieve this objective, the relationship between
the inputs and outputs is expressed. Various charts can show two or more parameters
depending on the specifics of the problem. This section presents a thorough schematic
distribution of the samples. To display the marginal relationship between each input and
the outputs in the regression model, a marginal histogram was created. In this regard,
Figure 6 shows qc0,qc1, qc2,qc, and E on the X-axis versus Qug on the Y-axes.
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To better understand the distribution of each variable in a scatter plot, marginal
histograms are shown around the outside edges of the axes. This is helpful to understand
the distribution’s intensity throughout a range of values for the independent variables.

5. Data Preprocessing

In order to develop a soft computing model, the dataset is separated into two subsets,
training and testing [31,36]. The model is trained using the training set, and its performance
is estimated utilizing the testing set. Seventy percent (140) of the data in this research are
used for training, while thirty percent (70) are employed for testing.

The variables are preprocessed by scaling them to acceptable form after subdividing
the available data into respective subgroups. Scaling ensures that all inputs approximately
fall within the same range of values by eliminating the dimension of the variables [35,74].
By normalizing all variables (input and output) in this study against their maximum values
by using Equation (26), they are all scaled in the range of 0.0− 1.0.

y =
x− xmin

xmax − xmin
(26)

where y represents standardized input and output variables, x represents the actual input
and output variables, and xmax and xmin represent the optimum variables.

6. Results and Discussion

The following section includes the results of the group capacity of the energy piles
obtained by the application of soft computing based on the CPT data from the Perniö
test site conducted at Tampere University, Finland. Figure 3 shows the profile of the
cone tip resistance and the side skin resistance with the depth of the proposed test site.
Boreholes sunk to a depth of 10 m were used to collect soil samples at various locations
on the site. For obtaining the index properties, such as Atterberg’s limits (i.e., LL, PL,
etc.), hydrometer analysis, natural moisture content (w), bulk density (γb), specific gravity
(G), shear strength characteristics, which are cohesion (c) and angle of internal friction
(φ), etc., was used. The plasticity index

(
Ip
)

was computed using LL and PL data from
different depths. Ultimate end bearing resistance (qu) was obtained using Equation (2).
Afterwards, Equation (1) was used to determine the ultimate load capacity (Qu) of the
piles for the Perniö test site. The thermal strain (εT−Rstr) was measured by finding out the
(εT−Free) and (εT−obs) using Equations (5)–(7). After obtaining the (εT−Rstr), the thermal load
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(PT) was determined by using Equation (8) for the Perniö test site, Finland, as explained
in Section 3.2. Additionally, the group capacity of the piles (Qug) was calculated using
Equation (10). Afterwards, the group efficiency of the piles (η) and allowable load (Qall)
were obtained by using Equations (11) and (12).

Table 5 demonstrates the values of several input parameters as well as the predicted
group capacity Qug of the piles at different depths from the ground surface. This table
also includes the values of Young’s modulus E for these locations. The value E at these
locations lies between 30 Gpa and 40 Gpa (average 35 Gpa), which is good for concrete
piles. The axial thermal load (PT) was calculated from E, αc, ∆T, and εT−obs data from the
proposed site, and the profile of then thermal load with the depth is shown in Figure 7,
with an imposed mechanical load of 1000 kN. It is seen that the profile of PT is almost the
same along the depth of the pile because of the small variation in E and the constant value
of all other parameters. The coefficient of thermal expansion (αc) has been taken to be equal
to 1× 10−5 (◦C−1), which is mentioned in Table 3, and ∆T is the difference between the
average ground temperature and the average surface temperature of a test site throughout
the year. Kukkonen [52] states that the average surface temperature in Finland is about 5 ◦C
and the temperatures at 500 m below the surface are usually between 8 and 14 ◦C. In our
case, the length of the piles was 8 m, so we have to use the average ground temperature of
about 13 ◦C. Therefore, the value of ∆T is taken as the 8 ◦C for the Perniö test site, Finland.
The observed thermal strain εT−obs was calculated on the basis of the degree-of-freedom
(DOF), the DOF = εT−obs/εT−Free, which lies between 0 and 1 when the ratio αsoil/αpile is
less than 1 [75]. From this evidence, we assume that the value of the DOF is 0.75 for the
proposed site in Finland.

Figure 7 depicts the variation of thermal load (PT) with the depth (m) for the proposed
site. It also demonstrates that the thermal load (PT) ranges from 230 to 320 kN.
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Table 5. Estimated pile group capacity (kN) for the entire length of the pile at the Perniö test site
in Finland.

