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Abstract: Macroscopic traffic flow variables estimation is of fundamental interest in the planning,
designing and controlling of highway facilities. This article presents a novel automatic traffic data
acquirement method, called MOM-DL, based on the moving observer method (MOM), deep learning
and YOLOv3 algorithm. The proposed method is able to automatically detect vehicles in a traffic
stream and estimate the traffic variables flow q, space mean speed vs. and vehicle density k for
highways in stationary and homogeneous traffic conditions. The first application of the MOM-DL
technique concerns a segment of an Italian highway. In the experiments, a survey vehicle equipped
with a camera has been used. Using deep learning and YOLOv3 the vehicles detection and the
counting processes have been carried out for the analyzed highway segment. The traffic flow
variables have been calculated by the Wardrop relationships. The first results demonstrate that the
MOM and MOM-DL methods are in good agreement with each other despite some errors arising
with MOM-DL during the vehicle detection step due to a variety of reasons. However, the values of
macroscopic traffic variables estimated by means of the Drakes’ traffic flow model together with the
proposed method (MOM-DL) are very close to those obtained by the traditional one (MOM), being
the maximum percentage variation less than 3%.

Keywords: deep learning; traffic flow; moving car observer technique; traffic data acquirement

1. Introduction

Macroscopic traffic flow variables estimation is very important in the planning, de-
signing and controlling processes of highway and road networks. In addition, Intelligent
Transportation Systems (ITS) require that the observation and the control of traffic demand
and flow rate be performed in real-time with more accuracy and reliability than in the
past [1].

Traffic data can be collected via several methods and technologies, including the
“fixed spot measurement” (i.e., inductive-loops, pneumatic tubes, detectors video cameras,
etc.) and the “probe vehicle data” systems (i.e., floating car data FCD) both widely used
(Table 1). In fixed spot measurement methods, for the vehicle detection and counting
processes can be applied several algorithms based on Deep Learning [2–5].

An Alternative method employed to detect the flow rate values on a certain highway
section is the “moving car observer method” (MOM), also called “moving car observer”
(MCO) established by Wardrop and Charlesworth [6]. In this technique, several runs of a
test vehicle (observer or survey vehicle) are carried out traveling the test vehicle with and
against the one-way traffic stream of interest.

In the traditional MOM, the fundamental traffic information (i.e., the quantity of light
and heavy vehicles and the journey times) are generally recorded by three human observers
at least that are inside the survey vehicle.
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Table 1. Methods and technologies for traffic flow variables measure.

Method Technologies Measured Traffic Variables

fixed spot measurement

� hand tally
� pneumatic tubes
� inductive loop
� microwave, radar
� photocell
� ultrasonic
� video camera

� volume
� flow rate
� time headway
� instantaneous speed
� (density is calculated)

Measurement over a short
road section
(less than about 10 m)

� pneumatic tubes
� paired detectors:

inductive loops,
microwave beams

� video camera

� volume
� speed
� time headway
� occupancy
� (density is calculated)

Measurement over a
road section
(at least 0.5 km)

� aerial photography
� cameras installed on tall

buildings or poles

� density
� speed
� travel time

Moving car observer
method (MOM)

� floating vehicle with
human observers (hand
tally)

� travel time
� speed
� flow rate
� density

Moving car observer method
with Deep
learning (MOM-DL)

� floating vehicle
equipped with a video
camera

� travel time
� speed
� flow rate
� density

This article proposes a novel real-time automated MOM in which the vehicle classifica-
tion and the counting processes are obtained by Computer Vision and deep
learning approaches.

Contrarily from the traditional MOM, the proposed one, denoted with the term
MOM-DL (Moving car observer with Deep Learning method) does not necessitate human
observers, thus reducing measurement expenditures while growing speed of the vehicles
counting, and the safety of road users.

Table 1 summarizes the main methods, including the proposed MOM-DL technique,
and the required technologies for measuring the traffic flow variables.

