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Abstract: Even though prefabricated steel Bailey bridges have been used for more than 80 years,
limited studies of their structural features have been conducted, most of which do not consider their
response in operational conditions. This study aimed at determining the modal parameters of a
30.48 m length Triple-Single (TS) Bailey bridge based on traffic-induced vibrations and comparing
them with numerical results. Low-cost improvised accelerometers recorded and logged the actual
response time histories, while a three-dimensional (3D) numerical model was developed to carry out
the relevant dynamic analyses. The identification of modal parameters was based on the Operational
Modal Analysis (OMA) process and the Frequency Domain Decomposition (FDD) method. Numerical
analysis results are in accordance with the operational dynamic response of the Triple -Single Bailey
bridge, confirming that the numerical model can effectively be used for extended dynamic analysis.
In addition, the analysis of raw time histories through the OMA process indicates that the response is
affected by the connections’ condition, in particular, the eventual looseness of bolts and pins. At least
five eigenfrequencies were estimated and matched with relevant mode shapes.

Keywords: steel bridges; prefabricated bridges; bailey bridges; traffic induced vibration; low-cost
sensors; automated FDD

1. Introduction

Prefabricated steel Bailey bridges [1] were developed and used during World War
II (WWII) for temporary military use [2–4] and as a replacement during rehabilitation of
damaged bridges. Nevertheless, many Bailey bridges are still operating today for civilian
purposes, decades after their installation. At the same time, they are used to deal with
emergencies for restoring bridges damaged by natural disasters. According to their use,
prefabricated steel bridges [5] are classified as temporary, emergency, and permanent
bridges, the latter having a life cycle design of 75 years. Except for permanent bridges, all
other categories have a temporary duration and restrictions on their use. In the first years
of use of such bridges, the restrictions on traveling speed and operational loads imposed by
the competent supervisory authorities limited any structural issues, which were therefore
of no concern to the engineers. However, the appearance of fatigue phenomena has led
structural engineers to conduct research on prefabricated bridges since the 1960s.

Whitman and Alder (1960) [6] carried out the first experimental study of Bailey
bridges, on which the British Department of Transport (1968) [7] relied for issuing technical
guidelines for fatigue checking control. Webber (1970) [8] followed with an extensive
experimental study on the fatigue strength of the bridge’s panel. A fatigue strength study
of panels was also carried out by Marsch and Barker (1988) [9]. An evaluation of the
strength of a Double-Double Bailey 55 m bridge was carried out in 1990 [10]. Cullimore
and Webber (2000) [11] reported new fatigue research on the Heavy Girder Bridge, an
evolution of the Bailey bridge. King and Duan (2003) conducted experimental tests on
scale models [12] for the maximum bearing capacity identification of the bridge. Parivallal
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et al. (2005) [13] measured static semi-static loading of a Bailey bridge with strain and dial
gauge instrumentation. King, Wu and Duan [14] (2013) studied a girder composed of two
Bailey-type bridge panels to determine the ultimate loading capacity.

Khounsida, Nishikawa, Nakamura, Okumatsu and Thepvongsa [15] studied the static
and dynamic response of three operating Bailey bridges and found discrepancies between
raw field measurements and numerical results, with the estimation that they were due to
member connections. One issue in the study was the limited available information on the
bridges’ cross-sections and the material’s modulus of elasticity. Prokop, Odrobiňák, Farbák
and Novotný [16] carried out numerical analyses on the loading capacity of Bailey bridges
to determine the possibility of using them in civilian applications.

In most of the above studies, either sections of bridge girders or scaled models were
used, while in those where numerical analyses were carried out, they were either static or
quasi-static. No experimental research or in situ measurements have been carried out on
Bailey bridges in operational conditions.

However, in the cases of dynamic tests, we are faced with two issues. The first issue
refers to each vehicle’s distinguishing spectrum “fingerprint”, which is recorded during the
tests and affects the analysis results. The second issue relates to the recorded time-history
“noise” due to the deck roughness.

Recently a methodology to deal with these issues has been proposed [17–20], where
the novel concept of developing a frequency-free vehicle to conduct dynamic tests helps to
minimize the time history noise. An additional novelty of the proposed methodology is the
use of one or a few sensors on the vehicle to record the time histories [19].

The main aim of this work was to record the dynamic response of an actual Bailey
bridge operating for civilian purposes, hence subjected to uncontrolled passing of vehicles,
under a “noisy” environment, through in situ measurements, and to develop and validate
a finite element (FE) model with model updating [21] for use in future analyses.

2. Materials and Methods
2.1. Analysis Methods

A well-established method for determining the modal parameters of a structure
(natural frequency, damping ratio, mode shape), examining also its dynamic response, is
Experimental Modal Analysis (EMA) [22]. EMA is based on the analysis of imposed loads
compared to the dynamic response of the structure. However, this practice is challenging in
its application for large constructions, as heavy and expensive equipment is required [22,23].

Due to the disadvantages of EMA, the civil engineering community recently focused
on a new experimental method for determining modal parameters, known as Operational
Modal Analysis (OMA). According to OMA, to determine the modal parameters of the
structure, it is necessary to record only the vibration response, which can be excited either
from ambient forces or the operational loads, such as vehicle and pedestrian traffic [22]. The
advantages are many, as the dynamic response of the bridge can be recorded freely without
using special equipment excitation, while bridge traffic does not need to be interrupted.