S.No qc0
(kPa)

qc1
(kPa)

qc2
(kPa)

qc
(kPa)

E
(kPa)

Qug
(kN)

1 348 285 246 120 36,559,730 1589

2 487 421 138 454 30,512,281 5483

3 453 408 205 141 38,723,679 2416

4 400 273 237 476 31,791,913 6166

5 312 274 296 313 31,823,050 3198

6 480 350 151 170 31,997,539 2022

7 419 255 223 463 38,513,073 5718

8 391 283 293 118 37,369,266 1837

9 535 246 137 357 33,011,764 3815

10 463 436 189 452 35,985,785 4415

11 421 384 135 273 34,280,458 3260

12 265 263 284 523 35,216,679 6127

13 541 413 244 276 38,355,105 4116

14 519 497 162 134 36,511,371 2042

15 566 311 186 133 35,571,078 2256

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

189 291 261 239 364 37,193,735 2940

190 297 274 245 219 36,076,104 2394

191 472 247 124 542 34,210,352 5029

192 397 336 300 300 31,309,579 3889

193 432 364 240 415 39,380,051 3987

194 457 402 288 307 38,824,246 2971

195 344 283 124 319 39,835,672 3389

196 512 269 121 404 37,392,469 4217

197 510 339 254 481 32,045,184 6045

198 377 238 229 453 35,433,571 5539

199 302 263 207 226 35,553,756 3043

200 536 364 164 178 34,147,133 2382

6.1. Models Regression Plot

In this study, four machine learning models have been developed. The first model, the
RF, utilizes less training time and gives output with higher precision. It also maintains accu-
racy for large numbers of dataset runs. The SVM model is the best model to reduce model
error and simultaneously maximize the model’s generalizability and minimize empirical
risk. The GBM and XGB models are applied to enhance the data structures for quicker and
better support for multicore processing, hence reducing the overall training time.
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Figures 8–11 represent the plots between the actual data and the predicted data of the
load capacity of the pile groups obtained from the RF, SVM, GBM, and XGB regression-
based algorithms, respectively. Figures 8 and 9 represent the plots between the actual and
predicted values for 140 training cases, and Figures 10 and 11 represent the plots between
the actual and predicted values for 70 testing cases. When the results are compared, it
is clear that the pile capacities predicted by all of the ML regression techniques are very
close to the experimental results. Despite the models not being specifically trained for this
data, the predicted values for the test dataset generally agree well with the observed values.
This indicates that the model has a nonlinear relationship between the input parameters
and Qug.

Four ideal ML models can be built, and their performance may be assessed if the
hyperparameters of each model can be definitely recognized. To evaluate the accuracy of
each model, the statistical indices R2, RMSE, MAE, MBE, MAD, WMAPE, U95, GPI, TIC, and
IA are adopted. The correctness of these models is difficult to assess on the basis of the value
of these statistical indices. Consequently, in order to describe the ideal model, the index
values of the training and testing datasets were computed. Tables 6 and 7, respectively,
present the statistical index values of the predicted back-to-break for training sets and
testing sets for the four best models. Tables 6 and 7 show the coefficient of determination
(R2) of the training datasets for different ML algorithms as 0.957, 0.829, 0.991, and 0.998, and
also for testing datasets as 0.785, 0.734, 0.808, and 0.792, respectively. These values are close
to one, indicating that the models are the most accurate. The RMSE for the training and
testing datasets is observed as 0.065, 0.092, 0.020, 0.0124, and 0.135, and 0.122, 0.104, and 0.107,
respectively. The mean absolute error (MAE) for training and testing datasets is 0.049, 0.064,
0.001, and 0.008, and 0.109, 0.018, 0.084, and 0.086, respectively. The performance parameters
of the proposed ML models (MBE, MAD, WMAPE, TIC, and IA) for the training and testing
datasets are shown in Tables 6 and 7. The RMSE, MAE, MBE, MAD WMAPE, TIC, and IA
should all be as small as possible for a model to be deemed accurate. Tables 6 and 7 show the
outcomes of the statistical index of the soft computing models, and they show that the model is
acceptable. This table also shows that each ML model’s prediction error is rather low, indicating
that the four best ML models created by the R software have promising performance.
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Figure 8. Trend for actual capacity and predicted capacity for RF model: (a) training data; (b) test-
ing data.
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Figure 9. Trend for actual capacity and predicted capacity for SVM model: (a) training data; (b) test-
ing data.
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Figure 10. Trend for actual capacity and predicted capacity for GBM model: (a) training data;
(b) testing data.
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Figure 11. Trend for actual capacity and predicted capacity for XGB model: (a) training data;
(b) testing data.

Table 6. The value of different performance parameters for different machine learning techniques in
predicting the group capacity of a training dataset.

