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Abstract: In this work, we investigate the transient response of a model bridge traversed by a heavy
mass moving with constant velocity. Two response regimes are identified, namely forced vibrations
followed by free vibrations as the moving mass goes past the far support of the simply supported
span of the bridge. Despite this being a classical problem in structural dynamics, there is an implicit
assumption in the literature that moving loads possess masses that are at least an order of magnitude
smaller than the mass of the bridge span that they traverse. This alludes to interaction problems
involving secondary systems, whose presence does not alter the basic characteristics of the primary
system. In our case, the dynamic properties of the bridge span during the passage of a heavy mass
change continuously over time, leading to an eigenvalue problem that is time dependent. During the
free vibration regime, however, the bridge recovers the expected dynamic properties corresponding
to its original configuration. Therefore, the aim here is the development of a mathematical model
whose numerical solution is validated by comparison with experimental results recovered from an
experiment involving a scaled bridge span traversed by a rolling mass. Following that, the target
is to identify regions in the transient response of the bridge span that can be used for recovering
the bridge’s dynamic properties and subsequently trace the development of structural damage.
In closing, the present work has ramifications in the development of structural health monitoring
systems applicable to critical civil engineering infrastructure, such as railway and highway bridges.

Keywords: bridge model; moving loads; modal analysis; experimental verification; transient
response; frequency spectra

1. Introduction

The subject of moving loads on beams dates back to the 19th century, following the
development of railways that necessitated the construction of metallic bridges across rivers,
valleys and other types of irregular topography. At the same time, there was a parallel
effort in developing mathematical models for this engineering type of problem, see, for
instance, the early treatise by Renaudot [1] on representing a mass rolling over a beam.
Starting from the 1960s onwards with the seminal work by Fryba [2], much work, both
analytic and numerical, has been carried out on variations of the basic problem of a single
load moving with constant speed over a single span. These include the cases of multiple
spans, multiple moving loads, loads that accelerate or decelerate etc. Furthermore, the
point load itself has evolved to become a structural sub-system by itself in possession of a
mass, a stiffness and a damper in order to better model the passing vehicle’s suspension
system, see, for instance, Liu et al. [3]. Further studies along these lines were performed
by Green and Cebon [4], who examined a simply supported highway bridge traversed by
a single degree-of-freedom vehicle model and derived six non-dimensional parameters
that quantified the degree of interaction between vehicle and bridge. The same authors
expanded their original study to include the dynamic bridge response to a given set of
wheel loads and also performed field measurements on a highway bridge to validate their
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numerical model [5]. In his doctoral dissertation, Johansson [6] gives a good summary on
the hierarchy of the mathematical models used for train–track–bridge interaction and goes
on to discuss probabilistic dynamic analysis of single bridges, as well as bridge networks,
for high-speed railway traffic. An excellent exposition on the vibrations of structures under
moving inertial loads with applications to railway problems is given in the monograph
by Bajer and Dyniewicz [7], who go on to develop space–time finite elements for the
vibrations of both Bernoulli–Euler and Timoshenko beams. Finally, much information on
the dynamics of structures and structural components can be found in the treatises by
Rao [8] and Kausel [9] from a mechanical engineering and a structural engineering point of
view, respectively.

Over time, the monitoring of existing railway and highway bridges for the purpose
of retrofit and rehabilitation has become of paramount importance and falls within the
realm of critical infrastructure maintenance [10]. In reference to our work, which can be
viewed as a background for developing structural health monitoring systems for bridges,
we need to distinguish between various damage sources that lead to possible failure.
The most important one is probably structural damage, encompassing the loosening of
support integrity, cracking and disintegration of the main load-bearing system, the lack of
fit resulting from temperature variations etc. However, there are further sources of damage
in bridges due to dynamic and other categories of external loads. Among much of the
work that appears in the literature, we mention here a numerical study on the response
and subsequent failure modes of R/C bridge columns under vehicle collisions, which are
classified as flexural failure, shear failure and punching shear damage [11]. Similarly, the
detection of early-stage corrosion in slender steel members used for supporting structures,
such as bridges, by employing photoacoustic fiber-optic sensors involving a transmitter
and a receiver configuration was reported in [12]. More specifically, the finite element
method was applied for the numerical simulation of the propagation of ultrasonic waves on
steel rod models. Recently, a damage detection method for railway bridges was proposed
by Azim and Gul [13], who used principal component analysis of the bridge dynamic strain
response. Thus, the time history response of truss-type bridges was compared between
the baseline and damaged conditions using finite element simulations with artificial noise
inserted into the models, and the deviation in the strain response was correlated to the
change in stiffness brought about by damage.