MOM-DL method is able to estimate the macroscopic traffic flow variables in each
section of a single road infrastructure or in several sections of a road network with remark-
able benefits with respect to the traditional Moving car observer method. The proposed
automatic traffic data acquirement method has been verified, calibrated and validated by
experiments conducted in a two-lane undivided highway.

Counting processes are investigated via a survey vehicle equipped with a calibrated
camera. Traffic video recordings, with a resolution of 1280× 720 pixels, have been analyzed
using a workstation with Intel(R) Core(TM) i7-4510 CPU @ 2.00 Hz 2.60 GHz—Memory
RAM 32 GB, Windows 10 Home. Experiment outcomes, achieved by means of the sug-
gested technique (MOM-DL), are in good accordance with the data deducted by the
conventional moving observer method (MOM).

The outline of the paper is as follows. Section 2 explains the related work of object
detection and recognition systems based on the deep learning approach and YOLO v3
algorithm. Section 3 briefly explains the “moving car observer method” (MOM) and the
proposed technique MOM-DL. The experiments are presented in Section 4, and results and
discussions are presented in Section 5. Finally, conclusions are proposed in Section 6.
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2. Deep Learning and YOLOv3 Algorithm
2.1. General Considerations

In recent times, artificial intelligence and deep learning (DL) have shown several
potential applications in many real-life areas including target detection [7]. In deep learning,
a computer model learns to perform classification tasks using different types of information
such as texts, sounds or images. The models implemented in deep learning are formed
using a large number of tagged data and neural network architectures that contain various
layers [8]. The word “deep” refers to the number of hidden layers in the neural network.

In computer vision (CV) applications, the most important DL architectures are artificial
neural networks (ANNs), convolutional networks (CNNs) and generative adversarial
networks (GANs) [9]. In computer vision, image classification problems are the most basic
applications for CNNs. Object detection systems like YOLO (You Only Look Once), SSD
(single-shot detector) and Faster R-CNN, not only classify images but also can locate and
detect each object in images that contain multiple objects [9].

In 2016, Redmon and his team proposed the YOLO convolutional neural network
model that can complete end-to-end training [10]. In the same year, an advanced version
of YOLO, YOLOv2, was developed, which can maintain high detection accuracy at a high
speed and has a high advantage in real-time image processing [11,12].

With the popularization of artificial intelligence technology, unmanned vehicles and
automatic robots are more and more widely used. In the future, emerging technologies
based on artificial intelligence technology such as automated vehicles AVs and connected
automated vehicles CAVs will be part of transportation systems.

AVs and CAVs need to perform operations based on the infrastructure and envi-
ronmental scenario they are facing, including stopping at intersections and pass walk
areas, performing acceleration, deceleration and turning maneuvers, etc. Consequently,
the development and application of traffic scene, vehicle and vulnerable user classification
has become a very significant research topic in intelligent driving systems, which has a
far-reaching influence on transportation ad highway engineering.

In recent years, object detection algorithms have made great advances. In this field,
the most widely used algorithms can be classified as follows [13]:

(a) R-CNN system algorithm in which the Heuristic method or convolutional neural
network are applied to produce alternative regions first, and then classification and
regression are used on the alternative regions;

(b) end-to-end algorithms (i.e., You Look Only Once “Yolo” and Single-Shot Detector
“SSD”), that only use a convolutional neural network to directly predict the category
and location of different objects [12].

YOLO e SSDs are one-stage detectors and conduct target classification and localization
at the same time. One of the most important innovations of YOLOv2, based on a 31-layer
neural network, is the concept of the anchor box obtained by k-means, instead of the
traditional bounding box. Anchor box increases the probability of an object being identified
from 81% to 88% [13].

YOLOv3 is the latest version of YOLO and does not require a region proposal network
(RPN) and directly performs regression to detect targets in the image [14]. In brief, YOLOv3
includes 53 convolutional layers and 23 residual layers as shown in Figure 1. YOLOv3 has
shown significant advancement in real-time object detection, especially in the detection of
smaller objects. Consequently, YOLOv3 is used for our vehicles detection system.