There are two categories of OMA methods, Frequency Domain Methods and Time
Domain Methods: both present advantages and disadvantages in terms of reliability of
their results. According to Castellanos–Toros et al. [24], the advantage of analysis in the
frequency domain is the simplicity and ease of the pertinent computational procedures.
The main disadvantages in cases of complex structures refer to appearance of close modes.
These methods are out of scope of the present study, and the reader can be informed
extensively from the literature [22,25,26]. In the present study, the Frequency Domain
Decomposition Method was applied, using the freely available Automated Frequency
Domain Decomposition (AFDD) algorithm developed in [27,28].

2.2. Measuring Devices

To record accelerations under operational conditions with conventional methods,
special laboratory equipment is required, which must be supported by experienced staff
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and incurs high maintenance costs [21]. In this work, low-cost built-up sensors are used,
controlled by only one operator, without affecting the traffic. The sensors measure the 3-axis
accelerations, as it has been proven that accelerometer data are more useful for measuring
vehicle–bridge dynamic interaction, leading to better estimates of vehicle impact [29].

Several researchers [24,30–33] have used improvised sensors for modal parameter
identification with acceptable results. The six low-cost accelerometers developed for the
needs of the current study are of the Micro Electromechanical Systems (MEMS) type.
These sensors are designed to be entirely self-contained and free of wiring. Each sensor
consists of an Arduino Uno (manufacturer: Arduino, Italy) microcontroller and an Inertial
Measurement Unit (IMU) MPU 6050 (manufacturer: InvenSense Inc, USA) [34] and is
powered by six AA 1.5 Volt batteries, while automatically logging data on a 16 GB Secure
Digital memory card (SD Card). The schematic diagram is shown in Figure 1.
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Using open-source Arduino code, the frequency sampling (fs) is 500 Hz. Sensors of
this type are inherently error prone, beyond the mentioned provisions to reduce the factors
that cause noisy signals. While they are relatively reliable [35] for long-term recordings, the
accumulation of these minor errors can grow without limitation, especially for low-cost
MEMS [36].

The Allan Variance method is one of the most effective and straightforward methods
developed to characterize noise in MEMS. According to David Allan [37], the dominant
inertial errors and noise characteristics comprise constant bias, bias instability, velocity ran-
dom walk for accelerometers, quantization, rate angle walk, rate ramp, and the sinusoidal
component. According to Groves [38], regarding the classification of accelerometers, the
MPU-6050 employed in this work belong to the category of tactical grade sensors, making
them effective in measuring accelerations. The analysis of the present paper for MPU-6050
agrees with the results of other studies [39–42].

2.3. Bailey Bridge Description

The basic concept of the Bailey bridge is the formation of main girders by connecting
prefabricated parts called panels (Figure 2). Panels are connected with pins to adjacent panels
lengthwise at the four corners. The girders are placed on each side of the centerline (Figure 3).
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Figure 3. Bailey bridge segment (“bay” in US nomenclature).

Each panel is 304.8 cm long and 144.7 cm high. The cross beams connect the girders
and support the stringers that are resting on their upper flange. The stringers, the wooden
boards on top of them, and the curbs make up the deck. A segment of the bridge consisting
of the panels, the partial girders, and the deck has a length of 304.8 cm. Many connections
are required for the assembly of this type of bridge. Based on the original Bailey bridge, M1
in United State of America (USA) nomenclature, with a roadway up to 3.28 m, the USA
Army developed the M2 alternative, having a wider roadway than M1, up to 3.81 m, and
M3 with an even wider roadway up to 4.30 m [1,3]. The original design idea remains the
same despite Bailey bridge’s various transformations.

In Figure 4 the cross-sections of the seven primary Bailey bridge assemblies are shown,
excluding the special ones that are not within the scope of this article. The first index, S,
D, or T, refers to the number of side-by-side girders, while the second index refers to the
number of girders in height. The arrows show the sequence in the initial assembly process
and the required reinforcements, which increase the required loading capacity by adding
girders in width and height.
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The nomenclature of the various Bailey bridge parts is assigned according to their origin
(British or USA). Table 1 presents the differences in names according to their origin [1,3].

Table 1. Nomenclature of Bailey bridge parts.

According to
[1] (UK)

According to
[3] (USA)

Usual Bridge Engineering
Terminology

Stringers Stringers Stringers

Chord Chord Upper or lower horizontal
member of panel

Cross girder Transom Cross beam
Raker Raker Vertical bracings

Sway brace Sway brace Horizontal bracings
Pin Pin Pin

Deck Deck Timber deck
Chord bolt Chord bolt Panel connection bolt 1

Ribband Ribband Curb
Panel Panel Panel of truss girder
Gap Gap Span
Bay Bay Segment

End Post End Post End vertical member
1 for 2nd or 3rd story.

The present study focuses on the M2-type Bailey bridge, consisting of 29 parts. The
assembled parts form simply supported bridges with lengths from 10 to 69 m. Two chan-
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nels, welded back-to-back, form the panels’ upper and lower cross-sections of horizontal
members. The cross beams’ cross-sections are formed from rolled steel joists (newly type
cross-section belongs to IPE category). Table 2 presents the basic dimensions, features, and
mass, and some of the cross-sections (vertical and diagonal panel members, cross beam),
based on the on-site measurements and the literature references [43]. All table data refer to
the M2 type bridge.

Table 2. Bailey bridge member sections.