1.1. Structural Health Monitoring Issues

Structural health monitoring (SHM) plays an important role in assuring the continu-
ous operation and functionality of modern infrastructure. In general, infrastructure can
be classified as the built environment plus the necessary networks for energy (power
grids, wind turbines and pipelines), for water supply and disposal, for communications
(antennas, transmitters and cables) and for transportation (roads, bridges, tunnels and
railways). Essentially, networks form a special category of engineering construction whose
operation must remain unhindered over time inasmuch as possible. Furthermore, concerns
regarding infrastructure resilience have led to the classification of ‘critical infrastructure’
for networks that must be continuously maintained to help with the rapid response and
recovery capabilities of a given geographical area in the event of natural disasters [14].
Traditionally, the structural maintenance of critical infrastructure networks has been con-
ducted using non-destructive testing (NDT) evaluation practices, such as on-site visual
inspections and measurements. However, these rely on the availability and judgment of
skilled personnel, whose absence results in discontinuities in the inspection protocol, as
well as in bias regarding the structural condition of the network in question. Advances in
sensor technologies over the past decades [15] have enabled the development of the SHM
paradigm, whereby critical infrastructure networks can be continuously monitored over
time in terms of their overall performance and response to the working loads plus other
environmentally induced loads [16]. Thus, data streams generated by this continuous mon-
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itoring can be processed with the aid of artificial intelligence (AI) algorithms that will allow
the managing authorities to reach rational conclusions regarding network operations [17].

The collection of data in SHM systems is performed in tandem with data processing
to extract useful information on the structural condition of the network in question. These
data processing methods can be combined with numerical modeling in either of two
ways [15]: (a) educated assumptions on material and structural properties of the monitored
structure, known as ‘model-based’ monitoring, or (b) relationships between structural
response data sets regardless of the physics underlying the structural response, known as
‘model-free’ monitoring. Although the majority of SHM strategies are associated with the
latter category, ‘model-based’ data processing yields insights into the relationship between
the structural response and structural behavior. To this end, the focus of our work is to
develop analytical tools that are calibrated against experimental evidence and can rapidly
and accurately compute the anticipated structural response in order to compare it against
the measured one. We focus here on single-span bridges under moving loads whose mass
is comparable to that of the supporting deck, resulting in an alteration of the dynamic
properties of the bridge during the passage of these loads.

1.2. External Load Categories

Vibration tests on civil engineering structures, such as bridges, have been running
for many years now, and it has become clear that environmental parameters affect their
dynamic behavior. For instance, the elasticity modulus decreases with increasing tem-
perature and with long-term exposure to humidity. Since damage detection is one of the
main aims of vibration monitoring, the basic premise that holds is that loss of stiffness
observed in time shifts the eigenfrequencies to the low end of the spectrum. However,
changes due to damage can be completely masked by changes due to predictable envi-
ronmental conditions. The main problem when analyzing vibration measurements as a
tool for SHM is thus separating abnormal changes from normal changes in the dynamic
response of the structure in question [10]. The former changes are caused by conditions
such as temperature, humidity, wind and ground motions, while the latter ones are due to
an overall degradation of stiffness. It is clear that the normal changes should not trigger
a false alarm in the monitoring system, whereas the abnormal changes must be detected
because they may be critical for safety purposes.

As an example, Peeters at al. [18] discuss the Z24 bridge in Switzerland that was
monitored for one year before it was artificially damaged. Black box models were then
built from the undamaged bridge data by applying system identification techniques. These
models described the variations in the natural frequencies as a function of temperature
and were used for gauging new incoming data. If a natural frequency exceeded certain
confidence intervals established by the model, then it was probable that another cause, per-
haps damage, drove this change. More specifically, an automatic modal analysis procedure
based on stochastic subspace identification was proposed to extract the modal parameters
from stabilization diagrams without any user interaction. By carefully inspecting the avail-
able data, the physical phenomenon behind a typical bilinear relation between frequency
and temperature was recovered. Due to the relatively large amount of recorded data, a
more detailed data analysis was possible as compared to the classical statistical regression
analysis. A unique data set could then be used to validate the proposed method, in the
sense that measurements were available year round.