As explained in [14], 1 × 1, 3 × 3/2 and 3 × 3 convolution kernels of three sizes are
applied in the convolutional layers to sequentially extract image features, ensuring the
model has remarkable classification and detection performances. The remaining layers
guarantee the convergence of the detection model [14].

In order to detect several areas of the same object at the same time, YOLOv3 fuses three
feature maps of different scales (52× 52, 26× 26 and 13× 13) by three time down sampling.

In this research, YOLOv3 is adopted because the YOLO family (i.e., YOLOv1, YOLOv2,
YOLOv3) is a series of end-to-end deep learning models planned and designed for fast
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real-time object detection [9] and the quick vehicles detection is essential for the proposed
MOM-DL technique.

1 
 

 Figure 1. YOLOv3 Network structure (adapted from [15]).

2.2. YOLO V3 Algorithm

The network structure of YOLOv3 model uses the Darknet-53 network model that
includes 5 residual modules and 53 convolutional layers (Figure 2).

As well explained in [16] the Darknet-53 network can “performed 5 down-sampling of
the image, each of which has a sampling step size of 2 and a maximum step size of 32. Then the
image is subjected to 32-fold down-sampling, 16-fold down-sampling, and 8-fold down-sampling
processing to obtain 3 target detections with scale differences, Then the image is subjected to 32-fold
down-sampling, 16-fold down-sampling, and 8-fold down-sampling processing to obtain 3 target
detections with scale differences, the feature maps are respectively 13 × 13, 26 × 26, 52 × 52;
The first feature map is suitable for detecting large targets, the second feature map tends to detect
medium targets, and the last one is mostly used for small targets. Finally, the output feature map is
sampled and feature fusion is performed, and finally the detection task of the target is completed”.
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During the training process, the analyzed image is subdivided into S × S grids by
the YOLOv3 model and each grid forecasts if the center of the object falls into its inner or
not. In the first case, the grid predicts B detection bounding boxes and the Conf(Object)
(i.e., the confidence of each box). In the second case, the candidate box confidence for the
nonexistence of a target is imposed to zero. The previous conceptual and logical phases
can be formalized with Equations (1)–(3) [9,18]:

Conf(Object) = Pr(Object)× IOUtruth
pred (1)

Pr(Object) =
{

0 no target in the cell
1 there are targets in the cell

(2)

IoUtruth
pred =

Bgroundtruth ∩ Bpredicted

Bgroundtruth ∪ Bpredicted
(3)

where Conf(Object) is the confidence of the candidate box corresponding to the cell and
IoUtruth

pred is the intersection over union (ratio of the intersection area of the prediction box to
the actual frame and the area of the union).

The IoUtruth
pred measure evaluates the overlap between two bounding boxes: the ground

truth bounding box (Bground truth), that is, the hand-labeled bounding box created during
the labeling process and the predicted bounding box (Bpredicted) from the considered and
proposed model. Each detected bounding box comprises the following parameters:

- (x, y): position of the center of the detection bounding box relative to its parent grid;
- (w, h) height and width of the detection bounding box;
- Pr(Classi|Object) probability of C categories: is the probability that the center of the

i-th object falls into the grid.

Lastly, a tensor of the S × S (B × 5 + C) dimension is calculated.

2.3. Loss Calculation

YOLO predicts multiple bounding boxes per grid cell. To compute the loss for the
true positive, it is required that one of them is responsible for the object. Therefore, we
selected the one with the highest IoU (intersection over union) with the ground truth.