Member Shape Mass Depth Width Thickness Area

Web Flange

kg/m cm cm cm cm cm2

Upper Chord 10.8 10.16 4.3 0.82 0.75 13.7
Bottom Chord Channel 10.8 10.16 4.3 0.82 0.75 13.7

Vertical/Diagonal Channel 6.1 7.62 3.50 0.43 0.69 7.81
Cross Beam Channel 37 25.4 11.4 7.62 12.96 47.42
Stringer 1 I Section 7 10.2 4.4 0.43 0.69 9.48

Vertical Bracing I Section 6 4.06 6.35 0.41 7.61
Horizontal Bracing I Section 6 Dia:2.9 cm 6.61

1 Stringer is a panel composed of three I sections.

Three different steel grades are used in Bailey bridge parts [1,4]. The British Standard
(BS) specifications for employed steel grades were known as BS 968, BS 15, and alloy steel
(Manganese—Molybdenum) [43]. Indicatively, Table 3 lists the steel grades estimated to
have been used in the bridge parts of the present study. It is crucial to be careful regarding
steel properties for various analyses due to quality variations depending on the period
of parts production. It is remarkable that Bailey [1] refers to steel properties with yield
strength fy equal to 315 MPa and ultimate strength fu between 482 and 592 MPa, while the
BS 968 determines strength limits (1962) [43], as shown in Table 3. In Table 4, the category
of steel used in each bridge part is listed.

Table 3. Bailey bridge structural steel specifications.

Quality fy
(MPa)

fu
(MPa)

Thickness t
(mm) Remarks

BS 968 1 317.4 441.6 ≤ fu ≤ 538.2 t ≤ 15.88 Replaced by BS 4360/1968
BS 15 220.8 386.4 < fu < 455.4 t ≤ 19.05 Replaced by BS 4360/1968

Alloy steel 897 Manganese-molybdenum
1 Modulus of Elasticity E = 206.8 GPa.

Table 4. Steel property assignation on bridge parts.

Parts
Bridge Specified

Nomenclature

BS 968
High Tensile Steel

BS 15
Mild Steel

Alloy Steel
(Manganese-Molybdenum)

Panel (all members) +
Cross Beam +

Stringers +
Horizontal Bracing +

Bracing Frame Panel +
Vertical Bracing +

End Vertical +
Pins +

The term Military Loading Class (MLC) refers to the loading capacity of the bridge,
depending on its assembly (girder formation, span), determined according to [3,44–47].
The MLC calculation process is extensively described in the literature and differs between
wheeled and tracked vehicles (battle tank vehicles). The MLC is equal to their weight
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in short tons for tracked vehicles, while a calculation procedure is required for wheeled
vehicles. The issue arises because the MLC does not include the civilian vehicles crossing
the bridge. Therefore, in this case, and only for this study, the estimation based on the
vehicle’s weight (expedient method) is applied as described in the literature [45,46]. Table 5
shows the MLC in three traffic restriction cases.

Table 5. Bailey bridge cross restrictions.

Traffic
Restriction

Vehicle
Position on Deck

Max Speed
(km/h)

Min Spacing
(m) Authorization to Use

Normal At any place 40 27 Anyone

Caution On centerline 13 45 Supervised by the
authorities

Risk On centerline 4 One vehicle on bridge Supervised by the
authorities

2.4. Bailey Bridge in Feneos (Corinth, Peloponnese, Greece)

The bridge evaluated in this study is a 30.48 m long Triple-Single Bailey bridge
(Figure 5a,b and Table 6). It was built in 2019 to restore the regional network of the rural
area when a previous concrete bridge was damaged following a natural disaster.
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Table 6. TS bridge dimensions and weight.

Bridge Type

Weight Per
Fully

Equipped
Segment (kN)

Number of
Fully

Equipped
Segments

Total Bridge
Weight

(kN)

Total
Length

(m)

Number of
Effective lanes

Width of
Effective Lane

(m)

TS 40.1 10 401 30.48 1 3.70

The bridge is supported on four independent seats, as shown in Figure 6. Each
support consists of a pinned connection, which allows free rotation, and a stiffened plate
that simply rests on the concrete floor, which allows horizontal movement if friction forces
are overcome.
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Table 7 presents the bridge class, based on the literature [7], according to the crossing restrictions.

Table 7. TS-30.48 m Bailey Bridge Military Loading Class (MLC).

Type of
Vehicle

MLC
Per Cross Restriction

Max Vehicle’s Weight Based on Expedient
Method (kN)

Remarks
Expedient Method

N 1 C 2 R 3 N C R MLC to kN = MLC × F1 × F2 × F3

F1:1,15 MLC to short tons
Wheeled 50 57 60 558 635 670 F2: 0.97 Short to metric tons
Tracked 55 60 66 534 582 640 F3: 10 metric tons to kN

Normal 1, Caution 2, Risk 3

2.5. Bridge Instrumentation

The sensors were arranged in such a way as to ensure the recording of the vertical
and transverse components of the nodes’ acceleration for the effective mode shapes estima-
tion [48]. Three sensors were placed on each girder of the bridge. Distances and positioning
information are presented in Table 8 and Figures 7 and 8.

Table 8. Sensor positioning information.