As another application example, Sohn et al. [19] introduced a linear adaptive filter
that discriminated changes in modal parameters due to temperature from those caused
by structural damage by using data from the Alamosa Canyon Bridge in the state of New
Mexico. This filter solves the eigenvalue problem using conventional methods but is able
to adapt its prediction to the natural frequencies of the structure using a pre-determined
time–temperature profile. Thus, it becomes possible to discriminate changes in modal
parameters due to temperature from those caused by other environmental factors or by
structural damage. Specifically, when the measured frequencies move outside the predicted
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confidence intervals, the system can provide a reliable indication that structural changes
are likely caused by factors other than heat. Changes in the natural frequencies are found
to correlate linearly with temperature readings from different locations on the bridge. The
filter used spatial and temporal temperature distributions to determine changes in the first
and second natural frequencies. Furthermore, it was possible to account for non-stationarity
in the natural frequencies caused by environmental factors by using a linear filter with
two spatially separated and two temporally separated temperature measurements that
reproduced the variation of the natural frequencies from a first data set.

2. Experimental Setup

We first discuss the experimental setup shown in Figure 1 for a bridge model traversed
by a rolling mass as a way of introducing the mathematical formulation that follows. Specif-
ically, the model girder was a steel section HEA100 [20] of length L = 6.13 m, cross-sectional
area A = 21.24× 10−4 m2, moment of inertia about the strong axis of I = 349.2× 10−8 m4,
modulus of elasticity E = 200× 106 kPa and mass density ρ = 7.85 tn/m3. The travelling
point mass had a magnitude m = 34.6 kg, which could be increased to higher values, as
compared to a girder mass M = 102.2 kg. The point mass moved with a constant, reference
speed of v = 1.0 m/s, meaning that the time to traverse the span was t = 6.13 s, past
which the girder was under a state of free vibrations. Again, this speed was adjustable,
meaning that it could be increased by faster rotation of the winch that pulled the mass
across the girder’s span using a wire. The girder’s ends were placed on short steel columns
with flexible pads as an interface; thus, the case of a simply supported beam could be
recovered when the pads were removed. When support rigidity was relaxed, it was es-
timated that the pads could be represented by springs of modulus K1, K2 at the right
and left supports, respectively. Values for these springs were estimated to range from
K1 = K2 = 1000 kN/m to K1 = K2 = 100 kN/m. The damping parameter for the bridge
model was estimated as ξ = 0.0001 for all modes of vibration. Furthermore, the radius
of gyration of the cross-section is r =

√
I/A = 0.041 m, which implies a slender beam

without shearing effects; thus, it is unnecessary to resort to the Timoshenko beam theory.
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3. Beam Models for the Bridge Deck on Flexible Supports

We now examine both the conventional Bernoulli–Euler beam representation and the
higher order Rayleigh beam theory to check the former’s validity for the expected frequency
range relevant to an experimental setup with a heavy mass moving along a model bridge
span at constant speed. The equation of motion for a Rayleigh beam underdoing free
vibrations [9] is

r2 ∂4w(x, t)
∂x2∂t2 = a2 ∂4w(x, t)

∂x4 +
∂2w(x, t)

∂t2 (1)

where w(x, t) is the transverse displacement and coefficient a =
√

EI/ρA. The values for
all problem parameters can be found in Section 2. In order for the mixed inertia term at the
RHS of the above equation to become sizeable, the speed by which the mass moves across
the span must be high so that high-frequency vibrations are generated; otherwise, it is
negligible. For boundary conditions that correspond to simple supports, the characteristic
equation that yields the eigenfrequencies of vibration is

sin(m1L)sinh(m2L) = 0

m1 =

√
ω2r2

2a2 +
√

ω4r4

4a4 + ω2

α2 m2 =

√
−ω2r2

2a2 +
√

ω4r4

4a4 + ω2

α2

For the simpler Euler–Bernoulli beam, the equation of motion is now

EI
∂4w(x, t)

∂x4 + ρA
∂2w(x, t)

∂t2 = 0 (2)

The characteristic equation for a simply supported case is sin(κL) = 0, κ = nπ/L,
n = 1, 2, . . . . In Table 1 which follows, we compare the first seven eigenfrequencies as
computed for the Bernoulli–Euler and Rayleigh beams. Given that the frequency spectra
for the model beam under the heavy moving load do not show appreciable information
past 100 Hz, we adopt the simpler Bernoulli–Euler beam model.

