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Abstract: Annually, millions of dollars are spent to carry out defect detection in key infrastructure
including roads, bridges, and buildings. The aftermath of natural disasters like floods and earth-
quakes leads to severe damage to the urban infrastructure. Maintenance operations that follow for
the damaged infrastructure often involve a visual inspection and assessment of their state to ensure
their functional and physical integrity. Such damage may appear in the form of minor or major
cracks, which gradually spread, leading to ultimate collapse or destruction of the structure. Crack
detection is a very laborious task if performed via manual visual inspection. Many infrastructure
elements need to be checked regularly and it is therefore not feasible as it will require significant
human resources. This may also result in cases where cracks go undetected. A need, therefore, exists
for performing automatic defect detection in infrastructure to ensure its effectiveness and reliability.
Using image processing techniques, the captured or scanned images of the infrastructure parts
can be analyzed to identify any possible defects. Apart from image processing, machine learning
methods are being increasingly applied to ensure better performance outcomes and robustness in
crack detection. This paper provides a review of image-based crack detection techniques which
implement image processing and/or machine learning. A total of 30 research articles have been
collected for the review which is published in top tier journals and conferences in the past decade.
A comprehensive analysis and comparison of these methods are performed to highlight the most
promising automated approaches for crack detection.

Keywords: crack detection; machine learning; artificial intelligence; image processing

1. Introduction

Annually, millions of dollars are spent to acquire various tools and assets to carry
out defect detection from key infrastructure which includes roads, bridges, buildings, and
water bodies [1]. Civil structures such as roads, bridges, buildings, and pavements are
often exposed to extreme physical stress which may be caused by natural disasters like
earthquakes, catastrophic incidents like blasts or daily usage. Such incidents can either
cause a complete collapse of the structure or may lead to physical damage that is often
represented in the form of cracks. Usually, cracks emerge at a microscopic level on the
surface of the infrastructure component [2]. These cracks make the component weak,
reduce its loading capacity and lead to discontinuities on the surface [3–5]. If such cracks
are detected at an early stage, further damage can be reduced [6]. Undetected cracks
can however spread through the surface and may lead to the complete collapse of the
structure, resulting in fatalities, injuries, and financial loss. Manual methods of crack
detection involve experts who examine the component visually and the use of specific
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tools to identify any deficiency in the component [6]. However, this method is tedious,
labour extensive and prone to human error. Automatic crack detection deals with using
technologies to identify cracks from infrastructures. The level of degradation can be
determined by analyzing the length, width, depth and severity of a crack. These measures
can be used to make decisions regarding the classification of the crack, durability of the
structure and its usage [7]. Using the traditional inspection procedures which involve
manual inspection, it is very time-consuming to determine the crack measures which
make it difficult to make inference regarding the level of degradation. Hence, for a quick,
effective, and reliable damage assessment, the crack detection process must be automated
to replace the manual defect inspection methods. Some testing methods like laser, infrared,
thermal, radiographic, and thermal testing approaches have been used in the past to
automate the process of crack detection [8–10]. However, more recently, there has been
an increasing trend of using image-based methods for detecting cracks. These methods
involve capturing images of the target component and analyzing them programmatically
to find and classify cracks. Such methods are fast, less expensive, and robust. The methods
can be categorized into two types namely as image processing and machine learning. The
image processing methods do not require a model training process and involve the use
of filters, morphological analysis, statistical methods, and percolation techniques for the
detection of crack [11,12]. On the other hand, the machine learning process involves the
collection of a dataset of images, which are supplied to the selected machine learning
model for training. Such methods may involve image processing steps for preprocessing
and noise removal, but the crack detection task is done by the trained machine learning
model [13].

Figure 1 shows the basic architecture of an image processing-based method for crack
detection. First using a camera or any other imaging mechanism, high-resolution images
of the target component are collected. The images are then preprocessed which involves
using filters, segmentation and other approaches to remove noise and shadows from the
image. The image may be converted to grayscale or binary form if required by the specific
crack detection method being used. The resultant image is applied to the crack detection
procedure which uses image processing techniques like edge detection, segmentation,
or pixel analysis to highlight or segment the cracked part in the image [14]. Parameter
estimation involves calculating the specific properties of the detected crack such as its
length, width, depth and density. Such measures help in making decisions regarding the
severity of a crack.
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Figure 1. Image Processing Methods for Crack Detection.

The basic steps to build a machine learning model for crack detection are depicted
in Figure 2. In the first step, a dataset must be collected showing surface cracks, which
are to be detected using the machine learning model. Previously, a study led by Lin et al.
used 30,000 low-resolution images for training [15]. The images are preprocessed using
image processing techniques to reduce noise, remove shadows and adjust other properties
such as size and brightness of images. The cracks in these images then undergo pixel-wise
annotation or labelling, where the defected pixels are annotated in the image. This step
can be performed manually or using a labelling tool. One such example of labelling is
to set crack pixels as white or “1” in the image while the remaining pixels will be set as
black or “0”. After this step, a machine learning model needs to be selected, which is to be
used for crack detection. In past studies various machine learning models such as support
vector machines (SVM), CNN, and decision trees have been used for crack detection [16]. A
cost/loss optimization function is then formulated to minimize the loss or cost of training
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the model. A weighted cross-entropy loss function can be used for this purpose [17–20].
The designed model will then be trained using the set of annotated images collected in the
dataset. After training the model, a new set of images will be applied to the model to see if
the model successfully classifies the cracked regions in the image.
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In this paper, we present a review of the image processing and machine learning-
based methods for crack detection which have been proposed over the last decade. For
this purpose, 30 research articles from journals and top tier conferences were retrieved
and the respective crack detection methods were analyzed concerning the crack detection
technique proposed, its features, performance, dataset details and the specific component
to which the method is applicable. The results of each method are documented along
with the corresponding limitations. A comparative analysis of these methods is conducted
to highlight the most promising methods for automatic crack detection. The paper is
organized as follows: Section 2 presents the methodology followed to collect data for the
study. The article retrieval and screening process are explained in detail in this section.
Section 3 presents the result of the study, discussing the crack detection techniques proposed
in the articles and highlighting the strengths and limitations of each method. Section 4
discusses the results, analyzing the features of the methods and presenting a general picture
of the current advancement in this domain. Section 5 summarizes the goals, outcomes, and
achievements of this research along with the prospects.