Sensor Segment Panel Position Distance (m)

1 1 1st side A (W-E) Middle vertical member 1.52
2 5 1st side A (W-E) Third vertical member 15.2
3 10 1st side A (W-E) Middle vertical member 28.9
4 1 1st side B (W-E) Middle vertical member 1.52
5 5 1st side B (W-E) Third vertical member 15.2
6 10 1st side B (W-E) Middle vertical member 28.9
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Each sensor can be used as a reference during the time history analysis process. So,
sensors 1, 3, 4, and 6 were placed at nodes that do not coincide with nodes having zero
displacements for the respective eigenforms, to record as many as possible [49]. The sensors
were mounted to the bridge with four strong neodymium disc magnets (NdFeB) [48] of
dimensions 2.0 cm (diameter) × 0.3 cm(thickness), with a holding force of 39 N each. Each
sensor weighs up to 4.5 N.

3. Results
3.1. Results of Time Histories Analysis Due to Traffic-Induced Vibration

The sensors were used to record the response of the bridge over a period of 1735 s
During this period, 27 heavy commercial and agricultural vehicles crossed the bridge.
Information about the 27 vehicles is presented in Table 9. The term direction refers to the
passing direction, west–east (W-E) and east–west (E-W).

Preprocessing was performed on the recorded time histories to ensure they were
appropriate for analysis. Initially, all sensors’ time histories were demeaned and zero
padded. The processed total time histories of accelerations in the vertical direction are
shown in Figure 9.
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Table 9. Vehicle information.

Index Vehicle Type Direction Remarks

Veh1 Farm truck W-E
Veh2 Tractor E-W
Veh3 Farm truck E-W
Veh4 Farm tractor w/trailer W-E
Veh5 Tractor 3.5 tn E-W
Veh6 Farm truck E-W Full load
Veh7 Cargo truck 2.0 tn E-W
Veh8 Farm truck E-W
Veh9 Van W-E
Veh10 Cargo truck 2.0 tn W-E
Veh11 Van W-E Higher velocity
Veh12 Passenger car W-E
Veh13 SUV W-E Higher velocity
Veh14 Passenger car W-E
Veh15 Farm truck E-W
Veh16 Farm truck W-E
Veh17 Farm tractor w/trailer E-W
Veh18 Passenger cars W-E 2 vehicles on the bridge
Veh19 Farm truck W-E
Veh20 Farm truck w/trailer W-E
Veh21 Passenger car E-W
Veh22 Farm truck E-W
Veh23 Van E-W
Veh24 Farm truck W-E
Veh25 Fuel truck E-W Full load
Veh26 Passenger car E-W Higher velocity
Veh27 Passenger car W-E
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To facilitate the comparison, the time history plots displayed in Figure 9 refer to the
sensors’ arrangement of Figure 7. Examining and evaluating time histories is challenging
due to their length. The fact that some vehicles cross the bridge close to each other affects
the identification process of its modal parameters. For this reason, the first method of
determining the first natural frequency was carried out using the free vibration time history
segment of one vehicle case. Some researchers [31] use parts of time histories that they
identified as ambient excitation, but this was not possible in this study due to the lack of
environmental influence. Consequently, for sensors 2 and 5 (located in the middle of the
bridge) time histories of vehicles Veh6 and Veh20 (Figure 10) were selected to be analyzed.
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Figure 10. Partial time histories of sensors 2 and 5.

In Figure 10, the four partial time histories recorded at the middle of the bridge exhibit
some differences. There are three possible reasons for these noisy time histories, namely,
the effect of vehicle self-frequency combined with deck roughness, the issues related to
bridge connections, and the eccentric passage of the vehicle with respect to the bridge’s axis
of symmetry. For this purpose, before extracting the segment related to the free vibration of
these cases, a third-order Butterworth bandpass filter is assigned with cut-off frequencies
at f1c = 2 Hz and f2c = 3 Hz, which comprises a frequency range estimation including the
first natural frequency. In Figure 11, the partial filtered time histories are presented, while
the vertical black line corresponds to the cut-off point of pure free vibration.
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As illustrated in Figure 12, in the case of vehicle Veh6, the natural frequency differs by
0.02 Hz between sensors 2 and 5. This analysis variance is insignificant compared to the
used length of time history.

The damping ratio (ζ) [50] is calculated from the equation:

ζ = 1/(2πj) · ln
( ..
uk /

..
uk+1

)
(1)

The terms
..
uk and

..
uk+1 indicate the acceleration values of the free vibration segments

(Figure 11) that are separated by j repetition cycles. In Table 10, the results of six cases with
j = 10 repetition cycles from sensors 2 and 5 are listed.
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Table 10. Estimated damping ratios based on free vibration time histories.

Vehicle
Sensor 2 Sensor 5

ζ (%) ζ (%)

Veh1 1.10 0.960
Veh4 1.05 1.05
Veh5 1.11 1.18
Veh6 0.90 1.07
Veh17 0.98 1.17
Veh20 0.96 0.90

Mean value 1.02 1.05

As observed in Table 10, the damping ratios are almost equal to unity, meaning that
the bridge vibration damps out slowly. For this reason, it is deduced that the close passage
of vehicles affects the free vibration response of the bridge, consequently causing difficulty
in determining the modal parameters of the bridge. The FDD method is then applied using
the AFDD algorithm to determine the eigenfrequencies per array of sensors. The array of
sensors 1-2-3 is used to determine the eigenfrequencies of the south girder (Side B, Figure 7),
while the array of sensors 4-5-6 is used to determine the eigenfrequencies of the north
girder (Side A, Figure 7). The independent process of examining the two girders originated
from the assumption that connection conditions affect the girders’ response independently.