Table 1. Euler–Bernoulli and Rayleigh beam eigenfrequencies (Hz) for simply supported beam.

Bernoulli–Euler Beam

8.56 34.23 77.01 136.9 213.9 308.0 419.3

Rayleigh Beam

8.55 34.20 76.86 136.4 212.8 305.7 414.9

Next, we look at the eigenfunctions of the simply supported Bernoulli–Euler beam,
which are given as Φn(x) =

√
2/M sin

( nπx
L
)
, n = 1, 2, . . ., where M = ρAL is the total

mass of the beam. In the case of flexible end supports, the computational procedure is
described in the Appendix A, and the relevant figures are Figure 2b,c.
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4. Mathematical Models for Moving Loads
4.1. Stationary Mass Reference Case

Assume that a mass m(tn) is placed at station x0 along the span of the beam. If the
mass is large as compared to the total mass M of the beam, i.e., we no longer have a
secondary system placed on a primary one, it is expected that the modal characteristics of
the combined system will change. The equation of motion now reads as follows:

ρA
..
w + EIw′′′′ = −m

..
w δ(x− x0) (3)

where EI and ρA, respectively, are the girder’s flexural stiffness and its mass per unit
length, while dots and primes, respectively, indicate differentiation with respect to time
t and coordinate x. Finally, δ is the Dirac delta function. If the boundary conditions are
homogeneous, it is possible to use separation of variables in the form of the generalized
coordinates qi(t) and express the transverse displacement as

w(x, t) =
∞

∑
n=0

Φn(x)qn(t)

where the summation convention is implied for repeated indices. Inserting this expres-
sion in Equation (3) and integrating along the beam’s length, we obtain the following
3× 3 matrix for n = 3 modes, where ωn (Hz) are the eigenfrequencies of the beam
deck alone: 1 0 0

0 1 0
0 0 1

+ m

 Φ1(x0)Φ1(x0) Φ1(x0)Φ1(x0) Φ1(x0)Φ1(x0)
Φ2(x0)Φ1(x0) Φ2(x0)Φ1(x0) Φ2(x0)Φ1(x0)
Φ3(x0)Φ1(x0) Φ3(x0)Φ1(x0) Φ3(x0)Φ1(x0)

 ..
q1..
q2..
q3

+

 ω2
1 0 0

0 ω2
2 0

0 0 ω2
3

 q1
q2
q3

 =

 0
0
0

 (4)

Returning to the generalized coordinates in the presence of the stationary mass,
we assume that harmonic vibrations still hold so that

..
q = ωn

2qn, where ωn are now
the eigenfrequencies of the combined system of the beam plus the mass. Carrying out
computations for the model bridge defined in the previous section, we present results for
three cases in Table 2 below. We observe that the presence of a fixed mass results in a more
flexible system leading to a drop in the eigenfrequencies. It should be noted, however,
that when the mass passes a station for which an eigenfunction has a zero crossing, the
corresponding eigenfrequency is unchanged.

Table 2. Eigenfrequencies (Hz) of the model bridge comprising a primary system (beam) and a secondary system
(fixed mass).

Eigenfrequency
Number

Reference Beam
without a

Stationary Mass

Beam with a Stationary
Mass m = 34.6 kg
at Station x0 = L/4

Beam with a Stationary
Mass m = 34.6 kg at

Stationx0 = L/3

Beam with a Stationary
Mass m = 34.6 kg at

Stationx0 = L/2

1 8.56 7.39 6.97 6.61
2 34.22 26.43 27.87 34.22
3 77.01 66.55 77.01 59.46

4.2. Moving Load Case

When the moving mass is small compared to the mass of the beam that it traverses
with velocity v (m/s), it can be considered as a moving load that does not change the
dynamic properties of the beam. The equation of motion in the presence of damping
c (kN·s/m) is now

ρA
..
w + c

.
w + EIw′′′′ = m

..
w δ(x− vt) (5)
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where g is the acceleration of gravity. The analytical solution for the simply supported
beam is recovered by the separation of variables plus the use of Duhamel’s convolution
integral for handling the load term in the RHS of the above equation. Specifically, we have

w(x, t) =
∞

∑
n=1

2mg
Mωd,n

sin
(nπ

L

)
·

t∫
0

e−ξn ωn(t−τ) sin(ωd,n(t− τ)) sin(knvτ) dτ (6)