For calculation of loss, in YOLO, the sum-squared error between the predictions and
the ground truth is used. The loss function comprises the classification loss, the localization
loss (errors between the predicted boundary box and the ground truth) and the confidence
loss (the objectness of the box) [19] as follows:

- Classification loss: if an object is detected, the classification loss at each cell is the
squared error of the class conditional probabilities for each class [19]:

S2

∑
i=0

Iobj
ij (pi(c)− p̂i(c))

2 (4)

where:
Iobj
ij = 1 if an object appears in the cell I, otherwise is 0;

p̂i(c) the conditional class probability for class c in cell i.

- Localization loss: evaluates the errors in the predicted boundary box locations and
sizes. It is only counted the box responsible for detecting the object [19].

λcoord

S2

∑
i=0

B

∑
j=o

Iobj
ij [(x− x̂i)

2 + (y− ŷi)
2] + λcoord

S2

∑
i=0

B

∑
j=o

Iobj
ij [(
√
$i −

√
$̂i)

2
+
√

hi −
√

ĥi)
2

] (5)

where:
Iobj
ij = 1 if in the jth boundary box in cell i is responsible for detecting the object,

otherwise 0;
λcoord increase the weight for the loss in the boundary box coordinates.
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Confidence loss: if an object is detected in the box, the confidence loss (measuring the
objectness of the box) is [19]

S2

∑
i=0

B

∑
j=o

Iobj
ij (C− Ĉi)

2 (6)

where:
Ĉi stands for the box confidence score of the box j, in the cell I;
Iobj
ij = 1 if the jth boundary box in the cell i is responsible for detecting the object,

otherwise 0.
If an object is not detected in the box, the confidence loss is [19]

λnoobj

S2

∑
i=0

B

∑
j=o

Inoobj
ij (C− Ĉi)

2 (7)

where
λnoobj is the complement of Iobj

ij ;

Ĉi is the box confidence score of the box j in the cell i;
λnoobj weights down the loss when detecting background.
The final loss adds localization, confidence and classification losses together [19],

as follows:

λcoord
S2

∑
i=0

B
∑

j=o
Iobj
ij [(x− x̂i)

2 + (y− ŷi)
2] + λcoord

S2

∑
i=0

B
∑

j=o
Iobj
ij [(
√
$i −

√
$̂i)

2
+
√

hi −
√

ĥi)
2
]+

S2

∑
i=0

B
∑

j=o
Iobj
ij (C− Ĉi)

2
+ λnoobj

S2

∑
i=0

B
∑

j=o
Inoobj
ij [(C− Ĉi)

2
+

S2

∑
i=0

Iobj
ij (pi(c)− p̂i(c))

2
(8)

In YOLO v3, the method of predicting the bounding box (cfr. Figure 3) is given by
Equation (9): 

bx = σ(tx) + cx
by = σ(ty) + cy
bw = pwetw

bh = pheth

(9)

where tx, ty, tw and th are the predicted outputs of the model, which represent the relative
position coordinates of the center of the bounding box and the relative width and height of
the bounding box. cx and cy represent the net, and pw and ph are the width and height of
the predicted front bounding box. Finally bx, by, bw and bh are the true coordinates of the
center of the bounding box and the true width and height of the bounding box obtained
after prediction.
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The performance of a certain object detector can be measured mainly by the following
metrics [20]:

- Average mean precision (mAP) that is the integral over the precision p(o):

mAP =

1∫
0

p(o)do (10)

where p(o) is the precision of the object detection.
- Frame per second (FPS) to measure detection speed (number of images processed

every second);
- Precision-recall curve (PR curve) in which Precision and Recall are calculated as follows:

Recall =
TP

TP + FN
(11)

Pr ecision =
TP

TP + FP
(12)

- Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

The symbols TP, FN and FP stand for True Positive, False Negative and False
Positive respectively.

- Another parameter frequently used is the F1-score that is the harmonic mean of the
precision and recall values:

F1 =
2

1
precision + 1

recall

=
2TP

2TP + FP + FN
(14)

F1-score can assume values in the range [0, 1]: if F1-score = 1 it results a perfect
classifier. With reference to the semantic segmentation of images, F1-score indicates the
proximity between the traced contour and the segmented contour.