Table 11 shows the identified frequencies for various loading cases. The “Veh” term’s
indexes refer to the group of vehicles passing the bridge and are related to the crossing
distance of the vehicles over the bridge. For each loading case, the corresponding frequency
(1st, 2nd... 6th) for both arrangements of the sensors presents variations up to 10%. These
variations are attributed to differences in the structural integrity of the two girders’ (mainly
loose member connections). In addition, the variations presented for the same estimated
frequencies between the loading cases are due to features of the crossing vehicles (bridge
centerline passing, velocity). When the bridge passing takes place under normal conditions
(low relative speed, one vehicle per time), then the mode shape refers to the 1st eigenmode,
which is within the range of 2.79 to 2.89 Hz, with the value of 2.87 Hz being dominant.
Additionally, it is found that the frequencies related to lateral excitation, in the range
between 4 and 5 Hz, also appear. When many vehicles pass over the bridge, the bridge is
excited in mode shapes found in all frequency ranges.
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Table 11. Identified frequencies of the preprocessed raw measurements with FDD method in the
vertical direction (Z axis).

Case AFDD at Sensors 1-2-3 AFDD at Sensors 4-5-6
Identified Frequencies (Hz) Identified Frequencies (Hz)

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

Veh1-2-3 2.87 3.36 5.98 6.67 9.27 13.3 2.87 3.49 5.76 6.70 8.71 11.3
Veh4-5 2.82 3.40 4.39 6.93 8.51 11.8 2.76 3.49 4.36 5.11 8.51 12.1
Veh6 2.83 6.52 7.23 8.84 9.85 11.5 2.86 7.69 9.20 9.98 11.1 12.0

Veh7-8-9-10 2.83 4.54 6.26 9.12 10.3 13.8 2.81 4.36 7.65 9.08 10.5 14.6
Veh11-12 2.86 3.91 5.59 9.08 12.0 14.2 2.86 6.12 8.54 10.2 11.3 16.2

Veh13 2.83 3.40 4.39 6.93 8.51 11.8 2.76 3.49 4.36 5.11 8.51 12.1
Veh14 2.87 5.50 7.59 8.53 9.32 11.1 2.87 5.35 6.39 8.51 10.4 11.9
Veh15 2.86 4.83 6.25 8.59 9.23 11.3 2.83 3.97 6.18 8.60 10.1 11.4
Veh16 2.88 6.25 8.41 9.61 11.0 13.8 2.88 3.43 7.05 8.41 10.8 11.7

Veh17-18 2.79 3.38 4.87 6.22 9.46 11.0 2.79 3.44 4.52 4.88 8.44 11.2
Veh19 2.88 4.91 6.42 8.33 12.5 13.5 2.89 4.16 5.26 8.33 9.95 12.6
Veh20 2.86 5.46 6.61 7.59 9.45 11.1 2.86 4.99 7.01 8.79 10.5 12.8

Veh21-22-23-24 3.37 5.85 8.70 10.1 11.2 14.0 2.70 3.43 4.62 7.06 8.69 12.1
Veh25 3.11 4.58 5.65 7.52 8.74 9.42 3.11 3.42 5.37 8.76 10.1 11.6
Veh26 2.81 4.21 8.40 9.10 11.5 14.5 2.83 4.49 6.55 8.70 10.6 14.6
Veh27 2.50 4.47 7.08 9.26 10.2 13.9 2.89 5.80 7.42 8.52 11.3 12.8

Veh1-27 2.83 4.52 6.22 7.57 8.52 9.41 2.78 3.46 4.53 4.89 7.05 8.52

In Table 12, the identified damping ratios show a wide range of values even for the
same identified frequencies. This variance is due to various causes, such as the noisy
recorded time histories and the spectrum calculation algorithm. Long-term time histories
improve the resolution [51] and are more effective for signal analysis. Due to a lack of
pure lateral excitation, determining eigenfrequencies in the transverse direction (Y-axis) by
analyzing the free vibration segment of time histories is inefficient. Thus, by applying the
FDD algorithm, the identified frequencies are shown in Table 13.

Table 12. Identified damping ratios with FDD method in the vertical direction (Z axis).

Case AFDD at Sensors 1-2-3 AFDD at Sensors 4-5-6
Identified ζ (%) Identified ζ (%)

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

Veh1-2-3 2.79 2.6 4.6 4.2 3.9 3.9 2.98 0.82 3.21 3.45 3.28 4.78
Veh4-5 1.48 2.66 1.03 2.03 0.68 4.27 1.71 2.61 0.95 3.29 0.53 3.91
Veh6 1.87 2.97 1.86 0.89 1.13 0.76 2.47 3.06 2.69 2.63 0.72 0.73

Veh7-8-9-10 1.00 4.59 4.80 4.26 4.33 3.96 1.79 4.53 4.01 3.28 4.43 1.50
Veh11-12 0.61 4.92 2.71 3.04 3.71 2.57 0.59 4.51 1.45 2.27 4.17 3.03

Veh13 1.82 2.83 1.00 1.89 0.59 4.17 1.68 2.76 0.90 3.25 0.56 3.82
Veh14 0.81 2.30 1.74 4.08 3.05 2.00 0.65 3.39 4.41 1.52 4.22 4.03
Veh15 1.31 3.75 3.89 0.86 0.79 3.42 3.14 3.56 4.85 0.68 1.13 2.65
Veh16 0.95 2.94 4.31 2.81 0.93 1.46 2.86 2.66 3.58 1.77 1.27 1.61