In the above, ωd,n = ωn
√

1− ξ2 is the damped natural frequency assuming damping is
the same for all modes n = 1, 2, . . .We can now define a critical velocity for the simply
supported Bernoulli–Euler beam representing the bridge girder as follows [6]:

vcr =
π

L

√
EI
ρA

= 104.9 m/s (7)

If the velocity of the moving load is less than vcr, the maximum value attained by the
transverse displacement wmax occurs when the load is still on the bridge’s span. Otherwise,
wmax occurs in the free vibration regime, i.e., after the moving load has left the span. Some
numerical results are given in Figure 3 below for the model bridge used in the experiment
(Figure 1). Note that the vertical red line delineates the two phases of vibration, i.e., when
the load is traversing the beam’s span and when it has left it. Specifically, the value of the
moving load is P0 = mg = 34.6× 9.81 = 0.34 kN, and the displacement is evaluated at
the center of the span x = L/2 for three values of velocity, namely v = 64.7 m/s < vcr,
v = vcr = 104.9 m/s and v = 160 m/s > vcr. We observe that the maximum transverse
displacement of 4 mm occurs for the subcritical velocity, while for the other two cases, this
value drops to 3.5 mm and 2.8 mm, respectively.
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4.3. Moving Heavy Mass Case

The governing equation of motion for a single-span bridge girder under a moving
point mass, which, however, includes the mass’s inertia effect, is

ρA
..
w + c

.
w + EIw′′′′ = m

..
w
(

g− d2w(x, t)
dt2

)
δ(x− vt) (8)

As shown in Figure 1, m is the mass moving across the span with constant velocity
v and w(x, t) is again the transverse displacement. In reference to the RHS of the above
equation, when moving mass m changes its position with time, the material derivative is
written as

d2w
dt2 =

∂2w
∂t2 + 2v

∂2w
∂x∂t

+ v2 ∂2w
∂x2 (9)

where the first term is the rate of change of the girder’s displacement and the remaining
terms refer to the rate of change of the mass vertical motion as it moves across the span.

Starting with the eigenvalue problem for the Bernoulli–Euler beam representation of
the bridge girder resting on elastic springs K1, K2 the transverse displacement is written
in terms of the generalized coordinates as w(x, t) = Φn(x)qn(t). Following Renaudot [1]
and taking advantage of the normality property of the eigenfunctions Φn, we recover the
equation of motion in the form of a 3× 3, time-dependent matrix system by retaining these
eigenmodes:

[M(t)]
{ ..

q(t)
}
+ [D(t)]

{ .
q(t)

}
+ [E(t)]{q(t)} = {P(t)} (10)

where

[M] =

 1 0 0
0 1 0
0 0 1

+ m

 Φ1(vt)Φ1(vt) Φ1(vt)Φ2(vt) Φ1(vt)Φ3(vt)
Φ2(vt)Φ1(vt) Φ2(vt)Φ2(vt) Φ2(vt)Φ3(vt)
Φ3(vt)Φ1(vt) Φ3(vt)Φ2(vt) Φ3(vt)Φ3(vt)


[D] = 2ξ

 ω1 0 0
0 ω2 0
0 0 ω3

+ 2mv

 Φ1(vt)Φ′1(vt) Φ1(vt)Φ′2(vt) Φ1(vt)Φ′3(vt)
Φ2(vt)Φ′1(vt) Φ2(vt)Φ′2(vt) Φ2(vt)Φ′3(vt)
Φ3(vt)Φ′1(vt) Φ3(vt)Φ′2(vt) Φ3(vt)Φ′3(vt)


[E] =

 ω2
1 0 0

0 ω2
2 0

0 0 ω2
3

+ mv2

 Φ1(vt)Φ′′1 (vt) Φ1(vt)Φ′′2 (vt) Φ1(vt)Φ′′3 (vt)
Φ2(vt)Φ′′1 (vt) Φ2(vt)Φ′′2 (vt) Φ2(vt)Φ′′3 (vt)
Φ3(vt)Φ′′1 (vt) Φ3(vt)Φ′′2 (vt) Φ3(vt)Φ′′3 (vt)


{P} = mg


Φ1(vt)
Φ2(vt)
Φ3(vt)



c

As before, ωn(Hz) are the eigenfrequencies of the bridge deck alone.