3. Automatic Traffic Data Measurement Using Moving Observer Method

The moving observer method (MOM) was developed by Wardrop and Charlesworth [6]
for macroscopic traffic variables measurements. Both the space mean speed vs. flow rate q
measurements are obtained simultaneously through this method. This method requires
a survey vehicle that travels in both directions on the analyzed highway. This procedure
needs numerous runs of a survey vehicle done traveling in the same direction and against
the traffic stream of interest. For each run (i.e., experiment) the human observers in the
survey vehicle measure several traffic parameters, including the number of opposing
vehicles met, the number of vehicles that the test vehicle overtook, the number of vehicles
overtaking the test vehicle, the test vehicle mean speed, the length and the travel time of
the run [6,21].

Equations (15)–(17) are used to calculate both the space mean speed and traffic flow for
one direction of travel. In addition, vehicle density k can be estimated with Equation (18).

q =
x + y

(ta + tw)
(15)

ts = tw −
y
q

(16)

vs =
L
ts

(17)
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k =
q
vs

(18)

where:

- q is the estimated traffic flow on the lane in the direction of interest;
- vs is the space mean speed in the direction of interest;
- k is the vehicle density in the direction of interest;
- x denotes the number of vehicles traveling in the direction of interest that are met by

the survey vehicle while traveling in the opposite direction;
- y is the net number of vehicles that overtake the survey vehicle while traveling in the

direction of interest (overtake test car—overtaken by test car);
- ta is the travel time taken for the trip against the stream;
- ts indicates the estimate of mean travel time in the direction of interest;
- tw is the travel time of the test vehicle with the stream;
- L is the length of the highway segment under analysis and corresponds to the distance

traveled by the survey vehicle.

According to [6], traffic flow values estimated by MOM may result in a small degree
of bias. Counting processes are not affected by small deviations in the speeds of the test
of the observed vehicles. Furthermore, no significant differences were found between
macroscopic traffic flow variables values estimated by MOM and fixed spot measurement.
Nevertheless, systematic errors may occur if the test vehicle speed vw and the space mean
speed vs. of the traffic streams have very similar values [6]. In the case of one-way roads,
the observer vehicle is required to travel along the segment of interest at least with two
speed values [22–24]. In accordance with [25], in order to guarantee reliable results with
the use of MOM the choice of survey highway segment should stick with the following
basic conditions:

- Homogeneity: homogeneous in geometric characteristics (horizontal and vertical
alignment, lanes and shoulders width, etc.) throughout the whole segment of length L;

- Intersections: there is no at-grade intersection within the highway segment or within
at least 250 m of its endpoints;

- Speed limits: no sub-segment contained within it, or within 250 m of its endpoints,
any speed restriction respect to the legal speed limit;

- Roadworks: there are no roadworks;
- Length: the segment length should be in the range of 1–5 km.

The suggested method MOM-DL, based on Computer Vision and Deep learning, is
able to automatically detect, track and count along the analyzed highway segment the
vehicles identified with “x” and “y” previously defined and classify them into different
categories (motorbikes, light vehicles, heavy vehicles, etc.). The process is subdivided
into subsequent steps: Vehicle Detection, Vehicle Classification and Recognition, Labeling,
Tracking, Counting process.

In the counting process, first, the traffic variables x and y, ta and tw are evaluated
and, lastly, the flow (q), the space mean speed (vs) and density (k) are obtained using
Equations (15)–(18). It is worth underlining that in a given video frame sequence the
bounding box perimeter and surface of each detected vehicle change continuously over the
time instants. The growth over time of the bounding box perimeter and area represents a
reduction in the space headways between the observed vehicle (i.e., leader vehicle) and the
survey vehicle (i.e., follower vehicle). Obviously, after an overtaking maneuver, the bound-
ing box of the observed vehicle disappears in the video frame sequence. Then it is possible
to count the number “y” of vehicles that overtake the survey vehicle when it travels the
highway in the same direction of the traffic stream that should be examined. Correspond-
ingly, the number “x” of vehicles met by the test vehicle traveling the highway segment in
the opposite direction to the traffic stream of interest may be automatically measured.