Veh17-18 1.97 0.64 1.36 1.41 3.16 0.44 1.90 0.73 1.22 1.29 0.98 4.13
Veh19 0.77 2.81 2.76 3.50 1.03 0.90 0.77 2.81 2.76 3.50 1.03 0.90
Veh20 0.93 1.89 1.25 1.39 0.76 0.66 1.57 2.79 1.15 1.00 4.03 3.67

Veh21-22-23-24 4.07 4.30 2.85 4.33 4.56 2.36 4.57 1.87 3.60 4.55 2.48 3.59
Veh25 1.83 1.40 2.30 2.59 0.82 0.84 0.99 0.83 2.48 0.78 4.12 0.94
Veh26 1.73 3.18 1.80 1.64 1.51 2.06 1.06 4.26 4.57 2.96 3.09 1.70
Veh27 3.50 2.84 1.75 3.37 2.42 1.02 1.87 3.53 2.96 1.34 4.27 3.76

Veh1-27 3.20 3.57 4.73 4.68 4.26 4.03 3.58 2.33 1.29 1.43 4.73 3.60
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Table 13. Identified frequencies with FDD method in the transverse direction (Y axis).

Case AFDD at Sensors 1-2-3 AFDD at Sensors 4-5-6
Identified Frequencies (Hz) Identified Frequencies (Hz)

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

Veh1 . . . 27 3.47 4.90 6.25 8.93 10.7 11.9 3.39 4.91 6.71 7.47 8.53 11.7

Thus, determining the mode shapes of the determined frequencies is challenging.
Figures 13–15 show the analysis of time histories 2 and 5 with the Short-Time Fourier
Spectrum (STFT) method. The vertical yellow lines indicate the spectral distribution caused
by vehicle excitations at the corresponding time.
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Figure 15. Short Time Fourier Spectrum of sensor 5 at vertical axis.

Figures 13 and 16 show that the frequencies at 2.87 and at 3.42 Hz appear on the
vertical axis for both sensors (red and blue arrows, respectively, in Figures 13 and 15).
The frequency at 2.87 Hz appears in all time histories, while the frequency at 3.42 Hz
appears in the case of vehicles entering the bridge at close distances. Both frequencies
appear on the vertical axis, while the frequency at 3.42 Hz also appears on the transverse
axis, demonstrating 1st and 2nd mode shapes identified as bending and torsional bending,
respectively. The other eigenfrequencies that correspond to additional mode shapes are not
easily distinguished.
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Based on the identified frequencies, the graphical display of the mode shapes is a
preliminary check for their reliable assessment. The procedure for the static graphical
display of the mode shapes based on the determined frequencies is described in detail in
the literature [49]. For this reason, a set of frequencies is selected, which is assumed to
correspond to distinct mode shapes. The two clearly identified frequencies at 2.87 and
3.42 Hz are used for the graphical display, as determined by the FDD and STFT methods.

The remaining frequencies are selected from a range of frequencies as specified in
Table 11 by means of an iterative process. Estimating the frequencies corresponding to real
mode shapes is extremely difficult due to their scattering, as evidenced in Table 11. The
chosen frequencies are 2.87, 3.42, 4.57, 7.81, and 8.54 Hz, and one of the sensors is selected as
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the reference channel. The next step is calculating the auto-power spectrum of the reference
sensor and the cross-power spectra between the pairs of reference-remaining sensors. The
amplitude and phase are calculated for each case, and then normalization is carried out,
so that the mode shape with the largest amplitude has a unity value. With sensor 4 as the
reference, the shapes of the group of frequencies are shown in Figures 17–21, respectively.
It is also noticed that the shapes are not clearly distinguished due to several reasons that are
outside of the scope of this study. It is finally established that the determined frequencies
with the FDD and STFT methods yield the dynamic response of the bridge, as evidenced
by the graphically represented mode shapes.
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Figures 17–21 show the static display of the bridge at the selected frequencies, which
are estimated to correspond to eigenmodes. However, the sensor positions show minor
deviations for each case. For example, for the 1st eigenmode, the normalized position
of sensor 5 is at −0.95, whereas it should be at −1, as sensor 2. This difference is due to
the algorithm calculating the reference sensor autocorrelation and the remaining sensors’
cross-correlation. The number of time-history points used to calculate the autocorrelation



Infrastructures 2022, 7, 139 18 of 25

and cross-correlation affects the resolution of the results. Moreover, the “noise” of the
time histories and their pre-processing also affect the amplitude of the auto-power spectral
density and the cross-spectral density, which are used to normalize the position of the sen-
sors. These variations can be considered as acceptable, since in Figures 17–21 the estimated
eigenmodes are approximated very accurately, despite their present deviations. Although
many factors affect the identification process of Figures 17–21, the modes are approached
with good accuracy and fully agree with the results of the numerical analyses. A more
meticulous process in recording the time histories, with dense instrumentation of the bridge
in the longitudinal and vertical directions, is expected to lead to more accurate results.

3.2. Finite Element Modeling and Numerical Modal Analysis Results

In addition, a numerical finite element (FE) model was developed using the commercial
CSIBridge software [52]. The parts’ cross-sections of this bridge were determined according
to the literature and on-site measurements. The main bridge parts were modeled by straight
beam (frame) elements with six degrees of freedom at all nodes, as shown in Figure 22a.
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Horizontal and vertical links, which are constrained along the three axes, are used to
connect the cross-beams (Figure 23) with the panels. The horizontal bracings were also
modeled by links, with a sufficiently large stiffness taken equal to 25 MN/m.
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The bridge’s supports were simulated with twelve 6-degree-of-freedom springs (one
for each bearing point). High stiffness values were assigned for the transversal springs of
both bearing sides to restrain the corresponding degrees of freedom, while low stiffness
values were assigned for the rotational ones to simulate the hinge joint.