5. Numerical Implementation for the Heavy Mass Case

The solution of the second-order matrix differential equation system of Equation
(10) can be accomplished using the Runge–Kutta method of order four (RK4), following
conversion to a first-order matrix differential equation system of order 2n = 6,

d
dt

{
yn(t)
zn(t)

}
+

[
A11 A12
A21 A22

]{
yn(t)
zn(t)

}
=

{
P1n(t)
P2n(t)

}
,
{

yn(t) = qn(t), zn(t) =
d
dt

qn(t)
}

(11)

The solution scheme was subsequently upgraded to an adaptive Runge–Kutta method
of order five (RK5) for better accuracy. Specifically, for a first-order differential equation,
we use RK4 and compute error e(h1) for step h1 and repeat the procedure to compute error
e(h2) for step h2, and then the relation between the steps and errors can be estimated. Thus,
by prescribing a tolerance ε and running the RK5 for an initial step h1, the new step for

re-computing is h2 = 0.90 h1

(
ε

e(h1)

) 1
5 , and this process is repeated every subsequent step.
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5.1. Numerical Details

Equation (10) may look like the standard equation of motion for a multiple-degree-
of-freedom (DOF) system, but there are some important differences. Firstly, all system
matrices are time dependent and, with the exception of the mass matrix, are non-symmetric.
This may not be a problem for solvers that can invert non-symmetric matrices, but it is
always possible to decompose them into symmetric and-antisymmetric parts, i.e.,

[D] = [C] + [G], [E] = [K] + [S] (12)

In the above decomposition, [C] is the symmetric damping matrix of the combined
bridge moving mass system, while [G] is the antisymmetric gyroscopic matrix. Likewise,
[K] is the standard stiffness matrix of the combined system, while [S] is antisymmetric and
referred to as the circulation matrix.

The solution of Equation (10) can only be accomplished numerically using time
stepping. However, the appropriate time step h is difficult to estimate but essential in
minimizing computational time. For instance, high crossing velocities of the mass result in
high-frequency vibrations that require a small h and vice versa for low crossing velocities.
It was therefore necessary to upgrade the RK4 to an adaptive RK5 for better accuracy,
see Dormand and Prince [21]. In essence, RK4 is used as an intermediate calculation
before switching to RK5, and this is carried out continuously throughout the time stepping
procedure. The error at every time step is actually a vector of errors committed for each
variable. For instance, if we have two DOFs y1 and y2, then the error vector is

En(h) =
[

E1(h)
E2(h)

]
=

[
y1, RK5(t + h)− y1, RK4(t + h)
y2, RK5(t + h)− y2, RK4(t + h)

]
, n = 1, 2 (13)

Two criteria are available for error e(h) estimation, which, for the above case, are

e(h) = max|En (h)| , e(h) =

√
1
n ∑n

i=1 Ei(h) (14)

The error estimate e(h) is then used to adjust the time step using a present tolerance ε.

Starting with the ratio e(h1)
e(h2)

≈
(

h1
h2

)
≈
(

h1
h2

)5
and setting the tolerance based on e(h2), we

recover the desired time step value as h2 ≈ h1

(
ε

e(h1)

)
1
5 .

5.2. Numerical Results

We note that in order to compute acceleration time histories from the velocities, a

simple finite-difference scheme is used as
..
w(t) =

{ .
w(t+h)−

.
w(t)

}
h , where h is the smallest

time step value calculated from the RK5 iterations. Figure 4 depicts the forced vibration
response of the bridge girder at recording station x = L/2 for the support cases mentioned.
We note the pivotal role played by the support conditions on the girder’s response, with
the left-hand side spring being soft while that at the right-hand side being stiff.
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velocity and acceleration at station x = L/2 for rigid supports; right column (b,d,f) plots the displacement, velocity and
acceleration at station x = L/2 for elastic supports.