2. Materials and Methods

The aim was to assess the development in this field and how these advanced tools are
facilitating post-disaster scenarios. To achieve the desired goals, top journals were searched
for recent and significant work carried out in the domain. The review process was carried
out in two phases i.e., retrieving articles and screening them.

To retrieve the research articles for this study, the chosen search engines were Scopus,
Google Scholar, Science Direct, Elsevier, and Springer for finding the latest developments
and interdisciplinary research in the field. The next step was to formulate a set of queries
to be used in each of the search engines to retrieve the articles. The major aim was to
fully exhaust the search database and retrieve a maximum number of articles matching
the domain of interest. We used three categories of terms representing the subdomains,
to extract a variety of research articles. After entering the search queries, a set of articles
ranked based on their relevance were retrieved. The first category of phrases was formu-
lated to retrieve articles that proposed flood prediction models using image processing
technologies that utilised multispectral sensors. The phrases were formed by using key-
words related to flood prediction which include “flood prediction”, “flood risk analysis”
and “flood hazard mapping” along with phrases like “image processing” and “artificial
intelligence”. The second category of terms was formulated to retrieve articles that pro-
posed flood prediction methods using these technologies. For this purpose, we used flood
prediction keywords along with the keyword “edge detection”, “mining patterns from
images, Synthetic Aperture Radar, and “Image-based flood Alarm model”.

After the first phase based on article retrieval, the articles were passed through a
screening phase to further narrow down the selection criteria. Four assessment criteria
were defined to evaluate the articles:

(1) No duplicates
(2) Time interval: 2010–2021
(3) Document type: research article, abstract, book chapter
(4) English language only
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Thus, by filtering the articles based on these metrics, the most recent, applicable,
and unique research articles written in the English language were extracted. From the
1250 articles retrieved in the first phase, 94 articles passed all four selection criteria. Hence,
this review is based on these screened articles. The number of articles from each term
category i.e., image processing, artificial intelligence and integrated approach that passed
the screening phase is shown in Figure 1. The articles were screened for duplicates, non-
English articles, and review papers. Around 520 papers were removed for duplicates, 240
for non-English articles and 396 for review papers. Hence, overall, 94 papers were finally
collected as an output of the screening phase.

In this section, the method adopted to retrieve the data relevant to the study is
presented. The article retrieval and screening process are discussed in detail. Figure 3
shows the overall methodology followed for the study. To retrieve the articles most relevant
to the research questions proposed in the study, we define two categories of research articles.
These are:

• Cat-1 Crack Detection using Machine Learning
• Cat-2: Crack Detection using Image Processing
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After defining the categories, we defined keywords related to each category. Figure 4
shows the keywords are search phrases that are to be entered in the search engines of a
research article repository. The aim was to generate a maximum number of keywords for
each category to retrieve as many relevant research articles as possible. For this purpose, we
defined a basic set of keywords which are: {crack detection using machine learning, crack
detection using image processing, crack detection, crack measurement, crack classification}.
A keyword search process was conducted to find the most frequent keywords reported in
the literature, relevant to the previous set of keywords. The retrieved keywords include:
“segmentation”, “support vector machine”,” technology”, ”computer vision” and “classi-
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fier” as shown in Figure 4. The retrieved keywords illustrate that data that is to be gathered
for the research must revolve around “crack detection technologies”. Keywords from this
set were used in combination with the base set of keywords, to completely exhaust the
database and retrieve a maximum number of articles relevant to the study.
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The next step was to specify the resource from where the research articles are to be
retrieved. For this purpose, recent research articles from a wide range of journals and
conferences were retrieved. Search results were obtained for each specific search phrase
entered on the search engine. Screening criteria were selected based on the time frame
relevance to the topic of study, and authenticity of websites for article retrieval.

More precisely, the following assessment criteria for screening were outlined:

(1) Published between 2010 to 2020
(2) English Language only
(3) Websites must be: MDPI, Elsevier, IEEE Xplore, Arxiv, Science Direct
(4) Article type must be research article, review or book chapter (letters, abstracts and

comments are excluded)
(5) No duplicates

The articles meeting the specified criteria for screening were downloaded. A total of
107 articles were retrieved at this stage. After this step, each article was carefully studied
so that only relevant articles were kept for the research. This involved reading the abstract,
methodology and results of each article. After the detailed content analysis, the articles
not found relevant to the defined categories were discarded. At the end of this process, a
total of 30 research articles were finally selected for the study. These articles met all the
assessment criteria and were found relevant to the research questions posed in this study.

Figure 5 shows the year-wise distribution of the research articles which were selected
for the study. The graph shows a growing trend among studies that are moving towards
machine learning methods for crack detection, especially during the most recent years
(2016–2020). The use of image processing methods was common at the start of the decade
(2010), however, with the rapid advancement in the field of artificial intelligence (AI), the
machine learning methods took over and gained rapid attention of various researchers
who aimed to introduce automation in the crack detection process.
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3. Results

A total of 30 research papers were collected because of the article retrieval and screen-
ing method. Figure 6 shows the overall distribution of these articles in the image processing
and machine learning domains. The pie chart shows that 67% of articles proposed crack
detection methods that employed machine learning models while 33% used image pro-
cessing methods. In this section, a comprehensive review of these papers is presented.
Comparative analysis of these techniques is done in tabular forms. The performance
outcomes, technique, dataset, imaging method and limitations of each method is presented
to make inference regarding the feasibility of the method and its applicability in real-time
crack detection tasks.
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3.1. Image Processing Based Crack Detection

Table 1 summarizes the image processing-based methods reviewed in this paper for
crack detection. Each of the methods has been discussed in the subsequent sections.
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Table 1. Image Processing Methods for Crack Detection.