Proposed
Models R2 RMSE MAE MBE MAD WMAPE U95 GPI TIC IA

RF 0.957 0.065 0.049 0.000 0.038 0.127 0.180 3.09 × 10−8 0.074 0.973

SVM 0.829 0.092 0.064 −0.003 0.029 0.164 0.257 −4.0 × 10−6 0.106 0.948

GBM 0.991 0.020 0.001 0.001 0.000 0.000 0.057 1.72 × 10−8 0.014 1.000

XGB 0.998 0.124 0.008 0.002 0.005 0.020 0.034 3.85 × 10−9 0.023 0.998

Table 7. The value of different performance parameters for different machine learning techniques in
predicting the group capacity of a testing dataset.

Proposed
Models R2 RMSE MAE MBE MAD WMAPE U95 GPI TIC IA

RF 0.785 0.135 0.109 −0.008 0.097 0.279 0.376 −4.9 × 10−8 0.159 0.855

SVM 0.734 0.122 0.018 −0.012 0.067 0.247 0.340 −1.0 × 10−4 0.140 0.910

GBM 0.808 0.104 0.084 −0.015 0.066 0.217 0.288 −1.0 × 10−4 0.119 0.941

XGB 0.792 0.107 0.086 0.006 0.067 0.216 0.298 1.88 × 10−5 0.118 0.944

The U95 is the uncertainty up to a 95% confidence level, and it is found as 0.180, 0.257,
0.057, and 0.034 for the training datasets and 0.376, 0.340, 0.288, and 0.298 for the testing
datasets for the different ML models. The model with lower U95 values is presumed to be
the superior model. By comparing several statistical indices at the same time, it was found
that the global performance indicator (GPI) is the best performance parameter of all. It is
found as 3.09 × 10-8, −4.0 × 10−6, 1.72 × 10−8, and 3.85 × 10−9 for training datasets and
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−4.9×10−8, −1.0 × 10−4, −1.0 × 10−4, and 1.88 × 10−5 for the testing datasets. The higher
value of the GPI represents the better model performance.

Overall performance is quantified in terms of the R2 value, which can be determined by
using Equation (16). As the R2 values approach one, it shows an enhancement in the model
results. The line of best fit in the actual versus predicted plot and the corresponding R2

value is calculated using conventional least squares regression technique, and the outputs
are represented in Figures 8–11. It can be seen that both the GBM and XGB models with an
R2 = 0.991 and 0.998 for the training datasets and an R2 = 0.808 and 0.792 for the testing
datasets achieve the best results; consequently, these models frequently understate the
actual ultimate group capacity. Finally, on the basis of the second column of Tables 6 and 7,
it can be concluded that the GBM models outperform the conventional methods based on
the CPT data.

6.2. Rank Analysis for Different Soft Computing Models

Using a simple rank analysis method, the proposed models’ performances are com-
pared. Each predictive model’s rank value is calculated for training and testing, respectively.
An overall rank index (RI) is employed to examine the overall performance of the proposed
model and every conventional, CPT-based technique. The RI is calculated as the addition
of the individual ranks obtained from different parameters of statistical analysis. The better
performance of the model occurs when the RI value is lower. Table 8 summarizes the rank
index of different performance parameters for different ML models, which are RF, SVM,
GBM, and XGB. The rank index (RI) is observed as 3, 4, 1, and 2, respectively.

Table 8. Overall rank analysis of different performance parameters for different machine learning
techniques.

Performance Parameters
RF SVM GBM XGB

TR TS TR TS TR TS TR TS

R2 3 3 4 4 2 1 1 2

RMSE 2 4 3 3 1 1 4 2

MAE 3 4 4 1 1 2 2 3

MBE 1 2 4 3 2 4 3 1

MAD 4 3 3 2 1 1 2 2

WMAPE 3 4 4 3 1 1 2 2

U95 3 4 4 3 2 1 1 2

GPI 1 4 4 2 2 2 3 1

TIC 3 4 4 3 1 2 2 1

IA 3 4 4 3 1 2 2 1

Sub total 26 36 38 27 14 17 22 17

Total score 62 65 31 39

Overall rank 3 4 1 2

6.3. Error Matrix for Different Soft Computing Models

An error matrix is a type of matrix that evaluates the performance of the proposed
model considering the different parameters of statistical analysis separately for training
and testing cases. It also shows the error value as a heat pump matrix, which is a new
graphical concept [76]. Finally, the total error of each model is compared, which varies
from 0 to 38%. In the training and testing cases, the GBM obtained the minimum error (0%),
whereas the RF model attained a maximum error (38%), as shown in Figure 12. On the
basis of both training and testing cases, it is concluded that the GBM model has the lowest
error. This means the GBM models perform better compared to all the other models.
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6.4. Taylor’s Diagram

To visually summarise how well a pattern (or group of patterns) fits observations,
Taylor diagrams are used. Two patterns’ similarities are measured by their correlation,
centred root mean square difference, and the amplitude of their fluctuations (represented
by their standard deviations).