Longitudinally, the bridge displacement at both sides is restrained due to developing
friction forces between the bearing with the steel plate and the end vertical member
(Figure 24). These restraining forces are simulated with springs (link elements).

Infrastructures 2022, 7, x FOR PEER REVIEW 19 of 25 
 

Figure 23. Panel—cross-beam connection. 

The bridge’s supports were simulated with twelve 6-degree-of-freedom springs (one 
for each bearing point). High stiffness values were assigned for the transversal springs of 
both bearing sides to restrain the corresponding degrees of freedom, while low stiffness 
values were assigned for the rotational ones to simulate the hinge joint. 

Longitudinally, the bridge displacement at both sides is restrained due to developing 
friction forces between the bearing with the steel plate and the end vertical member (Fig-
ure 24). These restraining forces are simulated with springs (link elements). 

 
Figure 24. Bearing contact forces. 

If the End Vertical—Bearing (EVB) friction is equal to the hypothetical corresponding 
spring forces, then the spring stiffness Kx is calculated according to the Equations (2)–(6): 

EVBfriction = Fspring (2)

EVBfriction = μ·Ν (3)

where N is the vertical reaction at the bearing support, and μ is the friction coefficient, 
estimated between 0.42 and 0.50. 

Fspring = Kx·s  (4)

The term s in the above equation is calculated from the equation: 

S = r·θ  (5)

where the term r is the radius of rotation and θ is the angle (Figure 24) corresponding to 
a simply supported beam and can be expressed by the equation: 

Θ = w·L3/(24E·I)  (6)

where w is the uniformly distributed load, L is the bridge length, E is the elastic modulus, 
and I is the moment of inertia. 

Substituting Equations (2), (3), (5), and (6) into Equation (4): 

Kx = 24·μ·N·E·I/r·w·L3  (7)

The mass of the numerical model differs from the actual bridge mass because some 
secondary bridge parts were not simulated, without affecting the total bridge stiffness and 
dynamic response. The remaining mass was proportionally added at each node, while this 
proportionality was derived from each node’s contribution to the total mass. Figure 25 
shows the first six mode shapes derived from numerical model analysis. 

Figure 24. Bearing contact forces.

If the End Vertical—Bearing (EVB) friction is equal to the hypothetical corresponding
spring forces, then the spring stiffness Kx is calculated according to the Equations (2)–(6):

EVBfriction = Fspring (2)

EVBfriction = µ·N (3)

where N is the vertical reaction at the bearing support, and µ is the friction coefficient,
estimated between 0.42 and 0.50.

Fspring = Kx·s (4)

The term s in the above equation is calculated from the equation:

S = r·θ (5)

where the term r is the radius of rotation and θ is the angle (Figure 24) corresponding to a
simply supported beam and can be expressed by the equation:

Θ = w·L3/(24E·I) (6)

where w is the uniformly distributed load, L is the bridge length, E is the elastic modulus,
and I is the moment of inertia.

Substituting Equations (2), (3), (5), and (6) into Equation (4):

Kx = 24·µ·N·E·I/r·w·L3 (7)

The mass of the numerical model differs from the actual bridge mass because some
secondary bridge parts were not simulated, without affecting the total bridge stiffness and
dynamic response. The remaining mass was proportionally added at each node, while this
proportionality was derived from each node’s contribution to the total mass. Figure 25
shows the first six mode shapes derived from numerical model analysis.
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Figure 25. The first 6 eigenmodes of the FE model of the bridge (a) 1st: vertical bending at 2.87 Hz
(b) 2nd: torsional-lateral at 3.22 Hz (c) 3rd: lateral-torsional at 4.38 Hz (d) 4th: second lateral at
7.50 Hz (e) 5th: second vertical bending at 8.73 Hz (f) 6th: non-identified at 9.87 Hz.

The direct-integration time-history dynamic analysis (linear case) was performed
by simulating vehicles (modified vehicle type of CSIBridge) corresponding to those that
crossed the actual bridge. The discretization time step was set to 0.02 sec (fsampling = 50 Hz),
aiming at reducing the computational time by following the program guide to use a
time step at least equal to 1/10 of the longest period, and considering that the expected
frequencies are estimated in the fNyquist range.

fNyquist = fsampling/2 = 25 Hz

The damping coefficient was proportionally set at 1% for all mode shapes based on
the values in Table 10. The Table 12 values were considered to be overestimated, so they
were not accounted for in the analysis.

Tables 14 and 15 show the frequencies identified with the FDD method in the vertical
and transverse direction, respectively, as the results obtained from dynamic analysis of
passage of the 27 vehicles. In the case of the centerline offset by 30 cm, the relevant results
are presented in Tables 16 and 17.

Table 14. Identified frequencies of numerical results with FDD method in the vertical direction (Z axis).

Case AFDD at Sensors 1-2-3 AFDD at Sensors 4-5-6
Identified Frequencies (Hz) Identified Frequencies (Hz)

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

Veh1-27 2.85 3.47 7.98 8.83 10.3 11.9 2.85 3.44 7.98 8.83 10.3 11.9

Table 15. Identified frequencies of numerical results with FDD method in the transverse direction (Y axis).