Method Features Domain Image Details Imaging
Device/Source Results Limitations Ref.

Recursive Tree edge
pruning Crack Detection Pavement 206 images

800 × 600 -
Precision = 0.79

Recall = 0.92
F-Measure = 0.85

Increased runtime
(up to 30 s) [4]

GP and Image
Filtering Crack Detection Concrete

17
(varying

resolution)
Digital Camera Accuracy = 80% - [10]

Gabor Filter Crack Detection Pavement 5
336 × 339 pixels

Canon IXUS
80 IS Precision up to 95% Results presented

on 5 images only [13]

Particle Filter Crack Detection
& Measurement Civil Structures 14

12 MP IP Camera Error Range =
7.51–8.59% - [14]

Beamlet Transform
Crack

Detection,
measurement &

Classification
Pavement 256 × 256 pixels - A method is fast &

robust to noise

Cant calculate crack
width; manual

setting of thresholds
prevents full
automation

[18]

Median filter,
Hessian Matrix,

probabilistic
relaxation

Crack detection Noisy Concrete
Surfaces

60 images
640 × 480 pixels

SONY
Cyber-shot
DSC-F828

AUC = 0.9903 - [21]

FPHBN Crack Detection Pavement

500 + 1969 +
206 + 118 + 38

(varying
resolution)

Crack500,
GAPs384,

CrackTree200,
CFD, Aigle-RN

AIU = 0.081
Time = 0.241

s/image
Method is not real

time [22]

Canny edge
detector, dilate

operators, Frangi
filter

Crack Detection Bridges
72 images

4288 × 2848
resolution

UAV Detection rate =
98.7% - [23]

UAS Operator
Crack Detection

and
measurement

Bridges Real-time crack
detection DJI Mavic Pro

DJI Mavic Pro most
suitable camera to

visualize cracks

UAS not stable in
the absence of GPS

and windy
atmosphere

[24]

Shi-Tomasi feature
point detection Crack Detection Bridges Real-time crack

detection
consumer-

grade digital
camera

The system is robust
to varying

illumination
conditions and

complex textures

Accuracy affected
by noise-limited

camera resolution
[25]

3.1.1. Tree Structures

One of the many challenges faced by researchers in crack detection is the presence
of noise in the images, which makes it difficult to identify crack pixels [4,9,22,23]. To
tackle this problem, Zou et al. presented an approach to reduce shadows from the input
pavement images to make the cracks more prominent and easier to identify. A tensor
voting scheme was proposed that builds probability maps for cracks which involve using
visual clues of vicinity and connectivity [4]. Minimum spanning trees (MSTs) were built
which show all the possible links of the determined crack sources. The unwanted edges
were eliminated to get the output crack curves. The dataset for validation of the model
consisted of 206 pavement images. The system takes up to 16 s to determine cracks from
an input image. The precision-recall and F-measure values have been recorded as 0.79, 0.92
and 0.85 respectively indicating high accuracy and significance of the methods.

3.1.2. Genetic Programming

Nishikawa et al. employed image processing methods for automatic crack detection
from concrete images. Major cracks are detected through genetic programming (GP) [26].
Genetic programming has been used previously for space optimisation by implementing
augmented Lagrangian genetic algorithm, optimize largescale structures by application
of the fuzzy genetic algorithm, controlled system problems by introducing floating-point
genetic algorithm, applied for management purposes for senor allocation and forecasting
accident durations [11–13,27]. The remaining noise from the images is reduced by applying
filters. Minor cracks are then detected by repeatedly applying an image filter to the areas
around major cracks. Spatial derivatives of the intensity patterns in the crack segments are
calculated to determine crack widths. An accuracy of 80% has been achieved on a dataset
of 18 test images.
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3.1.3. Image Filters

Some concrete materials have more textured surfaces, which makes the crack detection
task even more challenging. To deal with this issue, Salman et al., proposed an image
processing-based approach to detect cracks from pavement images. A Gabor filter was
employed for multidirectional crack detection [13]. A Gabor filter is a linear filter that
analyzes the texture in a region to determine the presence of content having a particular
frequency in a specific direction. Hence, this method is found to be very effective to detect
cracks from pavements having rich textures. The experimental results showed a precision
of 95%.

Statistical methods have been applied to images to detect cracks. Lins and Givigi
applied a statistical filtering approach to detect cracks and then used image-processing
based methods to determine the lengths and widths of the detected cracks. A particle
filter is used for crack detection on civil structures [14]. This filter is originally designed to
monitor objects in clutter. A vector is used to represent the position of each object at time
t. The error range recorded by this method is between 7.51% to 8.59%. To determine the
width and length of each crack, the total number of crack pixels determined by the crack
detection method is multiplied by the pixel resolution. The angle of a crack is calculated by
drawing a line between any two points on the crack and then using trigonometric rules.

Fujita and Hamamoto worked on a crack detection system that is robust to the presence
of noise in concrete images. The test image first passes through a pre-processing stage where
a median filter is applied to reduce noise and shade present in the image [28]. To make
the cracks more prominent in images, a line filter is applied which is a multi-scale filter
that uses a Hessian matrix. Multiscale Hessian filtering is useful for the enhancement and
segmentation of narrow fractures in 3D image data. Finally, to detect cracks, a probabilistic
relaxation method is applied to the resultant image. Adaptive thresholds are applied to
further improve the precision of crack detection. The method is tested on 60 concrete
images containing noise. The area under the curve (AUC) recorded by the system is 0.9903,
indicating the accuracy and precision of the system.