6. The Effect of a Moving Mass Inertia

In this section, we examine both the time histories and Fourier spectra for the bridge
deck displacement near the center at the station x = 7L

16 , as recovered from a numerical
solution of the analytical results developed in Section 4. More specifically, mass m is ana-
lyzed both as a moving load (Section 4.2) and as a moving mass (Section 4.3) representation.
Figure 5 clearly shows that for a sizeable mass relative to the bridge deck as defined by
mass ratio R = m

M = 38.6
102.2 = 0.38, and at relatively low speeds, there are few differences

between the numerical results derived from these two representations in the time domain.
On the contrary, Figure 6 juxtaposes the difference observed when the mass becomes very
heavy

(
R = 500

102.2 = 4.89
)

and moves at high speed.
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a heavy m = 500 kg mass traversing at a high speed of v = 10.0 m/s.

Following up with an FFT of the above displacement time histories, we observe in
Figure 7 the reason for divergence between the moving load and moving mass cases, even
for the case in Figure 5: the latter representation yields a system whose dynamic properties
change as the mass moves across, i.e., for the forced vibration part of the analysis. The first
eigenfrequency of the primary system, i.e., the bridge deck, has a well discernible value of
f1 = 8.56 Hz, while if the analysis takes into account the combined system, this frequency
is now diffused and registers values in the 6.54 Hz < f1 < 8.52 Hz range. This alludes to a
more flexible system without well-defined eigenfrequencies.
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7. Experimental Validation

Here, we compare the analysis results cast as dimensionless acceleration spectra
A(ω) with those resulting from measurements carried out for the experiment described
in Section 1. The basic parameters in the experimental setup were the mass m = 38.60 kg
traversing the bridge deck velocity v = 0.247 m/s. This setup gave a mass ratio of
R = m

M = 0.38, which is substantial. The left support of the bridge deck, where the
mass starts moving, was elastic, and two values were derived from the pad interface to
bracket the equivalent spring value as 100 < K1 < 1000 (kN/m), while the right support,
where the mass exits, was kept rigid, i.e., K2 = ∞. Figure 8 depicts the measurements in
both time and frequency domains as registered at the central accelerometer (see Figure 1)
from one series of tests that was carried out. Similarly, Figure 9 depicts the FFT of the
analytical results derived in the time domain from the numerical solution of Equation (11)
for the deck acceleration close to the center span, at = 7L

16 , and normalization by g. By
comparing analytical with experimental results, we validate the conclusion drawn in
the previous section, whereby the simplified model of a moving load is not sufficient to
describe the case of a heavy mass traversing a bridge deck unless the moving mass’s inertia
is accounted for. This results in a structural system whose dynamic properties change
as the mass moves across, leading to diffusion of the eigenfrequencies that are activated
by the deck vibrations. After passage of the moving mass, the bridge model regains its
original structural properties.
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the model bridge with speed v = 0.247 m/s and end support stiffness of (a) K1 = 1000 kN/m, K2 = ∞. (b) K1 = 100 kN/m,
K2= ∞.

Discussion of the Results

At first, when the time history plots for the bridge under a rolling mass were trans-
formed to the frequency domain (see Figure 7), we observed diffusion of the bridge
eigenfrequencies when the moving mass was large compared to the mass of the bridge
deck. Furthermore, when the moving mass was small, i.e., we essentially had a secondary
system rolling over a primary system, the dynamic properties of the combined system
remained unaltered. This leads to a categorization of bridges as large-scale ones, such
as suspension bridges, where traffic is a stream of vehicles whose individual weight is
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practically insignificant, versus small-scale ones, such as pontoons, which are crossed by
heavy vehicles, with railway bridges falling somewhere in between.

Looking at the results presented in Figure 9 in the frequency domain, we observed
two scenarios of stiffness degradation for the left support, namely K1 = 1000 kN/m and
K1 = 100 kN/m (with K2 = ∞ in both cases), that showed the influence of the moving
mass inertia. The extent of eigenfrequency diffusion was clearly visible in both cases, and
a conclusion that can be drawn is the larger the support deterioration, the smaller the
width of the resulting diffusion. Observations such as these are, of course, not limited to
support degradation, but other factors can be identified that might play a role in bridge
deck damage over time that could be of interest in SHM.

Another consequence of the aforementioned eigenfrequency diffusion is the difficulty
in establishing the critical velocity of a moving heavy mass. Ordinarily, the relation used is
ω1 = (π/L) vcr, but now, the first eigenfrequency ω1 of the bridge is not clearly defined
but is instead a swarm of values that has moved to the left in the frequency spectrum, i.e.,
to lower values. This may lead to an over-prediction of this critical velocity value that may
have design consequences for a bridge.