These counting processes were implemented in Matlab R2020b using YOLOv3 and
were applied in a case study (cfr. Section 4). The first results demonstrate that the MOM-DL
is very accurate though various false positives (FP) and false negatives (FN) can be found in
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the detection step. This is because the test vehicle, and in turn the video camera, is subject
to vibrations [26] caused by road pavement surface irregularities (including holes, bumps,
and uneven pavement edge), lighting reflections and adverse environmental conditions
(rain, fog darkness, etc.).

4. Experiments

The proposed method was applied to a segment of the Italian two-lane single car-
riageway SS640 highway. The analyzed highway segment of length L (L = 1.1 km), is
characterized by uninterrupted flow conditions. Furthermore, this segment satisfies the
basic conditions explained in the previous Section 3 concerning the homogeneity, intersec-
tions, speed limits, roadworks and length. The endpoints of the segment are denoted by
sections A and B (Figure 7).

In accordance with the moving observer method, the survey vehicle was driven
several times in the same direction and in the opposite direction with respect to the traffic
stream that was to be measured (flow q). The survey vehicle speed was prefixed in the
range 60 ± 5 km/h depending on the traffic condition. In the year 2021, 35 round trips for
each direction were performed in the analyzed highway segment.

The videos of the traffic streams were recorded by a survey vehicle equipped with a
calibrated camera (Figure 4). The first research phase was the camera calibration. Camera
calibration aims at establishing two sets of parameters: intrinsic and extrinsic. The intrinsic
parameters correct lens distortions while the extrinsic ones determine the spatial offset
of the camera. The Zhang algorithm [27] determines the extrinsic parameters of the
system. For the calibration processes, 64 different images were considered using a set
of different photos as shown, for example, in Figure 5. Figure 6 shows the extrinsic
parameter visualization obtained by the calibration processes. The calibrated model was
then validated by several tests concerning the comparison between estimated and measured
distances of the prefixed objects with respect to the camera lens. A similar technical
approach can be applied in several fields of highway and transportation engineering [28,29].
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By using Equations (15)–(18), for each run, the following parameters were estimated
with the method MOM-DL:

- The number y of vehicles that overtake the survey vehicle when it travels in the
direction from A to B (see Figure 7 and Figure 12);

- The number x of vehicles traveling in the direction of interest that are met by the
survey vehicle while traveling in the opposite direction, from B to A (see Figure 7 and
Figure 13);

- The travel times ta and tw spent for crossing the segment in the two directions (from
A to B and from B to A).
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Training of the Neural Networks: Main Results

As explained in the previous Section 2.2 the Darknet-53 is a framework to train neural
networks. Darknet-53 is open-source and is written in C and CUDA and serves as the basis
for YOLOv3 [18].

Darknet-53 structure is summarized in Figure 2 [10,17]. In general, in Darknet-53,
the weights of the custom detector are saved for every 100 until 1000 iterations, and it
continues to be saved for every 10,000 iterations until it reaches the maximum batches [17].
A pre-existing vehicle dataset, consisting of 652 images published by [30–32] was used in
this study. The pre-trained network can classify images into numerous object categories,
such as cars, heavy vehicles, motorbikes, pedestrians, animals, etc. Also, an additional
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set of front images of private and public vehicles was added to the pre-existing vehicles
dataset. The pre-existing vehicles dataset (including light and heavy vehicles, motorbikes,
pedestrians and other users) in Darknet-53 was split into 70% for training and 30% for
testing the neural networks.