Yeum and Dyke worked on detecting defects from bridge images. They particularly
focused on detecting cracks that are present close to the bolts on steel surfaces. Images are
captured from varying angles and positions [29]. From each image, the region of interest
(ROI) is the area near to bolt but not the bolt itself. Median filter, canny edge detector
and dilate operators are used to extracting bolts from each image. After removing bolts
from the images, a Hessian matrix-based method called Frangi filter is applied to detect
crack like edges. The detection rate of the system is 98.7%, depicting the efficiency of crack
detection using this method.

3.1.4. Beamlet Transform

Ying and Salari proposed a beamlet transform method for the detection and classifi-
cation of cracks on pavement images. Beamlets are an organization of line segments at
varying angles, scales, and locations [30]. This method is used to retrieve linear features
from images such as edges and lines. Hence, it is deemed as effective in detecting cracks,
which are curvilinear features, from the noisy and textured surface images of pavements.
The extracted crack parts are connected, and each crack is then categorized into one of the
four categories, which are: (1) horizontal, (2) vertical, (3) transversal and (4) block.

3.1.5. Unmanned Aerial System (UAS)-Based Approach

Dorafshan et al. worked on crack detection from bridge images. A UAS was utilized
and the impact of lighting and distance of a crack from the camera on crack detection results
was investigated. Hence a measure called “achievable crack to platform (ACP) distance”
was evaluated [31]. This measure represents the maximum distance of the camera from
the platform from where a crack can be accurately detected. The UAS operator monitored
the image and adjusted lighting and distance until the crack was visible. This operator
also measures the length and width of each crack. Among all the cameras tested by the
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system, the DJI Mavic Pro was the best camera used in the UAS for enhancing crack
visibility [32–35].

3.1.6. Shi-Tomasi Algorithm

Kong and Li worked on detecting cracks from steel bridges. A short video is captured
from the target bridge structure. Differential features resulting from the opening and
closing of cracks are tracked at each frame of the video [36]. Feature detection was done
using the Shi-Tomasi algorithm. The gaps in the surface movement of the bridge part in
the video stream were identified and tracked to detect cracks. Experimental results showed
the robustness and efficiency of this method even in the presence of varying illumination
conditions. One limitation is the increased dependency on the camera resolution, as the
accuracy was reduced on low-resolution videos [37–39].

3.2. Machine Learning-Based Crack Detection

Table 2 summarizes the machine learning methods reviewed. Each of the methods
has been discussed in the subsequent sections.

Table 2. Machine Learning-based Crack Detection.

Method Features Domain Dataset Device/Source Results Limitations Ref.

GoogleNet CNN,
FPN

Crack
delineation

Civil
Structures

64000 crack &
64000 non-crack

images
Canon Camera

Precision = 80.13%
Recall = 86.09%

F-Measure = 81.55%

Need 16 s to find
cracks on an

image of 6000 ×
4000 pixels

[40]

CNN Defect detection Calf
Leather

584 images
400 × 400 pixels Robotic Arm

Accuracy = 91.5%
(training), 70.35%

(testing)
- [41]

CNN Crack detection Pavement 500 images
3264 × 2448

Smartphone
sensor

Precision = 0.8696
Recall = 0.9251

F-Measure = 0.8965
- [42]

FCN
Crack Detection

and density
evaluation

Concrete
20,000 crack &

20,000 non crack
227 × 227

Public Dataset AP = 89.3%
F-Measure = 89.3%

Reduced
performance for

crack density
evaluation in the
presence of noise

[43]

K-means clustering,
Gaussian Models

Crack detection,
measurement

and Characteri-
zation and

severity
assessment

Road 84 images
1536 × 2048 pixels Digital Camera F-Measure = 97%

Less accuracy in
detection of

narrow cracks (<2
mm)

[44]

STRUM, SVM,
Adaboost, Random

Forest

Crack Detection
and density
evaluation

Bridge 100 images
1920 × 1280 pixels

Robotic
Scanning Accuracy = 95% - [45]

SVM, MDNMS Crack Detection Road
7250 images
4000 × 1000

pixels

Line scan
cameras, laser
and HW-SW

Precision = 98.29%
Recall = 93.86% - [46]

CNN Crack Detection Pavement
260 training

images
512 × 512 pixels

CrackTree,
CRKWH100,
CrackLS315,

Stone331
F-Measure = 0.87

Does not work
well for cracks on

stone images
[47]

CNN Crack Detection Pavement
500

3264 × 2448
pixels

Smartphones Accuracy = 91.3% Results subject to
location variance [48]

FCN Crack Detection
& Measurement

Pavement
& Walls

800
(varying

resolution)
Digital Camera Accuracy = 97.96% - [49]

Random Structured
Forests, SVM

Crack Detection
& Characteriza-

tion
Road 38 + 118 images

480 × 320 pixels
CDN, AigleRN

Datasets Precision = 96.73%
Crack width not
measured; Not

tested on videos
[50]

MorphLink C, ANN
Crack Detection
& Characteriza-

tion
Road 100

0.99 mm per pixel LRIS MSE = 0.0094–0.0105 - [51]

NB-CNN Crack Detection
Nuclear
Power

Plant Com-
ponents

147344 crack,
149460 non-crack
120 × 120 pixels

20 captured
videos

720 × 540 pixels
Average AUC= 96.8%

To avoid
overfitting a large

number of
training images

required; Reliance
on GPU

[52]

Morphologic Image
Processing, Logistic

Regression
Crack Detection Steel Slabs

644 + 323 images
0.1 × 0.1 × 0.0053

mm
(width length

depth) resolution

3D Profile Data Accuracy above 80% - [53]
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Table 2. Cont.