Finally, the potential use for these FFT plots is in an artificial intelligence environment
for the development of algorithms that can be used to help detect damage in bridges. Of
course, this is a vast area that has been developing over recent decades. However, in the
case of our model experiment, the role of the supports turned out to be pivotal in terms of
the bridge’s eigenproperties. Two simple rules emerge: (a) a shift of the eigenfrequencies to
the left in a frequency diagram denotes a more flexible system, possibly indicating support
stiffness deterioration; (b) diffusion of the eigenfrequency peaks may indicate residual
damage due to the passage of heavy, quickly moving traffic.

8. Conclusions

In this work, we developed an analytical solution for a heavy mass rolling with
constant speed over the span of a simply supported beam. Following numerical implemen-
tation, the results recovered were validated against measurements from a scaled bridge
experiment. In reference to the results obtained herein, which we view as forming the
background for SHM applied to bridges, we can now distinguish between the following
problem parameters: (a) If the moving mass is small, we essentially have a secondary
system placed on a primary system, which is the bridge. In this case, the interaction phe-
nomenon is incomplete in the sense that the dynamic properties of the secondary system
do not influence those of the primary system. This does not hold true if the moving mass is
comparable to that of the bridge it traverses. In that case, the dynamic properties of the pri-
mary system are time dependent for the forced vibration period, and once the moving mass
leaves the bridge’s span, they revert to their original values. Viewed differently, during
the forced vibration regime, the eigenvalue problem for the bridge is time dependent. Past
that, it becomes the classical eigenvalue problem when the free vibration regime occurs.
(b) The other important factor is the speed of the moving mass. Again, we distinguish two
regimes, one when the moving mass speed is less than a critical speed that depends on the
bridges’ material parameters and geometry and another where it is greater. If one looks at
the frequency content of a key bridge variable, such as the center span displacement, the
peaks corresponding to the eigenfrequencies of the bridge become blurred as the speed
of the mass increases and higher modes of vibration are activated. At low speeds and
for small masses, these frequency spectra clearly show the peaks corresponding to the
eigenfrequencies of the bridge. (c) Finally, at very low speeds, we have a quasi-static
problem that yields influence lines, i.e., the deflection curves of the bridge for a given
mass position. In closing, all these problem parameters are important in deciding how
to implement SHM strategies for bridges, which can be generalized to include railway,
highway and overpass bridges.
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Appendix A. The Eigenproblem for Flexible end Supports

When the supports are flexible and represented by the spring constants K1, K2 (kN/m),
the eigenfunctions are given as

Φn(x) = c1n

(
sin(knx) + c2n

c1n
cos(knx) + c3n

c1n
sinh(knx) + c4n

c1n
cosh(knx)

)
n = 1, 2, . . .

where constants c1n are evaluated so that the generalized mass corresponding to each mode
is of unit value. Furthermore, kn is the wave number resulting from setting the 4× 4 system
determinant that results from imposing boundary conditions to Equation (2). Specifically,
at ends x = 0, L, we have

EIΦ′′′ (0) + K1Φ(0) = 0, Φ′′ (0) = 0, EIΦ′′′ (L) + K2Φ(L) = 0, Φ′′ (L) = 0

The determinant thus formed is

det =

∣∣∣∣∣∣∣∣
EIA′′′1 (0) + K1 A1(0) EIA′′′2 (0) + K1 A2(0) EIA′′′3 (0) + K1 A3(0) EIA′′′4 (0) + K1 A4(0)

A′′1 (0) A′′2 (0) A′′3 (0) A′′4 (0)
A′′1 (L) A′′2 (L) A′′3 (L) A′′4 (L)

EIA′′′1 (L)− K2 A1(L) EIA′′′2 (L)− K2 A2(L) EIA′′′3 (L)− K2 A3(L) EIA′′′4 (L)− K2 A4(L)

∣∣∣∣∣∣∣∣= 0

where

A1(x) = sin(kx),A2(x) = cos(kx),A3(x) = sinh(kx),A4(x) = cosh(kx),

When the above determinant is set equal to zero, the roots of this determinant when set
equal to zero are traced using the Newton–Raphson method, followed by back substitution
in the expression for the eigenfunctions. The results are plotted in Figure 2 for two
basic cases and help determine the placement of the accelerometers along the span in the
subsequent experimental procedure.
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