Case AFDD at Sensors 1-2-3 AFDD at Sensors 4-5-6
Identified Frequencies (Hz) Identified Frequencies (Hz)

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

Veh1-27 3.17 4.29 7.99 9.48 10.3 17.4 3.18 4.29 6.99 7.99 9.48 10.3
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Table 16. Identified frequencies of numerical results with FDD method in the vertical direction (Offset Lane).

Case AFDD at Sensors 1-2-3 AFDD at Sensors 4-5-6
Identified Frequencies (Hz) Identified Frequencies (Hz)

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

Veh1-27 2.85 3.16 4.28 7.99 8.83 10.3 2.85 3.19 4.29 7.98 8.83 10.3

Table 17. Identified frequencies of numerical results with FDD method in the transverse direction
(Offset Lane).

Case AFDD at Sensors 1-2-3 AFDD at Sensors 4-5-6
Identified Frequencies (Hz) Identified Frequencies (Hz)

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

Veh1-27 3.18 4.28 7.01 7.98 9.48 10.3 3.18 4.28 7.01 7.98 9.48 10.3

4. Discussion

Despite the observed dispersion of the identified frequencies, the range of eigenfre-
quencies can be determined for the respective modes of operation with satisfactory accuracy.
One of the issues that often causes such discrepancies is that, in OMA, the spectral distribu-
tion of both the bridge itself and the vehicles is recorded and represented in the analysis [19].
Thus, the mode shapes and the mode deflection shapes are obtained simultaneously. The
fuzzy boundaries that separate them can be smoothed out by appropriate adjustments [49].

Another issue that affects the variations in the determined frequencies with the FDD
method is the quality of the time histories, known as the signal-to-noise ratio (SNR). Noisy
signals require processing to make them appropriate for further analysis. However, the
noise source is due to either the equipment being used or the operational condition of
the bridge. The operational condition is related to the bridge’s structural health, part of
which is the condition of the connections of its various parts. Inspection revealed loose
connections on the deck and the B-side girder.

The differences in the spectral content of their time histories are compatible with this
observed looseness, as shown in Figures 26 and 27, showing the spectral content of the two
sensors for the case of one vehicle passing (Veh6) and adjustment of the horizontal axis up
to the value of 16 Hz for the presentation needs.
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Figure 27. Single-sided Power Spectral Density of sensors 2 and 5: (a) sensor 2; (b) sensor 5; (c) sensor
2 vs. sensor 5.

Sensor 2 shows frequencies also found in sensor 5, but which are less noticeable, so it is
concluded that the connections on side B differ compared to side A. Comparing the analysis
results of the raw measurements with those of the numerical analysis, it is deduced that
the numerical simulation satisfactorily approximates the dynamic response of the bridge.
The identified mode shapes and the corresponding eigenfrequencies, which resulted from
the numerical analysis, were found to approximate the mode shapes determined from the
analysis of the raw measurements. However, the assumptions related to the loading of the
vehicles and the velocities passing over the bridge certainly also affect the response of the
bridge. To determine the unique characteristics of the bridge, it is necessary to carry out a
controlled OMA, which helps to fully validate the numerical simulation.

An indicator for the validation of the FE numerical model is the similitude between
the time histories recorded in the field and those resulting from the numerical analysis.
Indicatively, Figure 28 shows the comparison for the case of Veh6. From the diagrams, it
can be seen that all values of time histories are found in the same range, and the numerical
results match the time histories of sensor 5 in spectral content. Sensor 2 exhibits frequencies
in the entire range. This assumption confirms the abovementioned conclusion that the
girder where sensor 5 is installed is in better structural condition than the one with sensor
2 installed.
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Figure 28. Comparison of the acceleration time histories and Power Spectral Density for Veh6 case:
(a,b) numerical results at the middle of the bridge; (c,d) sensor 2; (e,f) sensor 5.

It is found that the determining frequencies for each case are almost the same with
slight differences, as presented also in Table 18. The frequencies of the eigenmodes of real
bridges are found in a frequency range for each mode shape. This finding may be attributed
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to bridges exhibiting loose connections, which can change the spectral distribution for the
same mode shapes each time. A re-evaluation of the bridge after required maintenance is
vital to re-validate the FE model.

Table 18. Comparison of identified frequency results.

Case Analysis Identified Frequencies (Hz) Remarks
1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

Raw measurements 2.87 3.42 4.57 7.81 8.54 Non-identified FDD analysis
FE modal analysis 2.87 3.22 4.38 7.50 8.73 9.87 Eigen frequencies
Numerical analysis 2.85 3.47 4.29 7.98 8.83 9.48 Vertical and transverse axes

5. Conclusions

The dynamic response of a 30.48 m Triple-Single Bailey bridge was recorded using
low-cost sensors under normal operating conditions. The recorded time histories of the
bridge response were due to the passage of 27 vehicles. The OMA method and the AFDD
algorithm determined five eigenfrequencies and their mode shapes. In addition, a FE model
was developed, and numerical analyses were performed to assess the dynamic response of
the bridge and determine the range of identified response frequencies.

From the results, it was found that the dynamic response determined by the numerical
analysis satisfactorily corresponds to the real bridge response and can be used for further
dynamic analyses. Deviations between the frequencies are justified due to noise from
the bridge–vehicle interaction or the sensors’ errors. Finally, it is accepted that a denser
network of sensors would yield more reliable results.
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