Method Features Domain Dataset Device/Source Results Limitations Ref.

Transfer Learning
(CNN)

Crack & Sealed
Crack Detection Pavement 800 images 2000

× 4000 pixels
ImageNet

Dataset
recall= 0.951; precision=

0.847 - [54]

Canny Algorithm,
decision tree

heuristic

Crack Detection
& classification Pavement 400 images

320 × 320 pixels Digital Camera
Success rate= 88% for

crack detection
80% for crack
classification

Not tested in
real-time [55]

Morphological
analysis,

segmentation,
extreme learning
machine classifier

Crack Detection
& Classification

Subway
Tunnels

38000 images
6144 × 1024

CMOS line scan
cameras Accuracy > 90%

Parameters
setting need to be
done for images

of different
resolutions

[56]

CNN Crack Detection Pavement
2000

3D images
1 mm resolution

Image Library
of 5000 3D

images

Precision (90.13%),
Recall (87.63%) and
F-measure (88.86%)

Reduced accuracy
in finding hairline

cracks
[57]

Morphological
operations, NN,

SVM

Crack
Detection,

depth
perception

Civil
Structures

1910 non- crack,
3961 crack images

5184 × 3456
pixels.

Canon EOS 7D NN: Accuracy = 79.5%
SVM: Accuracy = 78.3% - [58]

Deep convolutional
encoder-decoder

network
Crack Detection Road 527 images Black-box

Camera

Recall = 71.98%
Precision = 77.68%

Intersection of Union =
59.65%

- [59]

3.2.1. Convolutional Neural Network (CNN)

The CNN model is commonly found in the literature for crack detection. This model
has three layers of neurons: convolutional layer, pooling layer and fully connected layer.
The convolutional layer extract features from images which enables it to learn to distinguish
between crack and non-crack image. The pooling layer is used for down-sampling the
image and reducing its size by adjusting its dimensions. A fully connected layer is used in
the final stage of a CNN model, as it takes the output from the previous layer as input and
maps it to an output label.

Crack delineation involves both identification and segmentation of cracks from images.
Ni et al., automated these tasks using feature map fusion and pixel classification [40].
A CNN architecture named GoogleNet CNN was applied for crack classification. The
output was processed using feature pyramid network (FPN), which contains fusion layers
and consecutive convolutional layers which collectively perform crack delineation. The
results showed that the network was able to do crack delineation accurately achieving
a precision of 80.13%. One limitation is the long processing time of the network as it
takes 16 s approximately to detect all the cracks from an image having a resolution of
6000 × 4000 pixels. Deep learning with CNN architecture for surface crack detection with
enhanced computation. The proposed model was compared with other methods such as
VGG16, Inception, and ResNet. The proposed shallow CNN architecture model achieved
maximum accuracy of 99.8% in the minimum computation.

To assure driving safety, detecting defects from pavements and roads have also been
a subject of interest for many researchers. A defect detection system has been proposed
that detects cracks from pavement images using a CNN model [41]. A total of 500 images
for the dataset have been collected using a smartphone sensor. The CNN model is trained
using these images along with manually annotated ground truth data. To speed up the
training process a graphics processing unit (GPU) is utilized. In CNN architecture, rectified
linear units (ReLU) is used as an activation function, to further accelerate the process. The
model recorded a precision, recall and F-measure of 0.8696, 0.9251 and 0.8965 respectively.

Zou et al. [4] proposed DeepCrack, which is a trainable deep CNN model that detects
crack from input pavement images, by utilizing high-level features such as ridges to
represent cracks. The DeepCrack network is constructed on the architecture of SegNet
which is based on encoder-decoder design. The features produced in the convolutional
stages of the encoder network and the decoder network are fused in a pairwise manner.
Four standard crack datasets are used for evaluations which are: CrackTree, CRKWH100,
CrackLS315, Stone331. From these datasets, three are used for testing and one for training.
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Experimental results show an F-measure above 0.87. The method works well for pavement
images and did not show good results on input stone images.

Regular examination of the components in nuclear power plants is deemed necessary
to ensure the safety of the workers. A total of 20 videos were captured from components in
a nuclear power plant and integrated CNN and a naïve Bayesian (NB) classifier to fuse and
analyze the data acquired from each video frame. In this framework, CNN detects cracks
from each input frame while NB eliminates the false positives in the output [42]. The data
fusion approach preserves each crack’s spatiotemporal consistency. This system achieved a
hit rate of 98.3%.

CrackNet is a CNN-based model presented by Zhang et al. [3] for crack detection on
pavements. There are no pooling layers in the CrackNet architecture, unlike the traditional
CNN model. This architecture ensures accuracy up to the pixel level as the image length
and width remains unchanged in all layers. Convolutional and fully connected layers
are the hidden layers of this network [26]. Training of the model was done using 1800
three-dimensional (3D) images. A total of 200 3D pavement images were captured for
testing the model. The system achieved a precision, recall and F–measure of 90.13%, 87.63%
and 88.86%.

Yang et al. [15] used a variation of CNN called fully convolutional network (FCN)
for pixel-level segmentation of cracks on the images of walls and pavements. The FCN
model is trained using multiple kinds of crack images [15]. Pixel skeletons having a width
of only one pixel are used to represent the crack segments predicted by the FCN model.
The morphological features of these cracks, like length, width and topology are then
measured using these skeletons. For validation, the crack segments acquired by the model
are compared to ground truth and the results produced by FCN model crack detection
systems. The overall accuracy achieved by the crack segmentation system is 97.96%. This
method outperforms the CrackNet model in that it provides pixel-level segmentation and
reduces the training time. However, its performance is less than CrackNet in terms of
accuracy.