Figures 13 and 14 are particularly helpful when comparing the relative abilities of
several models or when examining multiple facets of complex models. The predicted value
for the provided model is near to the reference data, indicating a greater level of accuracy.
Higher correlation indicates more agreement between the observed and simulated data.
For the provided models, i.e., the RF, SVM, GBM, and XGB, the correlation coefficient
between the observed and anticipated results are 0.97, 0.91, 0.99, and 0.99 for the training
data and 0.88, 0.86, 0.90, and 0.89 for the testing datasets, respectively. The findings of this
research also indicate that, when predicting the ultimate group capacity of a pile, the GBM
regression performs better than the other models.
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6.5. Reliability Analysis

Figure 15 shows the comparison of the reliability index values for the actual and
predicted models for the testing dataset, separately. For the computation of the reliability
index, the first-order reliability method (FORM) is used. It is observed that the reliability
index values for the proposed model are close to the actual value. Therefore, the GBM
model is reliable for use in designing the energy pile.
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7. Conclusions

The use of heat exchanger piles presents a promising potential for building heating and
cooling with renewable energy. There have been hundreds of installations of this kind, but
there is currently no design process that takes into account the complex interaction between
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the heat storage and the mechanical behavior of geostructures. This paper deals with the
application of ground energy along with the CPT data to evaluate the group capacity of
energy piles and applies soft computing to the data obtained from the Perniö test site in
Finland. An R programing language has been developed for statistical computing and
graphics presentation. It is a great resource for data analysis, data visualization, data
science, and machine learning. The study shows that the ultimate capacity (Qu) of a single
pile varies in the range from 196 to 900 kN, respectively. The thermal load (PT) values are
found to lie in the range from 230 to 310 kN and the mechanical load (PM) was 1000 kN at
the proposed site. For energy piles, the group capacity (Qug) lies in the range from 1590 to
7300 kN, which can be regarded as the piles being safe against the block and individual
pile failure, as per the requirements of design codes and standards. For this purpose, the
factor of safety (FOS) is taken as 2.5, the group efficiency (η) is 0.9, and the corresponding
group spacing of the piles is 965 mm. For all design aspects, IS:2911 (part 1) [20], used to
determine group capacity (Qug), has been carried out on the CPT data collected from the
Perniö site in Finland.

Furthermore, the group capacity of the energy piles has been analyzed through several
soft computing models, i.e., the RF, SVM, GBM, and XGB. The graph of the actual versus
predicted group capacity of a pile has been plotted according to the CPT data. The R2 values
close to 1 in the plots have revealed the best models. Several statistical error measurement
parameters, including RMSE, MAE, MBE, MAD, WMAPE, U95 GPI, TIC, and IA, have
been primarily used to examine the biases between the actual and predicted data. The
estimated values for all of these parameters indicate a high degree of concordance with
their ideal values, indicating that the error between actual and predicted data is quite
small. Finally, in order to compare all the developed models, rank analysis, the error matrix,
Taylor’s diagram, and the reliability index have been used to quantify the performance of
the proposed models, and it was found that the GBM model had the highest rank, with an
almost 5–6% error, a correlation coefficient value of 0.99 and 0.89 for the training and testing,
and a reliability index (β) value of 3.10 and 2.12 for the actual and predicted datasets, which
demonstrates that the GBM is a better model. This study also concluded that the created
GBM model is more accurate in predicting the group capacity of energy piles than the other
soft computing models. Further, this study can be used for the prediction of the group
capacity of other types of piles.
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Nomenclature

CPT Cone Penetration Test
RF Random Forest
SVM Support Vector Machine
GBM Gradient Boosting Machine
XGB Extreme Gradient Boosting
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RMSE Root Mean Square Error
MAE Mean Absolute Error
MBE Mean Biased Error
MAD Median Absolute Deviation
WMAPE Weighted Mean Absolute Percentage Error
GPI Global Performance Indicator
TIC Theil’s Inequality Index
IA Index of Agreement
GSHP Ground-Source Heat Pump
GHE Ground-Heat Exchanger
HDPE High-Density Polyethylene
COP Coefficient of Performance
ML Machine Learning
MLR Multiple Linear Regression
ANN Artificial Neural Networks
MARS Multivariate Adaptive Regression Splines
HCF Heat Carrier Fluid
GEP Geothermal Energy Pile
TRT Thermal Response Test
CART Classification and Regression Trees
SRM Structural Risk Minimization
ERM Empirical Risk Minimization
DOF Degree-of-Freedom
RI Rank Index
FOS Factor of Safety
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