As a result, the network learned feature-rich representations for a wide range of
vehicle images. During the training process phase, data augmentation techniques (crop-
ping, padding, flipping, etc.) were used in order to prepare the large neural networks.
Then, a bounding box labeling tool [33] was applied to manually detect and recognize
vehicles for the object to be detected [17]. Regarding the processing time of the training
phase, consider, for example, the following parameters: 8 Epoch (1 Epoch = 25 iterations),
learning rate = 0.001, L2 regularization factor = 0.0005, penalty threshold = 0.5, the result is
a Time Elapsed = 00:40:20 h. The outcomes of this phase and the class label consist of four
points of the position coordinate. The label was converted into YOLO format and the tool
changed the values to a format that the training algorithm YOLOv3 can employ.

Figures 8 and 9 show the training process consisting of 200 iterations. The Accu-
racy (Equation (13) and Figure 8), the Loss (Equation (8) and Figure 9) and the Precision
(Equation (12) and Figure 10) values demonstrate that the proposed training model is able
to detect the vehicles with high accuracy.
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5. Results and Discussions

In computer vision, the tracking phase allows the detection of the same object (i.e.,
vehicle) in all its locations that may be identified in the consecutive frames of the recorded
video. The phases employing the tracking algorithm are exemplified in Figure 11. During
each test, in the sequence of video frames both the perimeter and surface of the bound-
ing box relating to each vehicle changes over time. Therefore, the increase over time
of this surface denotes the space headway decrease between the observed vehicle and
the survey vehicle. Moreover, after an overtaking maneuver, the bounding box of the
overtaken vehicle disappears [20,34]. Consequently, the traffic variable “y” (i.e., vehicles
which overtaking the survey vehicle when it traveling the segment A-B, Figure 12) can be
measured. Correspondingly, the number “x” of vehicles met by the survey vehicle while
it was traveling in the opposite direction (i.e., against the traffic stream of flow q) was
automatically measured, Figure 13. Then, for each of the thirty-five runs performed in the
experiments, the macroscopic traffic variables (q; vs; k) were automatically obtained by
Equations (15)–(18).
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Different vehicle types were detected [35] and homogenized to passenger car unit
(pcu) by means of the HCM 2016 coefficients (flows were then expressed in pcu/h).

In order to estimate capacity, free-flow speed and other fundamental traffic variables,
first the main traffic flow models v = v(k) were considered. Among these models, the
bell-shaped curve model proposed by Drake, Schofer and May [36–38] (in short, the “May
model” or “Drake model”) was adopted because it proved to be the best in interpreting
the available experimental data. May’s equation, after logarithmic transformations, is
as follows:

ln(v) = ln(vf)−
k2

2 · kc2 (19)

or
V1 = a + bD1 (20)
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in which V1 = ln(v); a = ln (vf); b = 1/(2 kc
2); D1 = k2. Where vf denotes the free-flow

speed and kc the critical density, that is, the vehicle density associated with the capacity. By
means of the fundamental flow relation q = k·v, it results in the following equations:

q = v ·

√√√√ ln vf
v

0.5
kc

2

(21)

q = vf · k · e−
1
2 (

k
kc )

2
(22)

which allow the two additional flow relations to be traced: vs. = vs. (q) and q = q(k). Finally,
the flow models were calibrated. By observing Equations (21) and (22), it can be realized
that the two parameters needed to be assessed are the free-flow speed vf and the critical
density kc.

On the basis of scatter plots (k; ln(vs)) the model calibration parameters vf and kc
were deducted as shown in Figure 14 for both traffic data acquirement methods (i.e., MOM
and MOM-DL). For instance, in the case of MOM-DL method, the Figure 14b shows the
speed –density scatter points (k; ln(vs)). In this case, it results: vf = exp(a) = exp(4.2745) =

71.84 km/h; kc =
√

1
−2·b =

√
1

−2·(−0.0006) = 28.87 pcu/km/lane. Therefore, the calibrated

relation q = q(k) is: q = 71.84 · k · e− 1
2 (

k
28.87 )

2
.
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Figure 14. Speed-density scatter plots: (a) MOM method; (b) MOM-DL method.