Bang et al. [31] worked on the detection of road cracks at the pixel level. A deep
convolutional encoder-decoder network was used for this purpose [31]. The encoder part
of this network consists of convolutional layers which extract the crack features while
the decoder part consists of de-convolutional layers which find the crack locations in
images. The model was trained using 427 black box images which were extracted from
black-box videos and was tested on 100 images. The system recorded a precision, recall
and intersection of a union of 77.68%, 71.98% and 59.65% respectively.

Pauly et al. [14] used CNN to detect cracks from pavement images . A total of
500 images were collected using smartphones from pavements across the United States
of America (USA). The resolution of each image was 3264 × 2448. Each image was then
partitioned into patches of 99 × 99 pixels. Next, these patches were labelled as either
cracked or non-cracked. The experimental results showed that by increasing the depth of
the neural network, better performance outcomes are achieved. A limitation of this method
is the location variance problem according to which, when the model is tested on pavement
images collected from a different location, the performance is reduced. An accuracy of
91.3% was recorded by this crack detection system.

Researchers have proposed several methods to calculate the dimensions and mea-
surements of the detected cracks such as length, width and depth along with the densities.
Dung and Anh have proposed a system that detects cracks from concrete images and
calculates their densities. They performed semantic segmentation of cracks on concrete
images [5]. The system uses an encoder-decoder FCN model. A total of 500 annotated
images were used to train the encoder based on VCG16. The average precision achieved by
the network is 90%. The system detects cracks and also calculates the densities of these
cracks with reasonable performance. To measure the density of a crack, the total number of
segmented crack pixels is divided by the total number of pixels in the image. This ratio is
referred to as the pixel density [40–43].
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Differentiating between cracks and sealed cracks is another challenge that exists in the
literature. Zhang et al. [23] worked on crack detection on pavement images having complex
textures while focusing on the problem of distinguishing between cracks and sealed cracks
having identical width and brightness. A CNN model is trained for the classification of
a pavement image into crack/sealed crack and background sections [43]. A section-wise
thresholding process is applied to the output image for pixel-based segmentation of cracks
and sealed cracks. A curve identification method based on tensor voting is employed to
extract the crack or sealed crack. A total of 800 images are used to test the system. The
system showed a recall of 0.951 and a precision of 0.847.

3.2.2. K-Means Clustering

Crack characterization methods deal with classifying the detected cracks based on
their types [44–46]. Oliveira and Correia presented such a crack detection and classification
approach, that does not require manual labelling of dataset images [6]. A total of 84 road
images were captured for the training of the system using a digital camera. Unsupervised
training of the system is done using images from the training dataset. A K-means clustering
method and a mixture of two Gaussian models were tested to detect cracks from the input
images. The results showed that the Gaussian models’ mixture showed the best F-Measure
i.e., 93.5% and the least error rate that is 0.6%. In the case of recall, this method achieved
the second-best performance which is 95.5%. The detected cracks are classified either as
longitudinal cracks, transversal cracks or miscellaneous. This is done by analyzing the
connected components of each crack and computing a crack skeleton. Using the crack
skeleton, a crack width is determined. The width is further analyzed to determine the
crack severity level. One limitation is the lack of accuracy of the system in the detection of
narrow cracks (width < 2 mm).

3.2.3. Logistic Regression

In steel products, consistent casting causes lasting cracks on the surfaces of steel
slabs [47–49]. Hence, to avoid wasting time and costs in dealing with defective products, it
is crucial to detect these cracks at an early stage. Landstrom and Thurley presented a crack
detection and measurement system that uses morphological image processing. Initially,
80% length of a crack in an image is extracted by applying segmentation and minor defects
or cracks are discarded [22]. After that, statistical classification is performed using logistic
regression on these segmented images which detects all the major cracks. Overall accuracy
recorded by the system is above 80%.

3.2.4. Feature Pyramid and Hierarchical Boosting Network (FPHBN)

Yang et al. [15] proposed FPHBN to detect cracks on pavement surfaces. To assess the
performance of crack detection on images, the researchers presented a new measurement
method called “average intersection over union” (AIU) [15]. The method was evaluated
on five standard crack datasets. The AIU achieved by the method was 0.081 and the time
taken to show output on a single image is 0.241 s. Other studies have used this technique
for pavement and concrete crack detection [50–53].

3.2.5. Support Vector Machines (SVM)

Gavilan et al. [8] presented a road distress detection method. Road images were
captured by a vehicle having line scan cameras, laser beams and the required Hardware
and Software (HW-SW) for scanning and storage [8]. After preprocessing of images, a
multiple directional non-minimum suppression (MDNMS) method is applied for crack
detection. A linear SVM classifier is used to differentiate between various pavements
across Spain to determine optimal parameters for crack detection. The performance of the
crack detection method is improved by adapting parameters specific to the pavement. The
method achieved a precision of 98.29% and recall of 93.86%. Several studies have applied
SVM for crack detection [54–56].
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3.2.6. SVM and Random Forest

Defect detection from bridges play a vital role in the maintenance of their structure
and ensuring the safety of people who use them. Prasanna et al. performed crack detection
on bridge images captured using robotic imaging. They proposed a crack detection method
called spatially tuned robust multi-feature (STRUM). Machine learning methods: SVM,
Adaboost and random forest are used to finally classify the crack and non-crack pixels [7].
Robust curve fitting is utilized to locate the possible crack regions, despite the existence
of noise in the images. An accuracy of 95% is achieved using the STRUM classification
approach as opposed to a 69% accuracy which has been achieved using a traditional image
processing approach. A continuous bridge mosaic is created using series of images from
the robot. This mosaic is further used to develop crack density maps [57–59].

3.2.7. SVM and Artificial Neural Network (NN)

A crack detection system for civil structures that performs segmentation by consider-
ing the depth parameters has been proposed. Crack depths are determined by performing
reconstruction of 3D scenes [27]. A distinguishing factor of this method is that it retrieves
the whole crack from the input image while the other methods that use edge detection just
segment the cracked part. Morphological methods are adopted for crack segmentation and
extraction. NN and SVM classifiers were used for final crack classification. For the NN
model, the accuracy was 79.5% while for SVM, 78.3% accuracy was recorded. Similar work
has been reported using SVM and NN for enhanced precision for crack detection [60–62].

3.2.8. Artificial Neural Network (ANN)

The fragmentation of cracks in the images is a problem frequently faced by researchers.
To tackle this issue, Wu et al. [19] proposed a crack defragmentation method called
“MorphLink-C”. This technique connects different crack parts present in an image [16]. A
dilation transform is applied to group crack fragments. These fragments are then connected
by applying a thinning transform. Crack width is also determined using this approach.
The system is developed specifically for crack detection in road and pavement images.
An artificial neural network (ANN) is used to perform the final classification to label the
images as “crack” or “no-crack”. The MorphLink-C method has been demonstrated to
improve the classification accuracy while reducing the training time of the classifier [63–65].

3.2.9. Random Structured Forests

CrackForest is a crack detection system for roads [66–68], such as Shi et al. [15] which
uses random structured forests. This model targets the issue of inhomogeneity of the
intensity of cracks present in the road images. To detect cracks in such images, integral
channel features are applied to achieve an improved depiction of cracks [15]. After this
step, a random structured forests method is employed to detect cracks. This method can
accurately detect arbitrary and complex cracks from images. An SVM model is employed
to classify the cracks concerning their type. Instead of having fixed labels for the crack type,
this method extends the crack types to thousands of dimensions. This enables the system
to characterize the arbitrary cracks as having complicated forms. The overall precision
achieved for crack classification is 96.73%.

3.2.10. Decision Tree

Fernandez et al. used various image processing and machine learning methods to
detect cracks from 400 pavement images. The operations include morphology-based filter,
canny edge detector, bilateral filter and transformation using logarithms [23]. Finally, a
decision tree classifier was used to classify the crack according to its type. The crack types
are transverse cracks, longitudinal cracks and alligator cracks. The success rate of crack
detection was 88% and for crack classification, the success rate was 80%. Application of a
decision tree approach has been useful for crack detection [69].
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4. Analysis and Discussion

In this section, we present an analysis of the crack detection studies reviewed in this
paper based on the functions they have covered, the source of the dataset, the domain to
which the method is applicable and the performance of the method.

4.1. Functionality Based Analysis

All the reviewed articles proposed crack detection methods. However, a few of them
also focused on crack classification, which deals with categorizing the crack according to
its type e.g., transversal or longitudinal cracks, and sealed cracks. Many articles performed
measurements of the detected crack. For example, various methods were proposed to
measure the crack length, width, depth and density [34,40–42]. Hence, crack classification
and measurement are some important problems that have been tackled in several studies
giving them an edge over studies that just focused on the crack detection task. Figure 7
shows that most studies (16) focused on crack detection only, while 10 of them dealt with
both crack detection and measurement. Just four studies proposed methods for classifying
cracks after detecting them. Hence, this analysis points towards the need for further
development in the classification methods for cracks. Figure 7 presents the distribution of
the articles based on their features or the functionality they have provided.
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4.2. Crack Classification Analysis

Different articles were reviewed in the study focused on crack classification. Table 3
shows the crack types identified by researchers while categorization of the detected crack.
This table illustrates that all the articles proposed some unique categories to classify cracks.
Longitudinal (caused due to late or shallow saw cutting, inadequate base support, and
built-in warping and curling) and transversal cracks (extends along the cross-section of
structure, usually perpendicular to its centerline) have been tackled in two studies [6,23]
while a new crack type called “sealed crack” was proposed in [20]. The authors of [15]
classified the cracks based on their dimensions, hence concluded that thousands of types
exist for the cracks detected in their study.

Table 3. Studies focusing on crack classification.

Crack Types Ref.

Longitudinal cracks, transversal cracks or miscellaneous. [6]
Types based on dimensions [15]

Crack, sealed crack [20]
Transverse cracks, longitudinal cracks and alligator cracks. [23]
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4.3. Crack Measurement Analysis

Ten articles reviewed in this study proposed mechanisms to measure various proper-
ties of the detected cracks. These properties include the length, depth, width and density,
etc. of the detected crack. Such measures give important inference about the crack severity
and the condition of the structure of the component from where it is detected. Table 4
shows that the majority of research articles focused on finding the length and width of
the crack. Other measures such as density, topology and angle severity have also been
calculated in some of the articles. Among these methods, the method proposed in the
article [5] calculates the highest number of measures, followed by [12] and [14] which
introduce two new measures which are topology and angle, respectively.

Table 4. Studies focusing on Crack Measurement.

Crack Measurement Ref.

Length, width, depth, density [5]
Density [7]
Widths [10]

Length, width & topology [12]
Angle, width & length [14]

Depth [27]
Width, severity [6]

Width [16]
Length, width [24]
Length, width [29]

4.4. Image Source

Before developing any image-based crack detection system, collecting images for the
dataset is another problem that needs to be resolved. From the analysis conducted on
the reviewed articles, we can infer that 70% of researchers build their dataset (Figure 8).
This involved using various types of cameras such as line cameras, robotic scanning, and
smartphones. Developing custom datasets is preferred by researchers as this enables them
to capture the specific requirements of the crack detection algorithm being used. About 30%
of researchers used pre-built crack datasets, which contained crack images. These datasets
are being used as standards for testing and training crack detection models. Examples of
these datasets include Crack500, GAPs384, CrackTree200 and CFD, Aigle-RN. Such datasets
are widely used in machine learning models, as they require a large number of images or
training, hence, it is deemed more feasible to use standard domain-specific datasets.
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4.5. Domain of Crack Detection