Figures 15–17 illustrate the calibrated May’s traffic relationships vs = vs(q), vs = vs(k),
q = q(k) with the overlapping of the values of the experimental traffic variables measured
by the proposed automated counting method based on deep learning (MOM-DL) in
comparison with those measured by the conventional one (MOM). The two methods are in
good agreement with each other but with the MOM-DL method, as stated above, some
false positives (FP) and false negatives (FN) can be found in the detection step because
of camera vibrations or adverse environmental conditions. In any case, it can be noted
that the values of the traffic variables estimated with the proposed method (MOM-DL) are
close to those of the traditional one (MOM). As a matter of fact, with respect to MOM, the
MOM-DL technique can lead to lower values of some traffic flow variables such as the
free-flow speed vf, the capacity c, the critical speed vc, and the critical density kc, though
the maximum percentage variation is relatively modest (2.3%, as shown in Table 2).
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Table 2. Comparison among the values of the traffic flow variables obtained with MOM-DL and
MOM methods.

Method

Free-Flow
Speed

vf
[km/h]

Lane Capacity
c

[pcu/h]

Critical Speed
vc

[km/h]

Critical
Density

kc
[pcu/km]

MOM 71.06 1244.15 43.00 28.87
MOM-DL 71.84 1257.80 44.00 28.87

∆ [%] 1.1 1.1 2.3 0.0

6. Conclusions

The evaluation of traffic flow variables is a key element in highway planning and
design phases, as well as in traffic control strategies of existing infrastructures. Traffic data
can be collected by numerous techniques, including the fixed spot measurement and the
“probe vehicle data” systems. In addition, the moving observer method (MOM) developed
by Wardrop can be used as a traffic data acquirement method. As is well known, artificial
intelligence (AI) and deep learning (DL) are commonly used in numerous applications of
real-life areas including vehicle detection and recognition.

This article presents a novel automatic traffic data acquirement system founded on
MOM, deep learning and the YOLOv3 algorithm for the estimation of macroscopic traffic
variables. The proposed method, called MOM-DL, allows the measurement of the flow rate
(q), the space mean speed (vs) and the density (k) in case of stationary and homogeneous
traffic flow conditions. Being an automated method, MOM-DL does not necessitate human
observers with consequent significant advantages in terms of user safety improvements and
costs reductions. MOM-DL was subjected to strong verification, calibration and validation
by means of real-world traffic datasets. Experiments have been conducted along a segment
of an Italian highway (SS640) having a length of 1.1 km and uninterrupted flow conditions.

In accordance with the moving observer method, the survey vehicle has been driven
numerous times in the same direction and in the opposite direction with respect to the
traffic stream of flow q that must be measured. The test vehicle speed has been fixed in
the range 60 ± 5 km/h depending on the traffic state condition. For each of the 35 trips,
the vehicles belonging to the flow of interest have been recorded by means of a calibrated
video camera installed in the survey vehicle.

The accuracy, loss and precision values obtained during the neural network training
process prove that the proposed training model detects vehicles with high accuracy. The
traffic flow variables have been calculated using the Wardrop relationships q = q(x, y, ta, tw),
vs. = vs(x, y, ta, tw), k = k (x, y, ta, tw). Then, the empirical traffic data, in terms of pairs
(q; vs), (k; vs), (k; q) were employed for the comparison between MOM-DL and MOM. The
results of the research demonstrate that the two methods are in good agreement with each
other, although some false positives and false negatives may be found in the detection step
mainly due to camera vibrations.

The proposed method is marked by a reliable and rapid analytical approach as well
as by high accuracy in the measurements of traffic variables. In fact, the research shows
that the values of the macroscopic traffic variables estimated by means of the May traffic
flow model together with the proposed method (MOM-DL technique) are very close to
those obtained by the traditional one (MOM technique), with the maximum percentage
variation being less than 3%.
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