Each method reviewed in this study is designed to detect cracks from a specific
element or component. In this review, it is observed that a large majority of papers focused
on detecting cracks from pavements (Figure 9). A large portion of articles focused on civil
structures in general. Hence, these methods can detect cracks from any infrastructure
element like roads, bridges, walls and pavements. Crack detection from other materials
such as leather, steel and nuclear power plant components are also considered in three
of the studies [2,17,19]. However, the rest of the articles only focused on infrastructure
components like subway tunnels, roads, bridges, pavements and walls. Hence, this points
towards the need to focus on developing methods for crack detection which can be applied
to other elements as well such as leather, steel, textiles and other industrial products.
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4.6. Precision Level

The applicability and reliability of any crack detection method can be assessed by
reviewing its performance outcomes. In the reviewed articles, researchers have used
varying performance measures to validate their systems such as accuracy, AUC, precision,
recall and F-measure. However, precision was used most commonly among these articles
for the evaluation of the crack detection model. The Table 5 shows the precision values of
these methods. This shows the methods presented in [8,15] recorded the highest precision
values which ranged between 95% to 100%. All of these methods showed reasonable
performance as shown by the precision values which ranged between 75% to 100%.

Table 5. Performance (precision) analysis of the various crack detection methods.

Precision (%) Ref.

95–100 [8,15]
90–95 [13,26]
85–90 [3,5]
80–85 [1,20]
75–80 [4,28]

5. Gaps and Challenges

Crack detection is a challenging task as cracks have an irregular form with no specific
shape or size. Hence, no pre-built method can be used to recognize a crack or distinguish it
from the background texture and noise. In this paper, we reviewed crack detection methods
belonging to two domains, namely image processing and machine learning. By examining
the methodology presented in the articles and the limitations, we can infer that both these
domains pose specific challenges when it comes to accurate crack detection from any
component. Crack classification has been rarely addressed in the articles. The type of the
detected crack facilitates the inspection process by giving important indications regarding
the nature of the crack, its cause and its severity. More research needs to be focused on
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developing methods to classify the detected crack so that the system can recognize the
type of the crack and the maintenance operations can be focused on dealing with the
specific type of crack. Image processing methods have given satisfactory performance on
the custom datasets built by the researchers. However, these methods are dependent on
the lighting conditions, resolution of the images and the level of the noise present in the
images [12,34,41]. Also, the surfaces of the concrete structures have varying textures as
they are exposed to external disturbances and may not have the same texture even if they
are built from the same material. Hence, they may not give as good results when a new
image having a different texture, brightness, resolution or noise level is given as input.
Furthermore, crack detection in transversal direction is not enough accurate as compared
to measurement carried out longitudinally. this difference in directional measurement
could be an issue when establishing a relationship between the width and longitude of the
crack. Hence, the practical applicability of using image processing-based methods is still
obscure [10,24,35].

On the other hand, machine learning methods also pose several limitations to the
researchers. Increased processing time has been observed in many methods [70]. Many
methods require manual parameter setting of the model which limits the full automation
of the crack detection method [24]. Reliance on GPU is another limitation as some methods
do not work as efficiently without it due to a large number of images in the dataset [17]. To
avoid overfitting of the model it becomes necessary to train the model using a large dataset.
These methods require extensive labelling of data images. In practical scenarios, a limited
option for labelling is also available, so the acquisition of labels can be a difficult task [26].
Due to the difference in surface conditions, a different algorithm may be needed to accu-
rately detect the cracks. In addition, crack detection is carried out offline so performance
in real-time detection is poor. Therefore, there is a need to improve the performance of
algorithms and detection accuracy in real-time. The method selected should be robust as
factors such as climatic conditions may impact crack detection. Limitations in terms of the
need for large datasets in order to train neural network can be overcome by empirically
decomposing the fitted networks into ensembles of low-bias sub-networks, thus making
use of small data sets. In addition, deep learning methods can be applied to unsupervised
tasks, using a small dataset that does not require extensive labelling of data, thus reducing
time and cost [48,50].

The presence of noise, shadows, blemishes and other disturbances in the images is
a problem commonly faced by researchers in using both image processing and machine
learning methods [5,30]. Hence, more research needs to be conducted to develop methods
that can remove noise and other irregularities from images [23,71].

6. Conclusions

The paper focuses on the domains of image processing and machine learning for crack
detection. It reviewed state-of-the-art crack detection methods that have been developed
in the past decade with results are published in top-tier journals and conferences. A
total of 30 research articles were reviewed that were screened after applying criteria and
performing a detailed examination of their content. These articles have been assessed
based on the method they have used, the dataset details, imaging method, performance
outcomes, features and limitations. From the analysis, it can be inferred that a wide range
of articles focuses on crack detection only. However, calculating the dimensions of the
crack was not performed in the majority of the studies. Measurements of the detected
crack such as its length, width, density and depth give important indications regarding the
state of the component and its durability and thus helps in making decisions regarding the
structure’s further usage. More research needs to be focused on crack measurement and the
system must be able to provide a final verdict regarding the severity of the detected crack
using different techniques and algorithms. Most methods showed excellent performance
outcomes as the precision values for crack detection ranged between 75% to 100%. Another
observation is that the researchers prefer using their custom-built dataset, which caters
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to the specific requirements of the method used in the system. Most of the reviewed
crack detection techniques apply to civil infrastructure and concrete components. Overall
and specifically in recent years (2016 to 2020), most of the studies have focused on using
machine learning methods instead of image processing for crack detection. Among these
methods, CNN has been most frequently used for this problem. In the future, the research
can be extended to include assessment criteria to assess the performance such as the
runtime of the algorithm, its resource consumption and applicability in real-time scenarios.
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